A plastic beer keg includes an outer container and a liner having a neck portion and a body portion. A removable lid is secured over an opening of the container to enclose the liner. A locking ring secures the neck portion to the lid. The neck optionally includes a neck ring which interlocks with the opening through the lid to prevent relative rotation therebetween. The locking ring optionally includes ratcheting teeth engaging ratchet teeth on the lid to prevent inadvertent loosening of the locking ring. The liner may be suspended from the lid by the neck when empty.
|
8. A locking ring comprising:
a generally cylindrical portion for receiving therein a neck of a liner, the generally cylindrical portion having internal threads;
a lower annular flange portion extending radially outward from a lower portion of the cylindrical portion; and
at least one tab projecting outwardly from the lower annular flange, the at least one tab including at least one ratcheting tooth.
1. A plastic beer keg including:
a container having an outer wall at least partially defining a container interior;
a lid secured to an upper portion of the outer wall of the container;
a liner within the container interior, wherein the liner is a bottle including a neck portion, a body portion and a bottom portion, wherein the only opening to an interior of the bottle is through the neck portion, wherein the liner interlocks with the lid to prevent relative rotation therebetween; and
a valve mounted in the neck portion.
7. A plastic lid comprising:
an annular rim portion;
a lip projecting downwardly from the rim portion;
a lower annular wall portion having an opening therethrough, the lower annular wall portion spaced downwardly from the rim portion;
a frustoconical wall portion connecting the lower annular wall portion to the rim portion;
an inner frustoconical wall portion between the frustoconical wall portion and the lower annular wall portion; and
a plurality of ratchet teeth disposed about the opening, wherein the ratchet teeth are formed on the inner frustoconical wall portion.
2. The plastic beer keg of
5. The plastic beer keg of
6. The plastic beer keg of
9. The locking ring of
|
The present invention relates to a plastic container for liquids, particularly beverages such as beer.
Most current beer kegs include a steel body with a valve in the top for both filling the keg and for accessing the contents. The steel kegs are reusable. Empty kegs are returned and then washed and refilled in an automated process. The steel kegs are inverted, such that the valve is at the bottom of the keg to facilitate draining during cleaning. The interior of the body of the keg is washed by spraying cleansing liquids through the valve. The cleansing liquids wash the inner surface of the body of the keg and then drain downward through the valve. The kegs are typically then filled in the inverted position through the valve at the bottom of the keg. Throughout the automated process, a cylinder clamps the body of the keg with a high force (between 200 and 300 lb.) to hold the keg in place while the washing and filling heads connect to the valve at the bottom of the keg.
There are several problems with the use of steel kegs. First, they are fairly heavy, even when empty. Second, they are expensive and are not always returned by the user. If a deposit is charged to the user to ensure the return of the keg, this may discourage the user from choosing to purchase beer by the keg in the first place. However, if the deposit is too low, it is possible that the value of the steel in the keg exceeds the amount of the deposit, thus contributing to some kegs not being returned.
The present invention provides a plastic keg with various optional desirable features. In the disclosed embodiment, the plastic keg includes a container with an outer wall defining a container interior. A plastic liner is received in the container and includes a neck portion. A retainer of a valve assembly secures the valve assembly to the neck of the liner. A locking ring secures the neck of the liner to the lid via the retainer.
The neck optionally includes a neck ring which interlocks with the opening through the lid to prevent relative rotation therebetween. The locking ring optionally includes ratcheting teeth engaging ratchet teeth on the lid to prevent inadvertent loosening of the locking ring.
The liner may be suspended from the lid by the neck when empty. As the liner is filled (and for some time thereafter), the liner expands into contact with the bottom wall of the container.
These and other features of the application can be best understood from the following specification and drawings, the following of which is a brief description.
The outer container 12 includes a tapered cylindrical outer wall 24 having an upper end to which the lid 16 is snap-fit or threaded. A pair of handle openings 26 (one shown) are formed through the outer wall 24. A skirt 28 may extend around the periphery of the wall 24 to provide ease of handling.
The lid 16 includes a lip 30 extending downward from a generally horizontal, annular rim portion 31 extending about the periphery of the lid 16 and over the upper edge of the outer wall 24 of the outer container 12. The lid 16 further includes a lower annular wall 32 spaced below the upper edge of the outer container 12 and connected by a frustoconical wall 34 to the outer periphery of the lid 16.
The retainer 20 is securable to the neck 46 of the liner 14 (such as by threading) in order to retain the valve assembly 18 within the neck 46. A semi-flexible tube 19 extends downward from the valve assembly 18 into the liner 14. The outer container 12, the lid 16, and the retainer 20 may each be separately molded of HDPE, polypropylene or other suitable materials. The lid 16 includes an opening 50 complementary in shape (in this case, hexagonal) to the neck ring 48.
An exploded view of the valve assembly 18 is shown in
The valve assembly 18 is pre-assembled, as shown in
Referring to
As shown in
If the keg 10 is used in automated filling equipment, the compressive forces on the retainer 20 will be transferred by the locking ring 22 to the lid 16 directly to the container 12. There are little or no compressive forces transferred through the liner 14, especially prior to filling. The container 12 is much stronger than the liner 14 and can easily withstand the compressive forces of the automated equipment. After filling, when the liner 14 is pressurized, the liner 14 is also able to withstand compressive forces, if necessary.
As shown in
The outer container 12, the lid 16, the retainer 20 and locking ring 22 may each be separately formed (such as by injection molding) of HDPE, polypropylene or other suitable materials. The valve assembly 18 components can all be made of PET or polyethylene (such as by injection molding), other than the springs 58, 62, which could be stainless steel, PET, or polyethylene. The tube 19 may also be formed of PET or polyethylene.
In an alternative embodiment, the outer container 12 could also be formed of PET. Because the outer container 12 does not contact the beverage, the outer container 12 could be recycled PET from recycled liners 14 (and/or recycled valve assembly 18 components, tube 19, outer containers 12, etc). Optionally, the lid 16, retainer 20, and locking ring 22 could all also be formed of recycled PET, which could also be recycled. In this manner, the material from all of the keg 10 components can always be recycled and used again in creating more kegs 10.
In accordance with the provisions of the patent statutes and jurisprudence, exemplary configurations described above are considered to represent a preferred embodiment of the invention. However, it should be noted that the invention can be practiced otherwise than as specifically illustrated and described without departing from its spirit or scope. For example, although some of the inventive features described herein provide the ability to fill the keg in an inverted orientation in existing filling equipment with high clamping forces, it is also anticipated that the kegs would be desirable for use with upright filling, both automated and manually.
Patent | Priority | Assignee | Title |
11097939, | Apr 15 2019 | Plastic Technologies, Inc. | Method and device for dispensing from an inverted shippable container |
Patent | Priority | Assignee | Title |
4531656, | Jul 21 1981 | SPENER, CHARLES J , 14190 FOREST CREST DRIVE, ST LOUIS COUNTY, MO 63017 | System, apparatus and method of dispensing a liquid from disposable container and a container therefor |
5222620, | Oct 29 1991 | MAUSER CORP | Drum liner locking and locating assembly |
5238150, | Feb 01 1991 | WILLIAMS DISPENSER CORPORATION A CORP OF CALIFORNIA | Dispenser with compressible piston assembly for expelling product from a collapsible reservoir |
5597085, | Jul 20 1994 | Entegris, Inc | Composite, pressure-resistant drum type container |
6666358, | Jun 18 1999 | Ecokeg Pty Ltd | Beer container |
WO2008013819, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 05 2016 | Rehrig Pacific Company | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 07 2022 | REM: Maintenance Fee Reminder Mailed. |
Jul 25 2022 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 19 2021 | 4 years fee payment window open |
Dec 19 2021 | 6 months grace period start (w surcharge) |
Jun 19 2022 | patent expiry (for year 4) |
Jun 19 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 19 2025 | 8 years fee payment window open |
Dec 19 2025 | 6 months grace period start (w surcharge) |
Jun 19 2026 | patent expiry (for year 8) |
Jun 19 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 19 2029 | 12 years fee payment window open |
Dec 19 2029 | 6 months grace period start (w surcharge) |
Jun 19 2030 | patent expiry (for year 12) |
Jun 19 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |