In a circularly polarized wave antenna apparatus including a non-reciprocal transmission line apparatus having forward and backward propagation constants different from each other, the non-reciprocal transmission line apparatus includes a transmission line part for a microwave, a series branch circuit equivalently including a capacitive element, and a shunt branch circuit branched from the transmission line part and equivalently includes an inductive element. The non-reciprocal transmission line apparatus is formed in a nonlinear shape and magnetized in a magnetization direction different from a propagation direction of the microwave. The non-reciprocal transmission line apparatus includes first and second reflectors provided at both ends of the non-reciprocal transmission line apparatus, respectively, and reflecting a signal; and satisfies that a phase difference between each pair of line parts located at positions opposed to each other across a substantially central part of the non-reciprocal transmission line apparatus is substantially 180 degrees.
|
1. A circularly polarized wave antenna apparatus comprising a non-reciprocal transmission line apparatus having forward and backward propagation constants different from each other, the non-reciprocal transmission line apparatus including a transmission line part for a microwave, a series branch circuit equivalently including a capacitive element, and a shunt branch circuit branched from the transmission line part and equivalently including an inductive element,
wherein the non-reciprocal transmission line apparatus is formed in a nonlinear shape and magnetized in a magnetization direction different from a propagation direction of the microwave,
wherein the non-reciprocal transmission line apparatus comprises first and second reflectors connected to both ends of the non-reciprocal transmission line apparatus, respectively, and the first and second reflectors reflect a signal,
wherein the non-reciprocal transmission line apparatus satisfies at least one of the following:
(A) a phase difference between each pair of line parts located at positions opposed to each other across a substantially central part of the non-reciprocal transmission line apparatus is substantially 180 degrees;
(B) a phase difference between each pair of line parts located at positions adjacent to each other on an identical side with respect to the substantially central part of the non-reciprocal transmission line apparatus from is substantially 0 degrees; and
(C) a phase difference between at least one pair of line parts located at positions substantially orthogonal to each other of the non-reciprocal transmission line apparatus is substantially 90 degrees, and
wherein the circularly polarized wave antenna apparatus radiates an electromagnetic wave of right-hand circular polarization or left-hand circular polarization.
2. The circularly polarized wave antenna apparatus as claimed in
wherein the non-reciprocal transmission line apparatus configures a pseudo-travelling wave resonator, and
wherein the pseudo-travelling wave resonator includes:
a first line part causing a current to flow in a predetermined first direction and radiating an electromagnetic wave polarized in the first direction, and
a second line part causing a current to flow in a second direction, which is a vertical direction substantially orthogonal to the current flowing through the first line part, and radiating an electromagnetic wave which is polarized in the second direction, and moreover, a phase of which is advanced or delayed by 90 degrees from a phase of the electromagnetic wave of the first line part.
3. The circularly polarized wave antenna apparatus as claimed in
wherein the non-reciprocal transmission line apparatus is disposed in a single-turn ring shape having a circular, elliptical, square or rectangular shape, a spiral shape with a plurality of turns, or an L-shape.
4. The circularly polarized wave antenna apparatus as claimed in
wherein the circularly polarized wave antenna apparatus radiates an electromagnetic wave of right-hand circular polarization or left-hand circular polarization by switching over the magnetization direction to opposite directions.
5. The circularly polarized wave antenna apparatus as claimed in
wherein a phase gradient is adjusted by changing at least one of:
(a) a number of circuits including the transmission line part, the series branch circuit, and the shunt branch circuit;
(b) magnitude of the magnetization; and
(c) an electrical length of the shunt branch circuit.
6. The circularly polarized wave antenna apparatus as claimed in
wherein the first and second reflectors satisfy one of the following setting conditions:
(1) a first setting condition where an impedance thereof is 0, or the impedance has a value equal to or smaller than a predetermined value;
(2) a second setting condition where an admittance thereof is 0, or the admittance has a value equal to or smaller than a predetermined value; and
(3) a third setting condition that the first and the second reflectors have reactance elements in a complex conjugate relation.
|
The present invention relates to a non-reciprocal transmission line apparatus with different backward and forward propagation constants, and relates to a circularly polarized wave antenna apparatus provided with such a non-reciprocal transmission line apparatus.
A composite right/left-handed transmission line (hereinafter, referred to as a CRLH transmission line) is known as one of metamaterials. The CRLH transmission line is configured by substantially periodically inserting capacitive elements in a series branch of the line and substantially periodically inserting inductive elements in shunt branches of the line at intervals sufficiently smaller than a wavelength so as to have negative effective permeability and a negative effective dielectric constant in a predetermined frequency band. Recently, a non-reciprocal phase-shift CRLH transmission line obtained by adding a non-reciprocal transmission function to the CRLH transmission line has been proposed (For example, see Patent Documents 1 to 3). The non-reciprocal phase-shift CRLH transmission line can show a positive refractive index when electromagnetic waves having an identical frequency propagate in the forward direction and can show a negative refractive index when the electromagnetic waves propagate in the backward direction.
The size of a transmission line resonator can be freely changed without changing the resonance frequency by configuring the resonator using the non-reciprocal phase-shift CRLH transmission line. Further, the electromagnetic field distribution on the resonator is similar to the electromagnetic field distribution of a travelling wave resonator. Therefore, it is possible to configure a pseudo-travelling wave resonator in which the amplitude of the electromagnetic field is uniform and the phase of the electromagnetic field linearly changes at a constant gradient along the line by using the transmission line resonator using the non-reciprocal phase-shift CRLH transmission line. At that time, the phase gradient of the electromagnetic field distribution on the resonator is determined depending on non-reciprocal phase-shift characteristic of the transmission line configuring the resonator. Hereinafter, a transmission line apparatus using the non-reciprocal phase-shift CRLH transmission line is referred to as anon-reciprocal transmission line apparatus.
For the last dozen years, metamaterials have been a very interesting and important theme in the field of application to an antenna. So far, a non-reciprocal CRLH metamaterial has been proposed for the purpose of application to a directional leaky wave antenna using the CRLH transmission line. In addition, recently, an antenna based on a pseudo-travelling wave resonator greatly advanced from a zeroth-order resonator (for example, see Patent Document 1) has been proposed, and the gain and directional pattern of the antenna based on the pseudo-travelling wave resonator have increased compared to those of a conventional leaky wave antenna although the size of the antenna based on the pseudo-travelling wave resonator is more compact.
Many of the non-reciprocal transmission line apparatuses having been proposed so far adopt a structure where a vertically magnetized ferrite rod is embedded under a strip line at the center of a composite right/left-handed transmission line apparatus constituted of a conventional microstrip line. At that time, the direction of a radiation beam from an antenna apparatus provided with a pseudo-travelling wave resonator constituted of a non-reciprocal transmission line apparatus is determined depending on the phase gradient of the electromagnetic field distribution on the resonator. In addition, in a case where ferrite is soft magnetic material, the non-reciprocal phase-shift characteristic of the line changes by changing the magnitude or the direction of the externally applied magnetic field, and as a result, beam scanning can be performed.
However, the antenna apparatus provided with a pseudo-travelling wave resonator according to the above-described prior art can radiate a linearly polarized wave but cannot radiate a circularly polarized electromagnetic wave.
An object of the present invention is to solve the aforementioned problem, and to provide a non-reciprocal transmission line apparatus for a circularly polarized wave antenna apparatus capable of radiating a circularly polarized electromagnetic wave, and a circularly polarized wave antenna apparatus using the non-reciprocal transmission line apparatus.
According to the first aspect of the present invention, there is provided a non-reciprocal transmission line apparatus having forward and backward propagation constants different from each other. The non-reciprocal transmission line apparatus includes a cascade connection of at least one unit cell between first and second ports, each of the at least one unit cell includes a transmission line part for a microwave, a series branch circuit equivalently including a capacitive element, and a shunt branch circuit branched from the transmission line part and equivalently includes an inductive element. Each of the at least one unit cell is disposed in a nonlinear shape, and each of the at least one unit cell has a transmission line part having spontaneous magnetization or magnetized by an external magnetic field so as to have gyrotrophy by being magnetized in a magnetization direction different from a propagation direction of the microwave. The non-reciprocal transmission line apparatus is configured such that dispersion curves of a right-handed mode and a left-handed mode intersect each other, the right-handed mode and the left-handed mode being in an opposite directional relation to each other in a direction of transmitted power transmitted along the non-reciprocal transmission line apparatus, and the microwave propagates utilizing as an operating frequency a frequency band within a band gap occurring as a result of coupling, or a frequency around a frequency at an intersection of the two dispersion curves where no band gap appears. The non-reciprocal transmission line apparatus includes first and second reflectors connected to both ends of the non-reciprocal transmission line apparatus, respectively, and the first and second reflectors reflect an input signal.
In the above-mentioned non-reciprocal transmission line apparatus, the non-reciprocal transmission line apparatus configures a pseudo-travelling wave resonator, and the pseudo-travelling wave resonator includes first and second line parts. The first line part causes a current to flow in a predetermined first direction and radiating an electromagnetic wave polarized in the first direction. The second line part causes a current to flow in a second direction, which is a vertical direction substantially orthogonal to the current flowing through the first line part, and radiating an electromagnetic wave which is polarized in the second direction, and moreover, a phase of which is advanced or delayed by 90 degrees from a phase of the electromagnetic wave of the first line part.
In addition, in the above-mentioned non-reciprocal transmission line apparatus, each of the unit cells is disposed in a single-turn ring shape having a circular, elliptical, square or rectangular shape, a spiral shape with a plurality of turns, or an L-shape.
According to the second aspect of the present invention, there is provided a circularly polarized wave antenna apparatus including the non-reciprocal transmission line apparatus, and a feed line connected to the first reflector. The circularly polarized wave antenna apparatus radiates an electromagnetic wave of right-hand circular polarization or left-hand circular polarization depending on a direction of a phase gradient due to non-reciprocity of the non-reciprocal transmission line apparatus.
In the above-mentioned circularly polarized wave antenna apparatus, the circularly polarized wave antenna apparatus radiates an electromagnetic wave of right-hand circular polarization or left-hand circular polarization by switching over the magnetization direction to opposite directions.
In addition, in the above-mentioned circularly polarized wave antenna apparatus, a radiation beam is radiated by adjusting a phase gradient of each pair of line parts located at positions opposed to each other across a substantially central part of the non-reciprocal transmission line apparatus from among a plurality of line parts each formed of the unit cell such that a phase difference between the pair of line parts is substantially 180 degrees.
Further, in the above-mentioned circularly polarized wave antenna apparatus, a radiation beam is radiated by adjusting phase gradients of each pair of line parts located at positions adjacent to each other on an identical side with respect to a substantially central part of the non-reciprocal transmission line apparatus from among a plurality of line parts each formed of the unit cell such that a phase difference between the pair of line parts is substantially 0 degrees.
Still further, in the above-mentioned circularly polarized wave antenna apparatus, the phase gradient is adjusted by changing at least one of a number of unit cells, magnitude of the magnetization, and an electrical length of the shunt branch circuit.
Still further, in the above-mentioned circularly polarized wave antenna apparatus, the first and second reflectors satisfy one of the following setting conditions:
(1) a first setting condition where an impedance thereof is 0, or the impedance has a value equal to or smaller than a predetermined value;
(2) a second setting condition where an admittance thereof is 0, or the admittance has a value equal to or smaller than a predetermined value; and
(3) a third setting condition that the first and the second reflectors have reactance elements in a complex conjugate relation.
According to the present invention, it is possible to provide a non-reciprocal transmission line apparatus for a circularly polarized wave antenna apparatus capable of radiating a circularly polarized electromagnetic wave, and a circularly polarized wave antenna apparatus more compact in size and more lightweight than that of the prior art.
Embodiments of the present invention will be described below with reference to the drawings. Note that in the following embodiments, like components are denoted by the same reference characters.
1. Outline of Embodiment
A linearly polarized wave antenna usually has a relatively simple design and provides excellent antenna gain. Selection of a polarized plane can be used for simple separation of radio channels. However, a linearly polarized wave can be a disadvantage in which reception sensitivity lowers due to a change in the polarized plane, attenuation of radio waves, and the like when a high-density obstacle in terms of geography or strong radio wave interference and a radio station face each other. For example, a linearly polarized channel is not protected against multipath interference, and is easily suppressed in the case where radio waves pass through a linear-lattice shaped radio-wave obstacle in a certain direction. A linearly polarized beam also often changes in an artificial environment when encountering an inclined plane having anisotropic and semiconductor characteristics, which are general in modern construction materials such as an artificial paint and coating. A change from a linearly polarized wave to an elliptical and rotating polarized plane may have an adverse effect on a communication channel or a radar response.
In contrast, use of a circularly polarized wave in a communication channel may be contributory to improve the quality of the communication channel or radar measurement. Effects of switching over the rotation direction of a circularly polarized wave have been used for eliminating parasitic reflection in a receiving antenna since the pioneering era of radio communication. A system with a circularly polarized wave can pass a circularly polarized wave through scattered obstacles in a better state even if an antenna gain thereof is lower than usual antenna gain, which becomes a more preferred solution. Since an antenna system is resistant to a change in the ellipticity of a reflected wave under unpredictable condition, a circularly polarized wave antenna can be one desired option in application to a radar. However, an arbitrary application using a circularly polarized wave antenna is extremely sensitive to the rotation direction of a polarized wave. Basically, due to this, circularly polarized wave antennas are used in a predetermined polarized wave rotation direction in many cases. In addition, implementing a polarization rotation switchover function for a circularly polarized wave antenna while maintaining easiness of design is a specific challenge in antenna techniques.
In a conventional antenna technique, although a system becomes rather complicated, a circularly polarized wave antenna can be realized by configuring a pair of linearly polarized wave antennas so as to be arranged like a crossed dipole with phase difference of 90 degrees.
As a natural method for achieving a circularly polarized wave, a method is considered which artificially forms electric field vectors in a uniform direction on a plane, and further rotates a polarized wave within the plane. Whereas, a zeroth-order resonance antenna in a two-dimensional plane using a metamaterial is well-known for having an even electric field distribution within a resonator. However, this antenna with a mushroom structure well-known as a two-dimensional zeroth-order resonance metamaterial operates as an electric dipole directed in the direction vertical to the two-dimensional plane, and shows a characteristic of vertically polarized radiation and furthermore omnidirectional radiation on a horizontal plane. In order to realize a circularly polarized wave using such a configuration, it is necessary to further add radiation having an electric field component in the horizontal direction different in phase by 90 degrees. So far, a circularly polarized wave antenna has been realized by inserting a metal thin wire in the outer edge of the mushroom structure so that a line current flows in parallel to the horizontal plane, and giving the function similar to that of a crossed dipole. It is noted that this antenna is essentially omnidirectional, and it is impossible to make the antenna have a directional pattern or to give to the antenna a function to switch over the rotation direction of the polarized wave.
In the present embodiment, it is proposed that magnetic field vectors H directed substantially in the same direction be artificially formed within a plane of a planar antenna. The antenna of this case can be explained as a magnetic dipole rotating above a ground plane. The circularly polarized wave antenna proposed here can realize circularly polarized radiation having a narrow beam with high gain by using a relatively compact and simple design theory. Due to similarity with a non-reciprocal CRLH metamaterial structure, since the density of current flowing through a metal is smaller than that in a conventional mushroom structure, a lower material loss is expected. The unique characteristic of this non-reciprocal metamaterial antenna is the fact that it is possible to instantly switch over polarization rotation from left-hand circular polarization (LHCP) to right-hand circular polarization (RHCP), and vice versa.
2. Basic Principle and Operation Principle of Non-Reciprocal Transmission Line Apparatus
First, the basic configuration and the operation principle of the non-reciprocal transmission line apparatus used in a circularly polarized wave antenna apparatus according to the present embodiment will be described below with reference to
Non-reciprocal transmission line apparatuses 70A to 70N according to the respective embodiments of the present invention are configured by cascade connecting unit cells of a transmission line.
The non-reciprocal transmission line apparatus having the non-reciprocal phase-shift characteristic is configured by including such a transmission line among the aforementioned transmission lines that is configured to particularly include gyrotropic materials in part or as a whole, and to be magnetized in a magnetization direction different from a propagation direction of the electromagnetic wave (more preferably, in a direction orthogonal to the propagation direction) to be asymmetric with respect to a plane formed of the above propagation direction and the above magnetization direction. In addition to such a transmission line, a lumped-parameter element, having an equivalent non-reciprocal phase-shift function and being sufficiently small as compared to a wavelength, is also available as a transmission line having an equivalent non-reciprocal phase-shift characteristic. The gyrotropic materials include all the materials in which a dielectric constant tensor, a permeability tensor, or both of them exhibit gyrotrophy due to spontaneous magnetization, magnetization produced by an externally supplied DC or low-frequency magnetic field, or an orbiting free charge. Exemplary and specific gyrotropic materials include: ferrimagnetic materials such as ferrite, ferromagnetic materials, solid-state plasma (semiconductor materials etc.), liquid and gaseous plasma media, and magnetic artificial media made by micromachining or the like, for use in microwaves, millimeter waves, and the like.
The capacitive element inserted in the series branch circuit may include a capacitor commonly used in electric circuits, a distributed-parameter capacitance element for microwaves, millimeter waves, and the like, and may include equivalent circuits or circuit elements having a negative effective permeability for the electromagnetic wave mode of propagation through the transmission line. In order to obtain the negative effective permeability, the series branch circuit should be equivalent to a line dominantly operating as a capacitive element. Concrete examples of elements having the negative effective permeability include: a spatial arrangement including at least one magnetic resonator such as a split ring resonator made of metal and a spiral structure; a spatial arrangement of a magnetically resonating dielectric resonator; or a microwave circuit operable in the waveguide mode or the evanescent mode having the negative effective permeability, such as an edge mode of propagation along a ferrite substrate microstrip line. Further, as other examples, the capacitive element inserted in the series branch circuit may be a series or parallel connection of capacitive elements and inductive elements, or a combination of their series and parallel connections. The element to be inserted or the circuit to which the element is inserted may be capacitive as a whole.
As the inductive element inserted in the shunt branch circuit, not only a lumped-parameter element such as a coil used in electrical circuits, and a distributed-parameter inductive element such as a short-circuit stub conductor used for microwaves, millimeter waves, and the like, but also a circuit or an element having a negative effective dielectric constant for the electromagnetic wave mode of propagation through the transmission line may be used. In order to show the negative effective dielectric constant, the shunt branch should be equivalent to a transmission line dominantly operating as an inductive element. Concrete examples of elements having the negative effective dielectric constant include: a spatial arrangement including a least one electric resonator of a metal thin wire, a metal sphere, and the like; a spatial arrangement of an electrically resonating dielectric resonator other than metal; or a microwave circuit operable in the waveguide mode or the evanescent mode having the negative effective dielectric constant, such as waveguides and parallel planar lines in which the TE mode is in a blocking region. In addition, as other examples, the inductive element inserted in the shunt branch circuit may be a series or parallel connection of capacitive elements and inductive elements, or a combination of their series and parallel connections. The element to be inserted or the circuit to which the element is inserted may be inductive as a whole.
The evanescent mode may occur in the transmission line apparatus having the non-reciprocal phase-shift characteristic in the case where the transmission line apparatus has the negative effective permeability for the electromagnetic wave mode of propagation through the transmission line. Since the negative effective permeability corresponds to the case where a capacitive element is inserted in the series branch circuit, the equivalent circuit of the transmission line includes both a non-reciprocal phase-shift part and a series capacitive element part.
The evanescent mode may occur in the transmission line apparatus having the non-reciprocal phase-shift characteristic in the case where the transmission line apparatus has the negative effective dielectric constant for the electromagnetic wave mode of propagation through the transmission line apparatus. Since the negative effective dielectric constant corresponds to the case where an inductive element is inserted in the shunt branch circuit, the equivalent circuit of the transmission line includes both the non-reciprocal phase-shift part and the shunt inductive element part.
where, Δβ and
are given as follows.
ω denotes an operating angular frequency, and β denotes the phase constant of an electromagnetic wave propagating along a periodic structure. Equation (1) denotes the relation between operating angular frequency ω and phase constant β. Therefore, equation (1) is an equation of dispersion (ω−β diagram).
Assuming the reciprocity (βNp=βNm and Zp=Zm) in mathematical equation (1), the transmission line becomes the same as that of the reciprocal transmission line apparatus according to the prior art, and mathematical equation (1) is simplified as follows.
It is noted that it is assumed that in mathematical equation (2), admittance Y=1/jωL, and impedance Z=1/jωC.
where, εp and μp denote the effective dielectric constant and the effective permeability of the transmission line parts 61 and 62 in the unit cells 60A to 60D. Therefore, in order for cutoff frequencies to satisfy ω1=ω2 with no forbidden band, it is only necessary for equation (2) to have a multiple root under the condition of phase constant β=0, and as a result, the following equation is obtained.
According to the result of equation (5), no gap appears if impedance √(L/C) of the capacitor C and the inductor L is identical to characteristic impedances Zp of the transmission line parts 61 and 62 to which the capacitor C and the inductor L are inserted, where the capacitor C is the capacitive element inserted in the series branch circuit, and the inductor L is the inductive element inserted in the shunt branch circuit. Equation (5) is a kind of condition for impedance matching.
The dispersion curves of the non-reciprocal transmission line apparatus given by equation (1) will be described below. In the case of a reciprocal transmission line apparatus, it is shown according to equation (2) that the dispersion curves are symmetric with respect to the straight line of phase constant β=0 (ω axis). On the other hand, in the case of the non-reciprocal transmission line apparatus, it is readily shown according to the left side of equation (1) that the axis of symmetry of the dispersion curves is shifted with respect to β the positive direction from the straight line of β=0 by:
Hereinafter, βNR is referred to as a non-reciprocal phase-shift amount. As a result,
In this manner, the non-reciprocal transmission line apparatus is significantly different from the reciprocal transmission line apparatus in that the axis of symmetry (depicted by a dashed line in the figure) of the dispersion curves is shifted from the ω axis to the right or the left, because of forward phase constant β=βp and backward phase constant β=βm obtained from equation 1 satisfying βp≠βm (thus, the forward and backward propagation constants are different from each other), i.e., the effect of a non-reciprocal phase-shift. Note that non-reciprocal phase-shift amount βNR can also be represented as
in lieu of equation (6) using forward and backward phase constants βp and βm. As a result, the transmission bands are classified into the following five transmission bands (A) to (E).
(A) Both the forward and backward propagations are done as the left-handed transmission (LH/LH). It is noted that the magnitudes of the propagation constants are different from each other.
(B) The forward propagation is done as the left-handed transmission, and the backward propagation has zero propagation constant and infinite guide wavelength.
(C) The forward propagation is done as the left-handed transmission, and the backward propagation is done as the right-handed transmission (RH/LH).
(D) The forward propagation is done as the right-handed transmission, and the backward propagation has zero propagation constant and infinite guide wavelength.
(E) Both the forward and backward propagations are done as the right-handed transmission (RH/RH). It is noted that the magnitudes of the propagation constants are different from each other.
It is noted that, in general, a stop band (forbidden band) appears at the center of transmission band (C) as shown in
Considering the case of the reciprocal transmission line apparatus of the prior art for the purpose of comparison, two identical modes with positive and negative directions of the power transmission intersect each other without coupling between the two modes, in the case where the matching condition of equation (5) is satisfied, i.e., at the point where phase constant β=0 as shown in
It is noted that εp and μp denote the forward effective dielectric constant and the forward effective permeability of the non-reciprocal transmission line parts 61 and 62 in the unit cells 60A to 60D, respectively, and εm and μm denotes their backward effective dielectric constant and the backward effective permeability, respectively. According to equation (7), the condition for avoiding a gap near the intersection of the two modes is a condition for impedance matching, similarly to the case of equation (5) of the reciprocal transmission line apparatus. Moreover, it is only necessary to insert the inductor L and the capacitor C so that matching is made in either the forward direction or the backward direction, and there is an advantageous feature that a weaker condition of impedance matching is imposed than in the case of the reciprocal transmission line apparatus.
A more general case of two asymmetric transmission line parts 61 and 62 as shown in
In addition, in the case where the two non-reciprocal transmission line parts 61 and 62 have an identical propagation characteristic, a matching condition for avoiding a band gap is the same as that of equation (7). It is noted that the condition in the case of
and the condition in the case of
As shown in
Hereinafter, dispersion curves of the non-reciprocal transmission line apparatuses 70A to 70E according to the present embodiment and the following embodiments are dispersion curves in a balanced state as shown in
3. Basic Configuration of Circularly Polarized Wave Antenna Apparatus
The proposed circularly polarized wave antenna apparatus having a polarization rotation switchover function configures a pseudo-circulating beam antenna apparatus, and the antenna apparatus uses pseudo-travelling wave resonance in a non-reciprocal metamaterial structure. The point of difference from a linear non-reciprocal transmission line apparatus according to the prior art is that the microstrip line of the circularly polarized wave antenna apparatus according to the present embodiment is bent into a ring shape as shown in
Such a structure is selected due to the following two reasons. First, the structure of the ferrite plate 15 made of a ferrite core is simple and is purely practical. The other reason is that there is a possibility that phase-shift is realized by including a fringe electric field in non-reciprocal propagation by slightly increasing the magnitude of non-reciprocity. In order to prevent generation of an unnecessary leaky wave from the high dielectric constant ferrite plate 15, the ferrite plate 15 is covered with a circular shielding metal plate 16 for shielding. In this case, it is not necessary to ground the shielding metal plate. This is because an average voltage potential on the surface of the shielding metal plate is nearly zero since the electromagnetic field distribution within the ferrite plate has a symmetric structure. In order to prevent the generation of a slot waveguide mode, it is necessary to provide a substantially great gap between the shielding metal plate and the transmission line. Loads each constituted of the stub conductor 13 of a shunt branch are periodically inserted in the microstrip line. The plurality of lumped-parameter series capacitors Cse is inserted in a gap along the microstrip line of the non-reciprocal transmission line apparatus 70E. In addition, power is fed to the non-reciprocal transmission line apparatus 70E from the feed line F via the reflector R1 made of a 3λ/4 reflector and the port P1. The load impedance at a connecting part of the reflector R1 with the input end of the non-reciprocal transmission line apparatus 70E at the operating frequency is substantially zero. In order to prevent unnecessary radiated waves from the reflector R1, the reflector R1 is covered with a shielding metal plate (not shown). The load impedance of the other reflector R2 of a λ/4 resonator is 0 at a mounting part for the end part port P2 on the opposite side of the non-reciprocal transmission line apparatus 70E, which satisfies end short-circuit conditions.
Note that the internal magnetization of the ferrite plate 15 is directed in the vertical direction from the lower surface to the upper surface. However, instead of the internal magnetization of the ferrite plate 15, an external variable magnetic field may be applied in the vertical direction using an external magnetic field generator 80.
Since the non-reciprocal transmission line apparatus 70E is short-circuited at both ends, series resonance in the series branch becomes dominant in pseudo-travelling wave resonance. As a result, the size of each of electric field components Ez distributed along the non-reciprocal transmission line apparatus 70E becomes nearly zero and minimized in the region of each strip conductor 12. On the other hand, the size of magnetic field component Hr in the horizontal direction is maximized in a manner similar to that of magnetic field H within a pseudo-travelling wave resonator. In addition, since the pseudo-travelling wave resonator operates as a zeroth-order resonator when a bias magnetic field is not applied to the ferrite plate 15, magnetic field components Hr, in the horizontal direction are centrosymmetric, and the magnetic field vectors are directed in a moving radius direction. As a result, radiated waves from the resonator interfere with each other and weaken each other, and radiation is offset.
As a condition for the circularly polarized wave antenna to operate, it is necessary to apply bias magnetic field Ho to the ferrite plate 15 in parallel to the z axis. It is possible to achieve phase-shift of ±2π radians with respect to an electrical length corresponding to one round of a divided ring configuring the resonator when the ferrite plate 15 reaches magnetization M of a certain level. This brings about an interesting effect of generating a pseudo-circulating wave in a circular structure due to equiphase conditions at both ends of the resonator. However, in reality, it is also necessary to take into consideration existence of a gap dividing the ring. That is, what is important to achieve circularly polarized radiation is to give a phase gradient of the line so that the phase-shift on the resonator is always the same as angle ϕ at polar coordinates of the structure of
4. Detailed Configuration and Modified Embodiment of Circularly Polarized Wave Antenna Apparatus
A circularly polarized wave antenna apparatus according to the present embodiment includes a non-reciprocal transmission line apparatus 70E which is a non-reciprocal phase-shift composite right/left-handed line with a finite length, reflectors R1 and R2 connected to both ends thereof, and a feed line F. The non-reciprocal transmission line apparatus 70E constituting a pseudo-travelling wave resonator is constituted of single or a plurality of constituent element(s) called unit cell(s), and is characterized in the dispersion relation thereof. Dispersion curves of a right-handed mode and a left-handed mode having a relation in which the power transmission directions are opposite to each other intersect each other. The non-reciprocal transmission line apparatus 70E uses as an operating frequency a frequency band within a band gap appearing as a result of coupling, or a frequency around the frequency at an intersection between the two dispersion curves where no band gap appears. The operating frequency is irrespective of the line length constituting the resonator, and is nearly fixed around the intersection frequency determined by the dispersion curves.
The reflectors R1 and R2 connected to both ends of the non-reciprocal transmission line apparatus 70E reflect signals input thereto, respectively, and preferably, are not independent from each other but are set so as to satisfy one of the following conditions:
(1) a first condition of a substantially both-ends short-circuited state where the impedance of each of the reflectors R1 and R2 is substantially 0, specifically, 0 or a predetermined low impedance value ([ω], ohm) near 0, which is substantially 0 (here, although the low impedance value changes depending on other parameters, the low impedance value is a value equal to or smaller than a predetermined value such as 0.1, 0.01, and 0.001);
(2) a second condition of a substantially both-end open state where the admittance of each of the reflectors R1 and R2 is substantially 0, specifically, 0 or a predetermined low admittance value ([S] siemens) near 0, which is substantially 0 (here, although the low impedance value changes depending on other parameters, the low impedance value is a value equal to or smaller than a predetermined value such as 0.1, 0.01, and 0.001); and
(3) a third condition constituted of two reactance elements substantially in a complex conjugate relation.
These setting conditions are set so as to achieve at least one of
(1) obtaining of the maximal gain;
(2) obtaining of the lowest value of the axial ratio, which is 1 or near 1; and
(3) obtaining of the maximal radiation efficiency, for example, at a predetermined operating frequency or a zeroth-order resonance frequency. (1) to (3) will be described in detail later.
Further, the feed line F is a feed line for inputting a signal to a resonator of the non-reciprocal transmission line apparatus 70E in a state where impedance matching can be made by being directly connected to a part or a plurality of sections of the resonator or in a noncontact manner via a capacitive coupling or inductive coupling.
In the present embodiment, in order to satisfy resonance conditions, for example, as the reflectors R1 and R2 for short-circuit, two one-end open lines with finite length are inserted to both ends. The feed line F is directly connected to the reflector R1, one of the reflectors, at a position where matching can be made with the transmission line of 50 ohms. In this case, under the conditions of the two reflectors R1 and R2 at both ends, when a line of a strip conductor 12 at the center related to a series branch and a line of an inductive stub conductor 13 constituting a shunt branch are in an arrangement relation where they are perpendicular to each other, currents flow perpendicularly to each other when the resonance circuit of each branch resonates. That is, the main polarization direction of a radiated wave in a case of parallel resonance in the shunt branch is perpendicular to the main polarization direction of a radiated wave in the case of series resonance in the series branch. In addition, it is known that currcnts flowing thorough the two resonance circuits have the same phase. In the case where the resonator is made of a linear line, radiated waves form linearly polarized waves even if the radiated waves overlap with each other, and the main polarization direction rotates due to weighing of two currents perpendicular to each other.
Now, for example, it is assumed that the both-ends short-circuited pseudo-travelling wave resonator is formed of a ring structure, and a radiated wave for which contribution of a current flowing through the strip conductor 12 of the series branch is dominant shows circular polarization characteristics. With respect to this, if only the reflectors R1 and R2 at both ends are changed to be open (impedance infinite) without changing the non-reciprocal transmission line apparatus 70E within the resonator, since parallel resonance in a shunt branch is dominant at this time, current distribution concentrates on the inductive stub conductors 13 periodically inserted, and radiated waves from the inductive stub conductors 13 become dominant. At that time, the main polarization direction of the radiated wave is rotated by 90 degrees compared with the case of both-ends short circuit. However, since the radiated wave in the original case of both-ends short circuit shows circular polarization characteristics, the state of circular polarization is maintained even if both ends are changed to the open state with an aim of rotating the main polarization direction by 90 degrees. It can be seen from the above that the result is the same also in the case of inserting two reactive elements in a complex conjugate relation in both ends of the same resonator as the reflectors R1 and R2. Although initial phases may shift from each other, circular polarization characteristics are maintained as they are. Needless to say, by changing the combination of the values of reactive elements in a complex conjugate relation at both ends while satisfying resonance conditions, electric current distribution within the non-reciprocal transmission line apparatus 70E changes, which changes in general the radiation pattern, the gain, the radiation efficiency, and the like.
In the circularly polarized wave antenna apparatus according to the above embodiment, the possible shape of the non-reciprocal transmission line apparatus 70E configuring and operating as a resonator is not limited to a circular shape, and may be each of a square shape, a rectangular shape, and an elliptical shape, or a nonlinear shape such as a split ring shape and a spiral shape. That is, for example, the above each unit cell may be disposed in a single-turn ring shape having a circular, elliptical, square or rectangular shape, a spiral shape with a plurality of turns, or an L-shape. In this case, the non-reciprocal transmission line apparatus 70E constitutes a pseudo-travelling wave resonator. The pseudo-travelling wave resonator includes line part A causing a current to flow in a first direction and radiating an electromagnetic wave polarized in the same direction, and line part B causing a current to flow in a vertical direction (second direction) with respect to the current flowing through line part A and radiating an electromagnetic wave which is polarized in the same direction, and moreover, the phase of which is advanced (or delayed) by 90 degrees than that in line part A.
In the case where the resonator has a circular shape, a square shape, or a shape such as a split ring shape and a spiral shape, and a pair of or a plurality of line parts in which the direction of power transmission is in an anti-parallel direction with respect to propagation of an electromagnetic wave along the line in one direction (for example, forward direction) exist within the same resonator, it is necessary to adjust the phase gradient of the resonator by changing the electrical length of the series branch circuit so that the phase difference between the line parts located at positions opposed to each other across an approximately center part of the above non-reciprocal transmission line apparatus 70E is about 180 degrees. As a result, in the pair of line parts, since the directions of power are opposite to each other and the phase relation is an opposite phase, electromagnetic waves radiated from the two lines coincide with each other in the polarization direction, and moreover, the electromagnetic waves have the same phase. Therefore, the electromagnetic waves strengthen each other by overlapping with each other, and form a radiation beam.
In the case where the resonator has a shape such as a spiral shape, and a pair of or a plurality of line parts in which the direction of power transmission is in a parallel relation with respect to propagation of an electromagnetic wave along the line in one direction (for example, forward direction) exist within the same resonator, it is necessary to adjust the phase gradient of the resonator so that the phase difference between the line parts with a spiral shape adjacent each other is about 0 degrees. As a result, in the line parts, since the directions of power are the same and the phase relation is the same phase, electromagnetic waves radiated from the two lines coincide with each other in the polarization direction, and moreover, the electromagnetic waves have the same phase. Therefore, the electromagnetic waves strengthen each other by overlapping with each other, and form a radiation beam.
In this case, adjustment of the phase gradient can be carried out by changing at least one of the number of unit cells, the magnitude of magnetization M, and the electrical length of the stub conductor 13 of the shunt branch.
The operating point of the non-reciprocal transmission line apparatus 70E used for the circularly polarized wave antenna apparatus is targeted at not only a case of a fast-wave region, that is a leaky wave radiation region but a case of a non-radiated region.
In addition, in the case where non-reciprocity of the non-reciprocal transmission line apparatus 70E is relatively small and the operating point of the line is in the radiation region, leaky wave radiation from the non-reciprocal transmission line apparatus 70E forms a radiation beam. At that time, the non-reciprocal transmission line apparatus 70E operates as a highly effective leaky wave antenna using multiple reflection at both ends of the resonator. In this case, it is possible to increase the directional pattern and radiation gain of a beam formed in the broadside direction along with an increase in the antenna size.
In this case, in the case where non-reciprocity of the non-reciprocal transmission line apparatus 70E is great and the operating point is in the non-radiation region, since leaky wave radiation from the non-reciprocal transmission line apparatus 70E does not occur, propagation loss greatly reduces. As a result, a Q factor of the pseudo-travelling wave resonator rises and an operating bandwidth lowers. In this case, there is an advantageous feature that the antenna size may be made more compact in comparison with the case of a leaky wave since the phase constant of the line becomes great. On the other hand, the directional pattern becomes smaller. In addition, the rotation direction of polarization (right-hand circular polarization or left-hand circular polarization) is determined according to the direction of the phase gradient due to non-reciprocity of the non-reciprocal transmission line apparatus 70E. Further, an exemplary method for switching over the polarization rotation direction is reversing the direction of the externally applied magnetic field applied to the ferrite plate 15 included in the line without changing the size the externally applied magnetic field.
5. Numerical Simulation
The present inventors et al. examined the circularly polarized wave antenna apparatus having the non-reciprocal circular structure of
First, simulation was done for a semicircular part of the non-reciprocal transmission line apparatus 70E constituted of 22 unit cells.
Next, simulation was done for the resonator characteristic of the non-reciprocal transmission line apparatus 70E when the ferrite plate 15 is magnetized up to 4 πM=860 G.
The above predication that the electromagnetic field uniformly rotates can be confirmed from the electromagnetic field distribution obtained from simulation. Magnetic field vectors H are generated by a metamaterial transmission line of the antenna, and are illustrated by using the plurality of vectors of
6. Prototyped Circularly Polarized Wave Antenna Apparatus
The present inventors prototyped a circularly polarized wave antenna apparatus and conducted experiments and simulation, which will be described below.
In
Parameters of the prototyped non-reciprocal transmission line apparatus 70F, which is a composite right/left-handed line, are as follows. Relative dielectric constant εf of the ferrite plate 15 is 15. Relative dielectric constant εd of the dielectric substrate 10 is 2.6, and a fluororesin multilayer ubstrate (manufactured by Nippon Pillar Packing CO. LTD, NPC-F260A) is used as the dielectric substrate 10. Strip width w of the microstrip line of the non-reciprocal transmission line apparatus 70F at the center is 3.0 mm, and size p of the unit cell is 3.0 mm. The length and width of the stub conductor 13 are 1.3 mm and 1.0 mm, respectively. When configuring the antenna apparatus, the number of unit cells configuring the resonator is set to 21.
Next, the propagation characteristic of the non-reciprocal transmission line apparatus 70F of
The case where the externally applied magnetic field is 95 mT is selected as the experimental results in
Next, the reflection characteristic of the non-reciprocal transmission line apparatus 70F of
Next, the radiation characteristic of the circularly polarized wave antenna apparatus of
7. L-Shaped Circularly Polarized Wave Antenna Apparatus
In
8. Configuration Examples of Various Circularly Polarized Wave Antenna Apparatuses
As shown in
In
9. Setting Conditions for Reflector in Circularly Polarized Wave Antenna Apparatus
Due to the dispersion relation of the non-reciprocal transmission line apparatus 70F, the operating frequency is 4.95 GHz, and at that time, the length of ¼ (within the line) wavelength λg is 4.5 mm. It can be seen from the table of
Due to the dispersion relation of the non-reciprocal transmission line apparatus 701, the operating frequency is 5.8 GHz, and at that time, the length of ¼ (within the line) wavelength λg is 8.5 mm. It can be seen from the table of
10. Summary of Embodiment
As described above, according to the present embodiment, the operating frequency of the pseudo-travelling wave resonator configured of one of the non-reciprocal transmission line apparatuses 70E to 70N can be estimated from the dispersion characteristic of the one of the non-reciprocal transmission line apparatus 70E to 70N configuring the resonator. Therefore, the resonance characteristic of the design structure was investigated focusing on the estimated frequency. As a result, a resonance state showing a desired electromagnetic field distribution was obtained in the vicinity of the estimated frequency.
The circularly polarized wave antenna apparatus of a pseudo-circulating wave according to the present embodiment can greatly widen the application field of a circularly polarized wave antenna since the antenna apparatus can be made compact and lightweight, and the direction of polarization rotation which can be dynamically switched over is not limited to a predetermined direction. For example, the concept of the antenna apparatus can be utilized for a mobile use providing high reliability of a communication link and having rapidly changing environmental conditions. Similarly, the concept has the applicability of switching over a LHCP beam and a RHCP beam according to request, and also has applicability to an application of a radar capable of facilitating detection of an object having a small radar cross-section or an abnormal electromagnetic surface coating, or an object in a complicated environment.
According to the present invention, it is possible to provide a non-reciprocal transmission line apparatus for a circularly polarized wave antenna apparatus capable of radiating a circularly polarized electromagnetic wave, and a circularly polarized wave antenna apparatus more compact in size and more lightweight than that of the prior art.
10: DIELECTRIC SUBSTRATE
11: GROUND CONDUCTOR
12: STRIP CONDUCTOR
13: STUB CONDUCTOR
13C: VIA CONDUCTOR
15: FERRITE PLATE
60A to 60D: UNIT CELL
61, 62: TRANSMISSION LINE PART
70A to 70N, 70M 1, 70M2, 70N1, and 70N2: NON-RECIPROCAL TRANSMISSION LINE APPARATUS
80: EXTERNAL MAGNETIC FIELD GENERATOR
C, C1, C2, C60, and Cse: CAPACITOR
F: FEED LINE
L, L1 to L6: INDUCTANCE
P1, P2, P11, and P12: PORT
R1, R2: REFLECTOR
S1 to S12: SECTION
TL1, TL2: TRANSMISSION LINE
Ueda, Tetsuya, Porokhnyuk, Andrey
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
8294538, | Mar 05 2007 | Japan Science and Technology Agency | Transmission line microwave apparatus including at least one non-reciprocal transmission line part between two parts |
9054406, | Feb 25 2011 | Japan Science and Technology Agency | Nonreciprocal transmission line apparatus having asymmetric structure of transmission line |
20100060388, | |||
20130130217, | |||
20130321093, | |||
20130321098, | |||
JP2007325118, | |||
JP201389992, | |||
WO2008111460, | |||
WO2011024575, | |||
WO2012115245, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 25 2015 | Japan Science and Technology Agency | (assignment on the face of the patent) | / | |||
Aug 23 2016 | POROKHNYUK, ANDREY | Japan Science and Technology Agency | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039801 | /0035 | |
Aug 25 2016 | UEDA, TETSUYA | Japan Science and Technology Agency | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039801 | /0035 |
Date | Maintenance Fee Events |
Feb 21 2022 | REM: Maintenance Fee Reminder Mailed. |
Aug 08 2022 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jul 03 2021 | 4 years fee payment window open |
Jan 03 2022 | 6 months grace period start (w surcharge) |
Jul 03 2022 | patent expiry (for year 4) |
Jul 03 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 03 2025 | 8 years fee payment window open |
Jan 03 2026 | 6 months grace period start (w surcharge) |
Jul 03 2026 | patent expiry (for year 8) |
Jul 03 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 03 2029 | 12 years fee payment window open |
Jan 03 2030 | 6 months grace period start (w surcharge) |
Jul 03 2030 | patent expiry (for year 12) |
Jul 03 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |