Methods are provided for reservoir analysis. In some embodiments, a reservoir may be analyzed by obtaining abundance ratios at a first measurement station and a second measurement station and determining an abundance ratio trend. Abundance ratios at a third measurement station may be obtained and plotted versus depth with the previously obtained abundance ratios. A change in the abundance ratio trend may be identified and result in further investigation of the reservoir. If the abundance ratio is unchanged, additional abundance ratios may be obtained and plotted versus depth to further evaluate the abundance ratio trend. Methods for reservoir analysis using fluid predictions with and without offset well information are also provided.
|
1. A method for analyzing a reservoir traversed by a wellbore, comprising:
obtaining, from a first measurement station within the wellbore, a first composition of a first fluid sample acquired at the first measurement station;
determining an equation of state (EoS) model for a reservoir fluid using the first composition;
obtaining, from a second measurement station within the wellbore, a second composition of a second fluid sample acquired at the second measurement station;
tuning the EoS model using the second composition;
generating a predicted fluid profile using the EoS model;
obtaining, from a third measurement station within the wellbore, a component ratio from a gas chromatogram of a third fluid sample acquired at the third measurement station;
comparing the component ratio to the predicted fluid profile;
using the comparison to analyze the reservoir.
2. The method of
4. The method of
5. The method of
6. The method of
obtaining optical absorption measurements of the first fluid sample;
obtaining a gas chromatogram of the first fluid sample; and
determining the first composition from the optical absorption measurements and the gas chromatogram.
7. The method of
obtaining optical absorption measurements of the second fluid sample;
obtaining a gas chromatogram of the second fluid sample; and
determining the second composition from the optical absorption measurements and the gas chromatogram.
|
This application is a Divisional of U.S. patent application Ser. No. 14/574,351 filed Dec. 17, 2014, now U.S. Pat. No. 9,664,665, the application of which is herein incorporated by reference.
This disclosure relates to reservoir characterization and fluid analysis and, more particularly, to using downhole gas chromatography to analyze a reservoir.
The composition of a fluid may be determined from various measurements obtained from a fluid downhole in a well. The composition may be used to characterize a reservoir in real-time and adjust drilling strategies. However, composition determinations for a fluid downhole may be difficult and may not provide accurate measurements of all components of a fluid. For example, pumping a fluid to obtain an uncontaminated sample may provide greater accuracy but may be time-consuming, and the acquisition of large numbers of measurements downhole may be expensive. Moreover, extracting a fluid sample to a surface laboratory to provide a detailed composition analysis may result in a greater delay and may be insufficiently responsive for reservoir development, production, and management.
A summary of certain embodiments disclosed herein is set forth below. It should be understood that these aspects are presented merely to provide the reader with a brief summary of these certain embodiments and that these aspects are not intended to limit the scope of this disclosure. Indeed, this disclosure may encompass a variety of aspects that may not be set forth below.
Embodiments of this disclosure relate to various methods for analyzing a reservoir. According to some embodiments, a method for analyzing a reservoir traversed by a wellbore is provided that includes obtaining, from a first measurement station within the wellbore, a first at least one abundance ratio from a first gas chromatogram of a first fluid sample acquired at the first measurement station and obtaining, from a second measurement station within the wellbore, a second at least one abundance ratio from a second gas chromatogram of a second fluid sample acquired at the second measurement station. Additionally, the method includes identifying a trend between the first at least one abundance ratio and the second at least one abundance ratio from the first plot and obtaining, from a third measurement station within the wellbore, a third at least one abundance ratio from a third gas chromatogram of a third fluid sample acquired at the third measurement station. The method further includes determining, using the third at least one abundance ratio, whether a change exists in the abundance ratio trend and using the determination to analyze the reservoir.
According to another embodiment, a method for analyzing a reservoir traversed by a wellbore provided that includes obtaining, from a first measurement station within the wellbore, a first composition of a first fluid sample acquired at the first measurement station and determining an Equation of State (EoS) model for a reservoir fluid using the first composition. The method also includes obtaining, from a second measurement station within the wellbore, a second composition of a second fluid sample acquired at the second measurement station, tuning the EoS model using the second composition, and generating a predicted fluid profile using the EoS model. The method further includes obtaining, from a third measurement station within the wellbore, a component ratio from a gas chromatogram of a third fluid sample acquired at the third measurement station, comparing the component ratio to the predicted fluid profile, and using the comparison to analyze the reservoir.
In another embodiments, a method for analyzing a reservoir traversed by a wellbore is provided that includes obtaining, from at least one offset well, a fluid composition and determining an Equation of State (EoS) model for a reservoir fluid using the fluid composition from the offset well. The method also includes obtaining, from a measurement station within the wellbore, a component ratio from a gas chromatogram of a fluid sample acquired at the station, comparing the component ratio to the predicted fluid profile, and using the comparison to analyze the reservoir.
Various aspects of this disclosure may be better understood upon reading the following detailed description and upon reference to the drawings in which:
Described herein are various embodiments for analyzing a reservoir traversed by a wellbore. In some embodiments, a reservoir may be analyzed by obtaining abundance ratios at a first measurement station and a second measurement station and plotting the abundance ratios versus depth. A trend in abundance ratios may be identified from the plot. Abundance ratios at a third measurement station may be obtained and plotted versus depth with the previously obtained abundance ratios. A change in the abundance ratio trend may be identified and may result in further investigation of the reservoir architecture. If the abundance ratio is unchanged, additional abundance ratios may be obtained and plotted versus depth to further evaluate the abundance ratio trend. In some embodiments, an analyzed fluid sample may be from a heavily contaminated fluid and the analysis may be performed for hydrocarbon fractions unaffected by OBM filtrate contamination, thus enabling a relatively fast fluid analysis and avoiding a cleanup of the fluid.
In some embodiments, a reservoir may be analyzed using fluid predictions without offset well information. In such embodiments, an Equation of State (EoS) model may be built from a fluid composition obtained from a measurement station capable of providing measurements for determination of a fluid composition. A fluid composition from a second measurement station may be obtained and used to tune the EoS model. The EoS model may be used to predict downhole gas chromatography fluid profiles and generate a predicted fluid profile using the assumption that all stations are in the same hydraulic flow unit and the fluid column is in equilibrium. Downhole gas chromatography measurements may be obtained from a target measurement station and compared to the predicted fluid profile. The comparison is evaluated to determine whether the variation between downhole gas chromatography measurements and the predicted fluid profile is acceptable. If the variation is acceptable, the EoS model may be tuned using the downhole GC measurements from the target station and additional downhole GC measurements may be obtained from additional target stations. If the variation is not acceptable, additional fluid compositions may be obtained to determine the source of the variation.
In some embodiments, a reservoir may be analyzed using fluid predictions with offset well information. Data from one or more offset wells may be obtained and used to build an EoS model. The EoS model may be used to predict downhole GC fluid profiles and generate a predicted fluid profile using the assumption that a target well and the offset wells have fluid connectivity and fluid equilibrium. Downhole GC measurements may be obtained from a target measurement station and compared to the predicted fluid profile. The comparison is evaluated to determine whether the variation between downhole GC measurements and the predicted fluid profile is acceptable. If the variation is acceptable, the assumed fluid equilibrium and flow connectivity to the one or more offset wells may be assumed correct. If the variation is not acceptable, additional fluid compositions may be obtained to determine the source of the variation.
These and other embodiments of the disclosure will be described in more detail through reference to the accompanying drawings in the detailed description of the disclosure that follows. This brief introduction, including section titles and corresponding summaries, is provided for the reader's convenience and is not intended to limit the scope of the claims or the proceeding sections. Furthermore, the techniques described above and below may be implemented in a number of ways and in a number of contexts. Several example implementations and contexts are provided with reference to the following figures, as described below in more detail. However, the following implementations and contexts are but a few of many.
More specifically, a drilling system 10 is depicted in
The drill string 16 can be suspended within the well 14 from a hook 22 of the drilling rig 12 via a swivel 24 and a kelly 26. Although not depicted in
During operation, drill cuttings or other debris may collect near the bottom of the well 14. Drilling fluid 32, also referred to as drilling mud, can be circulated through the well 14 to remove this debris. The drilling fluid 32 may also clean and cool the drill bit 20 and provide positive pressure within the well 14 to inhibit formation fluids from entering the wellbore. In
In addition to the drill bit 20, the bottomhole assembly 18 can also include various instruments that measure information of interest within the well 14. For example, as depicted in
The bottomhole assembly 18 can also include other modules. As depicted in
The drilling system 10 can also include a monitoring and control system 56. The monitoring and control system 56 can include one or more computer systems that enable monitoring and control of various components of the drilling system 10. The monitoring and control system 56 can also receive data from the bottomhole assembly 18 (e.g., data from the LWD module 44, the MWD module 46, and the additional module 48) for processing and for communication to an operator, to name just two examples. While depicted on the drill floor 30 in
Another example of using a downhole tool for formation testing within the well 14 is depicted in
The fluid sampling tool 62 can take various forms. While it is depicted in
The pump module 74 can draw the sampled formation fluid into the intake 86, through a flowline 92, and then either out into the wellbore through an outlet 94 or into a storage container (e.g., a bottle within fluid storage module 78) for transport back to the surface when the fluid sampling tool 62 is removed from the well 14. The one or more fluid analysis modules 72, which may also be referred to as a fluid analyzer 72 or a downhole fluid analysis (DFA) module, can include one more modules for measuring properties of the sampled formation fluid, and the power module 76 provides power to electronic components of the fluid sampling tool 62.
In some embodiments, the one or more fluid analysis modules 72 may include an optical analysis module adapted to receive at least a portion of the fluid sample. The optical analysis module may determine an optical property of the fluid sample and to provide an output signal related to or otherwise indicative of the optical property. In such embodiments, the optical analysis module may perform near-infrared optical absorption spectrometry and fluorescence emission measurements for analyzing fluids as they flow through the tool 62. The optical analysis module may be used to determine gas-fraction concentrations and to identify fluid types, respectively.
In some embodiments, the one or more fluids analysis modules 72 of the tool 62 include a gas chromatography (GC) module. The GC module is configured to determine a composition of the fluid sample and to provide an output signal indicative of the determined composition. The GC module may produce what may be referred to as a “gas chromatogram.” For the example embodiment using gas chromatography, the gas chromatography module 116 is configured to obtain a chromatogram of sampled formation fluids available within the flowline 92 portion of the tool 62. An example of such a device is described in U.S. Pub. App. No. 2010/0018287, entitled “Wireline Downhole Gas Chromatograph and Downhole Gas Chromatography Method,” and U.S. Pat. No. 7,384,453, entitled “Self Contained Chromatography System,” each assigned to Schlumberger Technology Corporation and incorporated herein by reference in its entirety. In some embodiments, the GC module may output composition up to C9, e.g., hydrocarbon fractions C1 through C8. In some embodiments, the GC module may output composition up to C30, e.g., hydrocarbon fractions C1 through C29. Additionally, the GC module may also measure N2, CO2, H2S and saturated and aromatic hydrocarbons and abundance ratios. In some embodiments, the GC module of the fluid analysis tool 62 described above may be insensitive to mud filtrate contamination in a sampled fluid by providing analysis of hydrocarbon fractions C1 through C8 (i.e., below C9). Additionally, the GC module of the fluid analysis tool 62 may provide relatively fast profiling of fluid composition ratio changes versus depth. For example, the analysis of hydrocarbon fractions up to C9 may enable analysis of a heavily contaminated fluid without performing a cleanup of the fluid to obtain a less contaminated fluid sample, thus eliminating or reducing cleanup time at the sample location.
In some embodiments, the one or more fluid analysis modules 72 may include a downhole pressure-volume-temperature PVT unit and may obtain microfluidic measurements of the sampled fluid. Embodiments of the tool 62 and fluid analysis modules 72 any include any one of or combination of the modules described above. For example, in some embodiments the tool 62 may include an optical analysis module and a gas chromatography module.
The drilling and wireline environments depicted in
Accordingly, the embodiments described above and illustrated in
Additional details as to the construction and operation of the fluid sampling tool 62 may be better understood through reference to
In operation, the hydraulic system 102 can extend the probe 82 and the setting pistons 88 to facilitate sampling of a formation fluid through the wall 84 of the well 14. It also can retract the probe 82 and the setting pistons 88 to facilitate subsequent movement of the fluid sampling tool 62 within the well. The one or more fluid analysis modules 72 can measure properties of the sampled formation fluid in accordance with the embodiments described above. For example, an optical analysis module may measure optical properties such as optical densities (absorbance) of the sampled formation fluid at different wavelengths of electromagnetic radiation. Using the optical densities, the composition of a sampled fluid (e.g., weight fractions or volume fractions of its constituent components) can be determined. In another example, as described above, a gas chromatography module may determine composition of the fluid sample and provide an output signal indicative of the determined composition. Other sensors 106 can be provided in the fluid sampling tool 62 (e.g., as part of the probe module 70 or the fluid analysis module 72) to take additional measurements related to the sampled fluid. In various embodiments, these additional measurements could include reservoir pressure and temperature, live fluid density, live fluid viscosity, electrical resistivity, saturation pressure, and fluorescence, to name several examples. In some embodiments, as mentioned above, some or all of other sensors 106 may be incorporated into a DFA module (e.g., such as in a PVT unit) of the fluid sampling tool 62.
Any suitable pump 108 may be provided in the pump module 74 to enable formation fluid to be drawn into and pumped through the flowline 92 in the manner discussed above. Storage devices 110 for formation fluid samples can include any suitable vessels (e.g., bottles) for retaining and transporting desired samples within the fluid sampling tool 62 to the surface. Both the storage devices 110 and the valves 112 may be provided as part of the fluid storage module 78.
In the embodiment depicted in
In some embodiments, geological and other processes may produce systematic or chaotic fluid property variations in, for example, light and heavy oilfields. In such instances, compressible fluids such as light oils and gas condensate may exhibit an increase in the mole fractions of light hydrocarbon fractions with decreasing depth due to oil field charging and gravitational effects. Additionally, fluids may also exhibit changing component abundance ratios with depth. In contrast, processes such as biodegradation can produce relatively complex vertical and lateral compositional and fluid property gradients on a range of reservoir scales.
As described further below, in some embodiments the fluid analysis tool 62 with a GC module may be used to determine changes in, for example, abundance ratios or relative fluid compositions versus depth to analyze a reservoir. For example, in some embodiments, abundance ratios (or relative compositions) of N2, CO2, and hydrocarbon fractions up and including C8 may be plotted against depth to identify changes. In some embodiments, hydrocarbon fractions up to C30 may be plotted against depth to identify changes. The GC module of the fluid analysis tool 62 may enable relatively fast and efficient fluid analysis such that changes verses depth may be plotted in small depth increments to identify subtle changes in fluids.
The processes described below and illustrated in
As shown in
Next, abundance ratios from a downhole gas chromatogram at a third station at a third depth may be obtained (block 410). As described above, the gas chromatogram may be obtained from a fluid sample (e.g., in some embodiments from a heavily contaminated fluid) acquired at the third measurement station by using the fluid analysis module 72 of the fluid analysis tool 62. The third abundance ratio and the previously obtained first and second abundance ratios may be plotted versus depth (block 412) to generate a second plot. The plot may be evaluated to determine changes in abundance ratio trends (decision block 414). For example, in some embodiments the trend may be compared to a threshold to determine if a change occurred in the trend, e.g., any deviation in the trend greater than the threshold may be considered a change in the abundance ratio trend. In other embodiments, suitable statistical techniques may be used to determine whether change occurred in the abundance ratio trend.
If there are changes in the abundance ratio trends (line 416), changes in the reservoir (e.g., changes in reservoir architecture) may then be investigated (block 418). For example, additional fluid samples may be obtained and analyzed using different techniques. If there are no changes in the abundance ratio trends (line 420), abundance ratios from additional measurement stations may be obtained and plotted versus depth to compare with the previously obtained abundance ratios and trends (block 422). As shown in the process 400, the additional trends may be evaluated to determine if there are changes in the trends (decision block 414) that may necessitate investigation into reservoir changes.
In some embodiments, downhole GC measurements may be used with other measurements, such as measurements obtained via optical analysis, pressure and temperature measurements and so on, to build an Equation of State (EoS) model for a fluid. For example, as noted above, embodiments of the fluid analysis tool 62 may obtain one or more of these measurements using the one or more fluid analysis modules 72.
Accordingly, an EoS model may be built from the obtained fluid composition and any other data obtained at the first station (block 506). In some embodiments, the fluid composition and EoS model for a low contamination fluid may be obtained after performing a cleanup of the fluid for analysis. For example, after performing a cleanup and obtaining a less contaminated fluid sample, the plus fraction for an obtained gas chromatogram may be estimated using or in combination with other fluid analysis techniques. Next, a second fluid composition from a second station may be obtained from a second measurement station (block 508). The second composition may be determined from measurements of a fluid sample acquired at the second measurement station by using the fluid analysis module 72 of the fluid analysis tool 62 described above. For example, here again the second station may be a DFA station having both a GC module and an optical analysis module in the fluid analysis tool 62. Accordingly, a second hydrocarbon fraction with plus fraction may be obtained using measurements from the second station (block 510). The previously built EoS model may be tuned to match the fluid compositions (and, in some embodiments, other data) obtained from the first and second measurement stations (block 512). Here again, the second fluid composition and tuning of the EoS model for a low contamination fluid may be performed after a cleanup of the heavily contaminated fluid for analysis, such as to enable the determination of a plus fraction to enable quantification of components of the fluid.
As shown by connection block A,
Next, downhole GC measurements (i.e., a gas chromatogram) from a downhole GC module may be obtained at a target measurement station (block 518). For example, the downhole GC measurements may be obtained from a fluid analysis tool 62 having a GC module (in such embodiments, the fluid analysis tool 62 may only have a GC module and may not have an optical analysis module or other modules). As will be appreciated, the downhole GC measurements may include component ratios such as, for example, hydrocarbon fraction ratios. As mentioned above, in some embodiments the component ratios for a heavily contaminated fluid may be obtained in a relatively short amount of time (e.g., by obtaining components ratios for hydrocarbon fractions below C9 and avoiding a cleanup of the fluid).
The downhole GC measurements may be compared to the predicted fluid profile (block 520) to determine a variation between the predicted fluid profile 516 and the measured downhole GC measurements. The variation may be evaluated to determine whether the variation is acceptable (decision block 520). For example, in some embodiments the variation may be compared to a threshold. In some embodiments, if the variation is greater than the threshold, the variation may be unacceptable. In other embodiments, suitable statistical techniques may be used to determine whether a variation is acceptable or unacceptable. If the variation is not acceptable (line 524), then the equilibrium assumption, the hydraulic flow assumption, or both, may be considered incorrect. In some embodiments, additional fluid log data may be obtained from additional stations for further investigation (block 526). In some embodiments, variations from the predicted fluid profile may be used for additional determinations or investigations, e.g., whether a formation is compartmentalized, whether oil-water contact is being approached, and so on.
If the variation is acceptable (line 528), the vertical connectivity assumption used to generate the predicted fluid profile 516 may be considered correct and the EoS model may be refined using the obtained downhole GC measurements (block 530). In some embodiments, downhole GC measurements may be obtained from next target station and additional evaluation and turning of the EoS model may be performed (block 532). As mentioned above, the additional downhole GC measurements may include component ratios such as, for example, hydrocarbon fraction ratios.
In some embodiments, fluid predictions may be performed using data from offset wells. In such embodiments, the data acquired from offset wells may include sufficient fluid compositional information to build an EoS model. Such data may include, for example, data from laboratory sample analysis, DFA, or both. The EoS model built from offset wells data may be used to predict fluid properties and DFA for a target well that intersects the same compartment. The predicted fluid profile is generated using the assumption that the target well and offset wells are contained in the same hydraulic flow unit and that the fluid column is in equilibrium. Accordingly,
Next, as shown in
The variation may be evaluated to determine whether the variation is acceptable (decision block 614). For example, in some embodiments the variation may be compared to a threshold. In some embodiments, if the variation is greater than the threshold, the variation may be unacceptable. In other embodiments, suitable statistical techniques may be used to determine whether a variation is acceptable or unacceptable. If the variation is not acceptable (line 616), then the equilibrium assumption to the one or more offset wells, the hydraulic flow assumption to the one or more offset wells, or both, may be considered incorrect. In some embodiments, additional fluid log data may be obtained from additional stations for further investigation (block 618). In some embodiments, variations from the predicted fluid profile may be used for additional determinations or investigations, e.g., whether a formation is compartmentalized, whether oil-water contact is being approached, and so on.
If the variation is acceptable (line 620), then the assumed fluid equilibrium and flow connectivity (hydraulic flow) to the one or more offset wells may be considered correct. In some embodiments, downhole GC measurements may be obtained from next target station and additional evaluation and turning of the EoS model may be performed (block 622). As mentioned above, the additional downhole GC measurements may include component ratios such as, for example, hydrocarbon fraction ratios. These operations may be performed until the reservoir and fluid are sufficiently characterized.
Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain implementations could include, while other implementations do not include, certain features, elements, and/or operations. Thus, such conditional language is not generally intended to imply that features, elements, and/or operations are in any way used for one or more implementations or that one or more implementations necessarily include logic for deciding, with or without user input or prompting, whether these features, elements, and/or operations are included or are to be performed in any particular implementation.
Many modifications and other implementations of the disclosure set forth herein will be apparent having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the disclosure is not to be limited to the specific implementations disclosed and that modifications and other implementations are intended to be included within the scope of the appended claims. Although specific terms are employed herein, they are used in a generic and descriptive sense and not for purposes of limitation.
Van Hal, Ronald E. G., Zuo, Youxiang, Gisolf, Adriaan, Crank, Jeffrey
Patent | Priority | Assignee | Title |
11555402, | Feb 10 2020 | Halliburton Energy Services, Inc. | Split flow probe for reactive reservoir sampling |
ER4184, |
Patent | Priority | Assignee | Title |
4739654, | Oct 08 1986 | CONOCO INC , A CORP OF DE | Method and apparatus for downhole chromatography |
7384453, | Dec 07 2005 | Schlumberger Technology Corporation | Self-contained chromatography system |
7600413, | Nov 29 2006 | Schlumberger Technology Corporation | Gas chromatography system architecture |
7637151, | Dec 19 2006 | Schlumberger Technology Corporation | Enhanced downhole fluid analysis |
7654130, | Nov 29 2006 | Schlumberger Technology Corporation | Gas chromatography system architecture incorporating integrated thermal management |
7658092, | Dec 22 2006 | Schlumberger Technology Corporation | Heat switch for chromatographic system and method of operation |
7805979, | Oct 25 2006 | Woods Hole Oceanographic Institution | High accuracy contamination estimation in hydrocarbon samples using GC×GC |
7822554, | Jan 24 2008 | Schlumberger Technology Corporation | Methods and apparatus for analysis of downhole compositional gradients and applications thereof |
7920970, | Jan 24 2008 | Schlumberger Technology Corporation | Methods and apparatus for characterization of petroleum fluid and applications thereof |
7966273, | Jul 27 2007 | Schlumberger Technology Corporation | Predicting formation fluid property through downhole fluid analysis using artificial neural network |
7996154, | Mar 27 2008 | Schlumberger Technology Corporation | Methods and apparatus for analysis of downhole asphaltene gradients and applications thereof |
8013295, | Nov 21 2008 | Schlumberger Technology Corporation | Ion mobility measurements for formation fluid characterization |
8028562, | Dec 17 2007 | Schlumberger Technology Corporation | High pressure and high temperature chromatography |
8250904, | Feb 28 2008 | Schlumberger Technology Corporation | Multi-stage injector for fluid analysis |
8271248, | Apr 01 2010 | Schlumberger Technology Corporation | Methods and apparatus for characterization of petroleum fluids and applications thereof |
8436116, | Feb 27 2009 | Massachusetts Institute of Technology | Responsive materials for isolating organic compounds |
8512457, | Dec 03 2007 | Schlumberger Technology Corporation | Differential acceleration chromatography |
8613215, | Dec 23 2008 | Schlumberger Technology Corporation; 3M Innovative Properties Company | Apparatus and method for multi-dimensional gas chromatography |
8621912, | Nov 30 2007 | Schlumberger Technology Corporation | Natural gas analyzer on a micro-chip |
8838390, | Feb 17 2011 | SELMAN AND ASSOCIATES, LTD. | System for gas detection, well data collection, and real time streaming of well logging data |
9194974, | Sep 02 2010 | Schlumberger Technology Corporation | Method to predict dense hydrocarbon saturations for high pressure high temperature |
9682373, | Dec 03 1999 | Becton, Dickinson and Company | Device for separating components of a fluid sample |
20020167314, | |||
20070214877, | |||
20080083268, | |||
20080141767, | |||
20080147326, | |||
20080190178, | |||
20080190180, | |||
20090031827, | |||
20090139934, | |||
20090150087, | |||
20090158815, | |||
20090158820, | |||
20090235731, | |||
20090312997, | |||
20100018287, | |||
20100077874, | |||
20100127163, | |||
20100132450, | |||
20100154511, | |||
20100299078, | |||
20110011156, | |||
20110011157, | |||
20110088895, | |||
20120021529, | |||
20120048108, | |||
20120053838, | |||
20120232859, | |||
20120296617, | |||
20130085674, | |||
20130112406, | |||
20130161502, | |||
20130204533, | |||
20130241099, | |||
20130243028, | |||
20130263680, | |||
20130289961, | |||
20140157877, | |||
20140260586, | |||
20140300895, | |||
20140343909, | |||
20150120255, | |||
20160178599, | |||
20160319640, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 19 2017 | Schlumberger Technology Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Dec 22 2021 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 03 2021 | 4 years fee payment window open |
Jan 03 2022 | 6 months grace period start (w surcharge) |
Jul 03 2022 | patent expiry (for year 4) |
Jul 03 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 03 2025 | 8 years fee payment window open |
Jan 03 2026 | 6 months grace period start (w surcharge) |
Jul 03 2026 | patent expiry (for year 8) |
Jul 03 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 03 2029 | 12 years fee payment window open |
Jan 03 2030 | 6 months grace period start (w surcharge) |
Jul 03 2030 | patent expiry (for year 12) |
Jul 03 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |