Methods of making azelaic acid, or derivatives thereof, from unsaturated monobasic acids or esters are disclosed herein. In some embodiments, the unsaturated monobasic acids or esters are C10-17 unsaturated monobasic acids or esters.

Patent
   10017447
Priority
Nov 26 2014
Filed
Nov 12 2015
Issued
Jul 10 2018
Expiry
Nov 12 2035
Assg.orig
Entity
Large
0
3
currently ok
1. A method for forming azelaic acid or a derivative thereof, the method comprising:
providing a reactant composition comprising a compound of formula (I):
##STR00006##
and
reacting the compound of formula (I) with an oxidizing agent to form a product composition comprising a compound of formula (II):
##STR00007##
wherein:
R1 is a hydrogen atom, C1-12 alkyl, C1-12 heteroalkyl, or a cationic counterion;
R2 is a hydrogen atom, methyl, or ethyl; and
R3 is a hydrogen atom, C1-12 alkyl, C1-12 heteroalkyl, or a cationic counterion.
2. The method of claim 1, wherein R1 is a hydrogen atom.
3. The method of claim 1, wherein R1 is C1-12 alkyl.
4. The method of claim 3, wherein R1 is methyl, ethyl, or isopropyl.
5. The method of claim 1, wherein R1 is C1-12 heteroalkyl.
6. The method of claim 1, wherein R1 is a cationic counterion.
7. The method of claim 1, wherein R2 is a hydrogen atom.
8. The method of claim 1, wherein R2 is methyl or ethyl.
9. The method of claim 1, wherein R3 is a hydrogen atom.
10. The method of claim 1, wherein R3 is C1-12 alkyl.
11. The method of claim 10, wherein R3 is methyl, ethyl, or isopropyl.
12. The method of claim 1, wherein R3 is C1-12 heteroalkyl.
13. The method claim 1, wherein R3 is a cationic counterion.
14. The method of claim 1, wherein the oxidizing agent comprises hydrogen peroxide.
15. The method of claim 1, wherein the oxidizing agent comprises ozone.
16. The method of claim 1, further comprising converting the compound of formula (II) to azelaic acid.
17. The method of claim 16, wherein the converting comprises hydrolyzing the compound of formula (II).
18. The method of claim 16, wherein the converting comprises saponifying the compound of formula (II), followed by acidification of the product of the saponification.

The present application claims the benefit of priority of U.S. Provisional Application Nos. 62/084,765, filed Nov. 26, 2014; and 62/234,150, filed Sep. 29, 2015. Both of the foregoing applications are incorporated by reference as though fully set forth herein in their entirety.

Methods of making azelaic acid, or derivatives thereof, from unsaturated monobasic acids or esters are disclosed herein. In some embodiments, the unsaturated monobasic acids or esters are C10-17 unsaturated monobasic acids or esters.

Azelaic acid can be made by oxidizing oleic acid at the carbon-carbon double bond to form azelaic acid and pelargonic acid as a byproduct. This process can yield azelaic acid at a fairly low price, given the ready availability of oleic acid at commodity prices. The resulting product can end up containing a high amount of pelargonic acid impurity, however. This can result from the relatively close boiling points of azelaic acid and pelargonic acid, which makes it more difficult to remove the pelargonic acid impurity to obtain a pure stream of azelaic acid.

Therefore, there is a continuing need to discover methods that can generate azelaic acid at high yields with an impurity profile that is more desirable that that obtained from the oxidation of oleic acid.

The cross-metathesis of natural oils with a short-chain olefin can provide a means of obtaining chain-shortened unsaturated fatty acids. Examples include 9-decenoic acid. If short-chain olefins besides ethylene are used for the cross-metathesis, other chain-shortened unsaturated fatty acids can result.

The disclosure therefore provides methods of using such chain-shortened unsaturated fatty acids to generate azelaic acid in a manner that offers one or benefits over the oxidation of oleic acid.

In a first aspect, the disclosure provides methods for forming azelaic acid or a derivative thereof, the method comprising: providing a reactant composition comprising a compound of formula (I):

##STR00001##
and reacting the compound of formula (I) with an oxidizing agent to form a product composition comprising a compound of formula (II):

##STR00002##
wherein: R1 is a hydrogen atom, C1-12 alkyl, C1-12 heteroalkyl, or a cationic counterion; R2 is a hydrogen atom, C1-8 alkyl, or C2-8 alkenyl; and R3 is a hydrogen atom, C1-12 alkyl, C1-12 heteroalkyl, or a cationic counterion. In some embodiments, the methods further comprise converting the compound of formula (II) to azelaic acid.

In a second aspect, the disclosure provides methods for forming azelaic acid or a derivative thereof, the method comprising: providing a reactant composition comprising methyl 9-dodecenoate; and reacting the methyl 9-dodecenoate with an oxidizing agent to form 1-methyl azelate. In some embodiments, the methods comprise converting 1-methyl azelate to azelaic acid.

Further aspects and embodiments are provided in the foregoing drawings, detailed description, and claims.

The following drawings are provided for purposes of illustrating various embodiments of the compositions and methods disclosed herein. The drawings are provided for illustrative purposes only, and are not intended to describe any preferred compositions or preferred methods, or to serve as a source of any limitations on the scope of the claimed inventions.

FIG. 1 shows an example of one embodiment of the processes disclosed herein, wherein R1 is a hydrogen atom, C1-12 alkyl, C1-12 heteroalkyl, or a cationic counterion; R2 is a hydrogen atom, C1-8 alkyl, or C2-8 alkenyl; and R3 and R4 are independently a hydrogen atom, C1-12 alkyl, C1-12 heteroalkyl, or a cationic counterion.

The following description recites various aspects and embodiments of the inventions disclosed herein. No particular embodiment is intended to define the scope of the invention. Rather, the embodiments provide non-limiting examples of various compositions, and methods that are included within the scope of the claimed inventions. The description is to be read from the perspective of one of ordinary skill in the art. Therefore, information that is well known to the ordinarily skilled artisan is not necessarily included.

The following terms and phrases have the meanings indicated below, unless otherwise provided herein. This disclosure may employ other terms and phrases not expressly defined herein. Such other terms and phrases shall have the meanings that they would possess within the context of this disclosure to those of ordinary skill in the art. In some instances, a term or phrase may be defined in the singular or plural. In such instances, it is understood that any term in the singular may include its plural counterpart and vice versa, unless expressly indicated to the contrary.

As used herein, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. For example, reference to “a substituent” encompasses a single substituent as well as two or more substituents, and the like.

As used herein, “for example,” “for instance,” “such as,” or “including” are meant to introduce examples that further clarify more general subject matter. Unless otherwise expressly indicated, such examples are provided only as an aid for understanding embodiments illustrated in the present disclosure, and are not meant to be limiting in any fashion. Nor do these phrases indicate any kind of preference for the disclosed embodiment.

As used herein, “reaction” and “reacting” refer to the conversion of a substance into a product, irrespective of reagents or mechanisms involved.

The term “group” refers to a linked collection of atoms or a single atom within a molecular entity, where a molecular entity is any constitutionally or isotopically distinct atom, molecule, ion, ion pair, radical, radical ion, complex, conformer etc., identifiable as a separately distinguishable entity. The description of a group as being “formed by” a particular chemical transformation does not imply that this chemical transformation is involved in making the molecular entity that includes the group.

As used herein, “mix” or “mixed” or “mixture” refers broadly to any combining of two or more compositions. The two or more compositions need not have the same physical state; thus, solids can be “mixed” with liquids, e.g., to form a slurry, suspension, or solution. Further, these terms do not require any degree of homogeneity or uniformity of composition. This, such “mixtures” can be homogeneous or heterogeneous, or can be uniform or non-uniform. Further, the terms do not require the use of any particular equipment to carry out the mixing, such as an industrial mixer.

As used herein, “metathesis catalyst” includes any catalyst or catalyst system that catalyzes an olefin metathesis reaction.

As used herein, “natural oil,” “natural feedstock,” or “natural oil feedstock” refer to oils derived from plants or animal sources. These terms include natural oil derivatives, unless otherwise indicated. The terms also include modified plant or animal sources (e.g., genetically modified plant or animal sources), unless indicated otherwise. Examples of natural oils include, but are not limited to, vegetable oils, algae oils, fish oils, animal fats, tall oils, derivatives of these oils, combinations of any of these oils, and the like. Representative non-limiting examples of vegetable oils include rapeseed oil (canola oil), coconut oil, corn oil, cottonseed oil, olive oil, palm oil, peanut oil, safflower oil, sesame oil, soybean oil, sunflower oil, linseed oil, palm kernel oil, tung oil, jatropha oil, mustard seed oil, pennycress oil, camelina oil, hempseed oil, and castor oil. Representative non-limiting examples of animal fats include lard, tallow, poultry fat, yellow grease, and fish oil. Tall oils are by-products of wood pulp manufacture. In some embodiments, the natural oil or natural oil feedstock comprises one or more unsaturated glycerides (e.g., unsaturated triglycerides). In some such embodiments, the natural oil feedstock comprises at least 50% by weight, or at least 60% by weight, or at least 70% by weight, or at least 80% by weight, or at least 90% by weight, or at least 95% by weight, or at least 97% by weight, or at least 99% by weight of one or more unsaturated triglycerides, based on the total weight of the natural oil feedstock.

As used herein, “natural oil derivatives” refers to the compounds or mixtures of compounds derived from a natural oil using any one or combination of methods known in the art. Such methods include but are not limited to saponification, fat splitting, transesterification, esterification, hydrogenation (partial, selective, or full), isomerization, oxidation, and reduction. Representative non-limiting examples of natural oil derivatives include gums, phospholipids, soapstock, acidulated soapstock, distillate or distillate sludge, fatty acids and fatty acid alkyl ester (e.g. non-limiting examples such as 2-ethylhexyl ester), hydroxy substituted variations thereof of the natural oil. For example, the natural oil derivative may be a fatty acid methyl ester (“FAME”) derived from the glyceride of the natural oil. In some embodiments, a feedstock includes canola or soybean oil, as a non-limiting example, refined, bleached, and deodorized soybean oil (i.e., RBD soybean oil). Soybean oil typically comprises about 95% weight or greater (e.g., 99% weight or greater) triglycerides of fatty acids. Major fatty acids in the polyol esters of soybean oil include saturated fatty acids, as a non-limiting example, palmitic acid (hexadecanoic acid) and stearic acid (octadecanoic acid), and unsaturated fatty acids, as a non-limiting example, oleic acid (9-octadecenoic acid), linoleic acid (9,12-octadecadienoic acid), and linolenic acid (9,12,15-octadecatrienoic acid).

As used herein, “metathesize” or “metathesizing” refer to the reacting of a feedstock in the presence of a metathesis catalyst to form a “metathesized product” comprising new olefinic compounds, i.e., “metathesized” compounds. Metathesizing is not limited to any particular type of olefin metathesis, and may refer to cross-metathesis (i.e., co-metathesis), self-metathesis, ring-opening metathesis, ring-opening metathesis polymerizations (“ROMP”), ring-closing metathesis (“RCM”), and acyclic diene metathesis (“ADMET”). In some embodiments, metathesizing refers to reacting two triglycerides present in a natural feedstock (self-metathesis) in the presence of a metathesis catalyst, wherein each triglyceride has an unsaturated carbon-carbon double bond, thereby forming a new mixture of olefins and esters which may include a triglyceride dimer. Such triglyceride dimers may have more than one olefinic bond, thus higher oligomers also may form. Additionally, in some other embodiments, metathesizing may refer to reacting an olefin, such as ethylene, and a triglyceride in a natural feedstock having at least one unsaturated carbon-carbon double bond, thereby forming new olefinic molecules as well as new ester molecules (cross-metathesis).

As used herein, “alkyl” refers to a straight or branched chain saturated hydrocarbon having 1 to 30 carbon atoms, which may be optionally substituted, as herein further described, with multiple degrees of substitution being allowed. Examples of “alkyl,” as used herein, include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, isobutyl, n-butyl, sec-butyl, tert-butyl, isopentyl, n-pentyl, neopentyl, n-hexyl, and 2-ethylhexyl. The number carbon atoms in an alkyl group is represented by the phrase “Cx-y alkyl,” which refers to an alkyl group, as herein defined, containing from x to y, inclusive, carbon atoms. Thus, “C1-6alkyl” represents an alkyl chain having from 1 to 6 carbon atoms and, for example, includes, but is not limited to, methyl, ethyl, n-propyl, isopropyl, isobutyl, n-butyl, sec-butyl, tert-butyl, isopentyl, n-pentyl, neopentyl, and n-hexyl. In some instances, the “alkyl” group can be divalent, in which case the group can alternatively be referred to as an “alkylene” group. Also, in some instances, one or more of the carbon atoms in the alkyl or alkylene group can be replaced by a heteroatom (e.g., selected from nitrogen, oxygen, or sulfur, including N-oxides, sulfur oxides, and sulfur dioxides, where feasible), and is referred to as a “heteroalkyl” or “heteroalkylene” group. In some instances, one or more of the carbon atoms in the alkyl or alkylene group can be replaced by an oxygen atom, and is referred to as an “oxyalkyl” or “oxyalkylene” group.

As used herein, “alkenyl” refers to a straight or branched chain non-aromatic hydrocarbon having 2 to 30 carbon atoms and having one or more carbon-carbon double bonds, which may be optionally substituted, as herein further described, with multiple degrees of substitution being allowed. Examples of “alkenyl,” as used herein, include, but are not limited to, ethenyl, 2-propenyl, 2-butenyl, and 3-butenyl. The number carbon atoms in an alkenyl group is represented by the phrase “Cx-y alkenyl,” which refers to an alkenyl group, as herein defined, containing from x to y, inclusive, carbon atoms. Thus, “C2-6 alkenyl” represents an alkenyl chain having from 2 to 6 carbon atoms and, for example, includes, but is not limited to, ethenyl, 2-propenyl, 2-butenyl, and 3-butenyl. In some instances, the “alkenyl” group can be divalent, in which case the group can alternatively be referred to as an “alkenylene” group. Also, in some instances, one or more of the saturated carbon atoms in the alkenyl or alkenylene group can be replaced by a heteroatom (e.g., selected from nitrogen, oxygen, or sulfur, including N-oxides, sulfur oxides, and sulfur dioxides, where feasible), and is referred to as a “heteroalkenyl” or “heteroalkenylene” group. In some instances, one or more of the carbon atoms in the alkenyl or alkenylene group can be replaced by an oxygen atom, and is referred to as an “oxyalkenyl” or “oxyalkenylene” group.

As used herein, “halogen” or “halo” refers to fluorine, chlorine, bromine, and/or iodine. In some embodiments, the terms refer to fluorine and/or chlorine.

As used herein, “substituted” refers to substitution of one or more hydrogens of the designated moiety with the named substituent or substituents, multiple degrees of substitution being allowed unless otherwise stated, provided that the substitution results in a stable or chemically feasible compound. A stable compound or chemically feasible compound is one in which the chemical structure is not substantially altered when kept at a temperature from about −80° C. to about +40° C., in the absence of moisture or other chemically reactive conditions, for at least a week. As used herein, the phrases “substituted with one or more . . . ” or “substituted one or more times . . . ” refer to a number of substituents that equals from one to the maximum number of substituents possible based on the number of available bonding sites, provided that the above conditions of stability and chemical feasibility are met.

As used herein, “optionally” means that the subsequently described event(s) may or may not occur. In some embodiments, the optional event does not occur. In some other embodiments, the optional event does occur one or more times.

As used herein, “comprise” or “comprises” or “comprising” or “comprised of” refer to groups that are open, meaning that the group can include additional members in addition to those expressly recited. For example, the phrase, “comprises A” means that A must be present, but that other members can be present too. The terms “include,” “have,” and “composed of” and their grammatical variants have the same meaning. In contrast, “consist of” or “consists of” or “consisting of” refer to groups that are closed. For example, the phrase “consists of A” means that A and only A is present.

As used herein, “or” is to be given its broadest reasonable interpretation, and is not to be limited to an either/or construction. Thus, the phrase “comprising A or B” means that A can be present and not B, or that B is present and not A, or that A and B are both present. Further, if A, for example, defines a class that can have multiple members, e.g., A1 and A2, then one or more members of the class can be present concurrently.

As used herein, the various functional groups represented will be understood to have a point of attachment at the functional group having the hyphen or dash (—) or an asterisk (*). In other words, in the case of —CH2CH2CH3, it will be understood that the point of attachment is the CH2 group at the far left. If a group is recited without an asterisk or a dash, then the attachment point is indicated by the plain and ordinary meaning of the recited group.

As used herein, multi-atom bivalent species are to be read from left to right. For example, if the specification or claims recite A-D-E and D is defined as —OC(O)—, the resulting group with D replaced is: A-OC(O)-E and not A-C(O)O-E.

Other terms are defined in other portions of this description, even though not included in this subsection.

Methods of Making Azelaic Acid or Derivatives Thereof

In a certain aspects, the disclosure provides methods for forming azelaic acid or a derivative thereof, the method comprising: providing a reactant composition comprising a compound of formula (I):

##STR00003##
and reacting the compound of formula (I) with an oxidizing agent to form a product composition comprising a compound of formula (II):

##STR00004##
wherein: R1 is a hydrogen atom, C1-12 alkyl, C1-12 heteroalkyl, or a cationic counterion; R2 is a hydrogen atom, C1-8 alkyl, or C2-8 alkenyl; and R3 is a hydrogen atom, C1-12 alkyl, C1-12 heteroalkyl, or a cationic counterion.

In some embodiments of any of the aforementioned embodiments, R1 is a hydrogen atom. In some other embodiments, R1 is C1-12 alkyl. In some such embodiments, R1 is methyl, ethyl, or isopropyl. In some further such embodiments, R1 is methyl. In some other embodiments, R1 is C1-12 heteroalkyl, such as C1-12 oxyalkyl. In some other embodiments, the oxygen atom adjacent to R1 is in an anionic form and R1 is a cationic counterion. In some such embodiments, R1 is a sodium cation, a potassium cation, or an ammonium cation. In some other embodiments, R1 is a calcium cation or a magnesium cation.

In some embodiments of any of the aforementioned embodiments, R2 is a hydrogen atom. In some other embodiments, R2 is C1-8 alkyl. In some such embodiments, R2 is methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, n-heptyl, or n-octyl. In some further such embodiments, R2 is methyl or ethyl. In some even further such embodiments, R2 is ethyl. In some other embodiments, R2 is C2-8 alkenyl. In some such embodiments, R2 is —CH2—CH═CH2. In some other embodiments, R2 is —CH2—CH═CH—CH2—CH3.

In some embodiments of any of the aforementioned embodiments, R3 is a hydrogen atom. In some other embodiments, R3 is C1-12 alkyl. In some such embodiments, R3 is methyl, ethyl, or isopropyl. In some further such embodiments, R3 is methyl. In some other embodiments, R3 is C1-12 heteroalkyl, such as C1-12 oxyalkyl. In some other embodiments where the oxygen atom adjacent to R3 is in an anionic form, R3 is a cationic counterion. In some embodiments, R3 is a sodium cation, a potassium cation, or an ammonium cation. In some other embodiments, R3 is a calcium cation or a magnesium cation.

The oxidative cleavage generally generates a byproduct, which is a compound of formula (III):

##STR00005##
wherein: R2 is as defined above (in all of its various embodiments) and R4 independently has the same definition as R3 (in all of its various embodiments). In general, this compound will have fewer carbon atoms than azelaic acid (or its derivatives).

The methods disclosed herein include oxidatively cleaving the carbon-carbon double bond of the reactant to form a dibasic acid (or a derivative thereof). The oxidative cleavage can be carried out in any suitable manner, such as those known to those of ordinary skill in the relevant art. In some embodiments, the oxidative cleavage is carried out by reacting the reactant (e.g., a compound of formula (I)) with hydrogen peroxide, e.g., in the presence of an acid, such as tungstic acid. In some other embodiments, the oxidative cleavage is carried out by reacting the reactant (e.g., a compound of formula (I)) with ozone (i.e., via ozonolysis).

Depending on the nature of the starting materials and the solvents used for the oxidative cleavage, the resulting product (i.e., the compound of formula (II)) can exist as a derivative of azelaic acid, such as a monoester or diester of azelaic acid, carbozylate salts of a dibasic acid, and the like. Therefore, in some embodiments, the methods disclosed herein can further include converting the product of the oxidative cleavage (i.e, a derivative of azelaic acid) to azelaic acid. In some embodiments, this converting includes hydrolyzing the derivative, e.g., in an acidic environment. In some other embodiments, the converting includes saponifying the derivative. In some such embodiments, the saponified product is acidified to form azelaic acid. If the byproduct (i.e., the compound of formula (III)) is still present during this converting, the converting will result in the production of compounds such as formic acid, acetic acid, propionic acid, butanoic acid, and the like.

In some further embodiments, the methods disclosed herein further comprise separating the compound of formula (II) from the product composition or separating azelaic acid from the composition including the acidic byproduct.

Derivation from Natural Oils

In general, the compounds of formula (I) can be derived from natural oils and their derivatives. Such derivation can be carried out by any suitable means, including, but not limited to, metathesis of natural oils (e.g., by ethenolysis, propenolysis, butenolysis, etc.), fermentation, treatment by microorganisms, etc.

As noted above, olefin metathesis provides one possible means to convert certain natural oil feedstocks into olefinic compounds, such as compounds of formula (I). When fatty acids containing a carbon-carbon double bond undergo metathesis reactions in the presence of a metathesis catalyst, some or all of the original carbon-carbon double bonds are broken, and new carbon-carbon double bonds are formed. The products of such metathesis reactions include carbon-carbon double bonds in different locations, which can provide unsaturated organic compounds having useful chemical properties.

In some embodiments, after any optional pre-treatment of the natural oil feedstock, the natural oil feedstock is reacted in the presence of a metathesis catalyst in a metathesis reactor. In some other embodiments, an unsaturated ester (e.g., an unsaturated glyceride, such as an unsaturated triglyceride) is reacted in the presence of a metathesis catalyst in a metathesis reactor. These unsaturated esters may be a component of a natural oil feedstock, or may be derived from other sources, e.g., from esters generated in earlier-performed metathesis reactions. In certain embodiments, in the presence of a metathesis catalyst, the natural oil or unsaturated ester can undergo a self-metathesis reaction with itself. In other embodiments, the natural oil or unsaturated ester undergoes a cross-metathesis reaction with the low-molecular-weight olefin or mid-weight olefin. The self-metathesis and/or cross-metathesis reactions form a metathesized product wherein the metathesized product comprises olefins and esters.

In some embodiments, the low-molecular-weight olefin is in the C2-6 range. As a non-limiting example, in one embodiment, the low-molecular-weight olefin may comprise at least one of: ethylene, propylene, 1-butene, 2-butene, isobutene, 1-pentene, 2-pentene, 3-pentene, 2-methyl-1-butene, 2-methyl-2-butene, 3-methyl-1-butene, cyclopentene, 1,4-pentadiene, 1-hexene, 2-hexene, 3-hexene, 4-hexene, 2-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-pentene, 2-methyl-2-pentene, 3-methyl-2-pentene, 4-methyl-2-pentene, 2-methyl-3-pentene, and cyclohexene. In some instances, a higher-molecular-weight olefin can also be used. Because the compounds of formula (Ia) and the compounds of formula (Ib) have terminal carbon-carbon double bonds, it can be desirable to use a short-chain alpha olefin, such as ethylene, propylene, or 1-butene.

In some embodiments, the metathesis comprises reacting a natural oil feedstock (or another unsaturated ester) in the presence of a metathesis catalyst. In some such embodiments, the metathesis comprises reacting one or more unsaturated glycerides (e.g., unsaturated triglycerides) in the natural oil feedstock in the presence of a metathesis catalyst. In some embodiments, the unsaturated glyceride comprises one or more esters of oleic acid, linoleic acid, linoleic acid, or combinations thereof. In some other embodiments, the unsaturated glyceride is the product of the partial hydrogenation and/or the metathesis of another unsaturated glyceride (as described above). In some such embodiments, the metathesis is a cross-metathesis of any of the aforementioned unsaturated triglyceride species with another olefin, e.g., an alkene. In some such embodiments, the alkene used in the cross-metathesis is a lower alkene, such as ethylene, propylene, 1-butene, 2-butene, etc. In some embodiments, the alkene is ethylene. In some other embodiments, the alkene is propylene. In some further embodiments, the alkene is 1-butene. And in some even further embodiments, the alkene is 2-butene.

Metathesis reactions can provide a variety of useful products, when employed in the methods disclosed herein. For example, terminal olefins and internal olefins may be derived from a natural oil feedstock, in addition to other valuable compositions. Moreover, in some embodiments, a number of valuable compositions can be targeted through the self-metathesis reaction of a natural oil feedstock, or the cross-metathesis reaction of the natural oil feedstock with a low-molecular-weight olefin or mid-weight olefin, in the presence of a metathesis catalyst. Such valuable compositions can include fuel compositions, detergents, surfactants, and other specialty chemicals. Additionally, transesterified products (i.e., the products formed from transesterifying an ester in the presence of an alcohol) may also be targeted, non-limiting examples of which include: fatty acid methyl esters (“FAMEs”); biodiesel; 9-decenoic acid (“9DA”) esters, 9-undecenoic acid (“9UDA”) esters, and/or 9-dodecenoic acid (“9DDA”) esters; 9DA, 9UDA, and/or 9DDA; alkali metal salts and alkaline earth metal salts of 9DA, 9UDA, and/or 9DDA; dimers of the transesterified products; and mixtures thereof.

The compounds of formula (I) contain at least one carbon-carbon double bond. Such compounds can be readily derived from cross-metathesizing an unsaturated fatty acids or esters thereof (e.g., oleic acid esters, linoleic acid esters, or linolenic acid esters). For example, cross-metathesizing a short-chain olefin, such as 1-butene) with an oleic acid ester (e.g., methyl linoleate or a glyceryl linoleate) can yield compounds such as 9-dodecenoic acid esters. In embodiments where the ester is a glyceryl ester, the glycerides can be transesterified using methanol, ethanol, and the like to make monohydric esters (e.g., methyl esters, ethyl esters, etc.).

As noted above, olefin metathesis of natural oils can be used to make one or more of the reactants used in the methods disclosed herein. Any suitable natural oil or natural oil derivative can be used. Examples of natural oils include, but are not limited to, vegetable oils, algae oils, fish oils, animal fats, tall oils, derivatives of these oils, combinations of any of these oils, and the like. Representative non-limiting examples of vegetable oils include rapeseed oil (canola oil), coconut oil, corn oil, cottonseed oil, olive oil, palm oil, peanut oil, safflower oil, sesame oil, soybean oil, sunflower oil, linseed oil, palm kernel oil, tung oil, jatropha oil, mustard seed oil, pennycress oil, camelina oil, hempseed oil, and castor oil. Representative non-limiting examples of animal fats include lard, tallow, poultry fat, yellow grease, and fish oil. Tall oils are by-products of wood pulp manufacture. In some embodiments, the natural oil or natural oil feedstock comprises one or more unsaturated glycerides (e.g., unsaturated triglycerides). In some such embodiments, the natural oil feedstock comprises at least 50% by weight, or at least 60% by weight, or at least 70% by weight, or at least 80% by weight, or at least 90% by weight, or at least 95% by weight, or at least 97% by weight, or at least 99% by weight of one or more unsaturated triglycerides, based on the total weight of the natural oil feedstock.

The natural oil may include canola or soybean oil, such as refined, bleached and deodorized soybean oil (i.e., RBD soybean oil). Soybean oil typically includes about 95 percent by weight (wt %) or greater (e.g., 99 wt % or greater) triglycerides of fatty acids. Major fatty acids in the polyol esters of soybean oil include but are not limited to saturated fatty acids such as palmitic acid (hexadecanoic acid) and stearic acid (octadecanoic acid), and unsaturated fatty acids such as oleic acid (9-octadecenoic acid), linoleic acid (9,12-octadecadienoic acid), and linolenic acid (9,12,15-octadecatrienoic acid).

Examples of metathesized natural oils include but are not limited to a metathesized vegetable oil, a metathesized algal oil, a metathesized animal fat, a metathesized tall oil, a metathesized derivatives of these oils, or mixtures thereof. For example, a metathesized vegetable oil may include metathesized canola oil, metathesized rapeseed oil, metathesized coconut oil, metathesized corn oil, metathesized cottonseed oil, metathesized olive oil, metathesized palm oil, metathesized peanut oil, metathesized safflower oil, metathesized sesame oil, metathesized soybean oil, metathesized sunflower oil, metathesized linseed oil, metathesized palm kernel oil, metathesized tung oil, metathesized jatropha oil, metathesized mustard oil, metathesized camelina oil, metathesized pennycress oil, metathesized castor oil, metathesized derivatives of these oils, or mixtures thereof. In another example, the metathesized natural oil may include a metathesized animal fat, such as metathesized lard, metathesized tallow, metathesized poultry fat, metathesized fish oil, metathesized derivatives of these oils, or mixtures thereof.

Such natural oils can contain esters, such as triglycerides, of various unsaturated fatty acids. The identity and concentration of such fatty acids varies depending on the oil source, and, in some cases, on the variety. In some embodiments, the natural oil comprises one or more esters of oleic acid, linoleic acid, linolenic acid, or any combination thereof. When such fatty acid esters are metathesized, new compounds are formed. For example, in embodiments where the metathesis uses certain short-chain olefins, e.g., ethylene, propylene, or 1-butene, and where the natural oil includes esters of oleic acid, an amount of 1-decene, among other products, is formed. Following transesterification, for example, with an alkyl alcohol, an amount of 9-denenoic acid methyl ester is formed. In some such embodiments, a separation step may occur between the metathesis and the transesterification, where the alkenes are separated from the esters. In some other embodiments, transesterification can occur before metathesis, and the metathesis is performed on the transesterified product.

Metathesis and Metathesis Catalysts

The aforementioned methods are carried out in the presence of a metathesis catalyst, which serves to catalyze the exchange of the alkylidene groups between the two olefinic reactants.

The metathesis process can be conducted under any conditions adequate to produce the desired metathesis products. For example, stoichiometry, atmosphere, solvent, temperature, and pressure can be selected by one skilled in the art to produce a desired product and to minimize undesirable byproducts. In some embodiments, the metathesis process may be conducted under an inert atmosphere. Similarly, in embodiments were a reagent is supplied as a gas, an inert gaseous diluent can be used in the gas stream. In such embodiments, the inert atmosphere or inert gaseous diluent typically is an inert gas, meaning that the gas does not interact with the metathesis catalyst to impede catalysis to a substantial degree. For example, non-limiting examples of inert gases include helium, neon, argon, and nitrogen, used individually or in with each other and other inert gases.

The rector design for the metathesis reaction can vary depending on a variety of factors, including, but not limited to, the scale of the reaction, the reaction conditions (heat, pressure, etc.), the identity of the catalyst, the identity of the materials being reacted in the reactor, and the nature of the reactants being employed. Suitable reactors can be designed by those of skill in the art, depending on the relevant factors, and incorporated into a refining process such, such as those disclosed herein.

The metathesis reactions disclosed in the aforementioned embodiments generally occur in the presence of one or more metathesis catalysts. Such methods can employ any suitable metathesis catalyst. The metathesis catalyst in this reaction may include any catalyst or catalyst system that catalyzes a metathesis reaction. Any known metathesis catalyst may be used, alone or in combination with one or more additional catalysts. Examples of metathesis catalysts and process conditions are described in US 2011/0160472, incorporated by reference herein in its entirety, except that in the event of any inconsistent disclosure or definition from the present specification, the disclosure or definition herein shall be deemed to prevail. A number of the metathesis catalysts described in US 2011/0160472 are presently available from Materia, Inc. (Pasadena, Calif.).

In some embodiments, the metathesis catalyst includes a Grubbs-type olefin metathesis catalyst and/or an entity derived therefrom. In some embodiments, the metathesis catalyst includes a first-generation Grubbs-type olefin metathesis catalyst and/or an entity derived therefrom. In some embodiments, the metathesis catalyst includes a second-generation Grubbs-type olefin metathesis catalyst and/or an entity derived therefrom. In some embodiments, the metathesis catalyst includes a first-generation Hoveyda-Grubbs-type olefin metathesis catalyst and/or an entity derived therefrom. In some embodiments, the metathesis catalyst includes a second-generation Hoveyda-Grubbs-type olefin metathesis catalyst and/or an entity derived therefrom. In some embodiments, the metathesis catalyst includes one or a plurality of the ruthenium carbene metathesis catalysts sold by Materia, Inc. of Pasadena, Calif. and/or one or more entities derived from such catalysts.

In some other embodiments, the metathesis catalyst includes a molybdenum and/or tungsten alkylidene complex and/or an entity derived from such a complex. In some embodiments, the metathesis catalyst includes a Schrock-type olefin metathesis catalyst and/or an entity derived therefrom. In some embodiments, the metathesis catalyst includes a high-oxidation-state alkylidene complex of molybdenum and/or an entity derived therefrom. In some embodiments, the metathesis catalyst includes a high-oxidation-state alkylidene complex of tungsten and/or an entity derived therefrom. In some embodiments, the metathesis catalyst includes molybdenum (VI). In some embodiments, the metathesis catalyst includes tungsten (VI). In some embodiments, the metathesis catalyst includes a molybdenum- and/or a tungsten-containing alkylidene complex of a type described in one or more of (a) Angew. Chem. Int. Ed. Engl., 2003, 42, 4592-4633; (b) Chem. Rev., 2002, 102, 145-179; and/or (c) Chem. Rev., 2009, 109, 3211-3226, each of which is incorporated by reference herein in its entirety, except that in the event of any inconsistent disclosure or definition from the present specification, the disclosure or definition herein shall be deemed to prevail. In some embodiments, suitable metathesis catalysis include those disclosed in one or more of the following references: PCT Publication No. WO 2014139679; U.S. Patent Application Publication Nos. 2012/0302710, 2011/0077421, 2011/0015430, 2008/0119678; Singh et al., Organometallics, vol. 26, p. 2528 (2007); Meek et al., Nature, vol. 456, pp. 933-37 (2008); Wampler et al., Organometallics, vol. 26, p. 6674 (2007); all of which are hereby incorporated by reference as though fully set forth herein.

In certain embodiments, the metathesis catalyst is dissolved in a solvent prior to conducting the metathesis reaction. In certain such embodiments, the solvent chosen may be selected to be substantially inert with respect to the metathesis catalyst. For example, substantially inert solvents include, without limitation: aromatic hydrocarbons, such as benzene, toluene, xylenes, etc.; halogenated aromatic hydrocarbons, such as chlorobenzene and dichlorobenzene; aliphatic solvents, including pentane, hexane, heptane, cyclohexane, etc.; and chlorinated alkanes, such as dichloromethane, chloroform, dichloroethane, etc. In some embodiments, the solvent comprises toluene.

In other embodiments, the metathesis catalyst is not dissolved in a solvent prior to conducting the metathesis reaction. The catalyst, instead, for example, can be slurried with the natural oil or unsaturated ester, where the natural oil or unsaturated ester is in a liquid state. Under these conditions, it is possible to eliminate the solvent (e.g., toluene) from the process and eliminate downstream olefin losses when separating the solvent. In other embodiments, the metathesis catalyst may be added in solid state form (and not slurried) to the natural oil or unsaturated ester (e.g., as an auger feed).

The metathesis reaction temperature may, in some instances, be a rate-controlling variable where the temperature is selected to provide a desired product at an acceptable rate. In certain embodiments, the metathesis reaction temperature is greater than −40° C., or greater than −20° C., or greater than 0° C., or greater than 10° C. In certain embodiments, the metathesis reaction temperature is less than 200° C., or less than 150° C., or less than 120° C. In some embodiments, the metathesis reaction temperature is between 0° C. and 150° C., or is between 10° C. and 120° C.

The metathesis reaction can be run under any desired pressure. In some instances, it may be desirable to maintain a total pressure that is high enough to keep the cross-metathesis reagent in solution. Therefore, as the molecular weight of the cross-metathesis reagent increases, the lower pressure range typically decreases since the boiling point of the cross-metathesis reagent increases. The total pressure may be selected to be greater than 0.1 atm (10 kPa), or greater than 0.3 atm (30 kPa), or greater than 1 atm (100 kPa). In some embodiments, the reaction pressure is no more than about 70 atm (7000 kPa), or no more than about 30 atm (3000 kPa). In some embodiments, the pressure for the metathesis reaction ranges from about 1 atm (100 kPa) to about 30 atm (3000 kPa).

In some embodiments, it may be desirable to treat the reactant composition (or one or more ingredients in the reactant composition) prior to carrying out the metathesis reaction, for example, to reduce the concentration of any catalyst poisons or other interfering species that may be present in the composition. Useful pre-treatment methods are described in United States Patent Application Publication No. 2011/0113679 and in PCT Publication Nos. WO 2014/139679 and WO 2014/160417, all three of which are hereby incorporated by reference as though fully set forth herein.

For example, in some embodiments, the materials in the reactant composition are subjected to metathesis reactions using the compounds disclosed herein are purified from impurities that may poison the catalytic effect of the compounds. Suitable methods include, but are not limited to, percolation through molecular sieves to remove water (or reduce water content to the acceptable level), optionally followed by a further percolation through activated alumina to remove/cleave organic peroxide and eliminate other impurities (e.g. alcohols, aldehydes, ketones). In some embodiments, distillation from sodium and/or potassium (e.g. styrene) may be sufficient to obtain suitably pure substrates. Similarly, when the water content is not high (e.g., less than about 250 ppm, relative to the concentration of the metathesis substrate material), percolation through alumina may be sufficient. A typical commercially-available alumina is SELEXSORB (BASF, Leverkusen, Germany). This is an activated alumina-based adsorbent containing a proprietary modifier, and is used as an industrial adsorbent.

In some other embodiments, materials in the reactant composition are used without purification, e.g., if trialkylaluminum (e.g. triethylaluminum) is added to the metathesis reaction. In such instances, trialkylaluminum may be used as an additive, e.g., in an amount of 0.5-5.0 mol %, relative to the concentration of the metathesis substrate material. Using this method or a combination of trialkylaluminum with molecular sieves and/or alumina may provide <10 ppm water content and, in some cases, the peroxide content is reduced, e.g., to below its detection limit.

To a three-necked 100-mL round-bottom flask equipped with a stir bar, temperature probe, addition funnel, and reflux condenser, were added 5 grams of 9-dodecenoic acid, 12.5 mg tungstic acid, and 46 mg of cetyltrimethylammonium bromide phase transfer catalyst. Then 5 equivalents of hydrogen peroxide (as a 50% aqueous solution) was added, and the reaction mixture was heated to 50-55° C. under nitrogen gas, which was increased to 75-77° C. following complete reaction of the hydrogen peroxide. The reaction proceeded for 8 hours. Then, another 2.5 equivalents of hydrogen peroxide was added (as a 50% aqueous solution). The reaction proceeded at 75-77° C. for another 8 hours. The reaction mixture was cooled to room temperature, whereupon a light-colored solid precipitated from the mixture. The light-colored solid was filtered, washed with cold water, and dried under vacuum. The light solid was identified as azelaic acid, which was produced at a yield of 79%.

In a 3-necked 250-mL round-bottom flask quipped with stir bar, temperature probe, addition funnel, and reflux condenser, were added 40 grams of 9-decenoic acid, 0.352 mg tungstic acid and 0.428 mg cetyltrimethylammonium bromide phase transfer catalyst at room temperature. The reaction mixture was heated to 50-55° C. under nitrogen gas, and 2 equivalents of hydrogen peroxide solution was added dropwise. The reaction temperature was slowly increased to 75-77° C. and stirred for 4 hours. Another 2 equivalents of hydrogen peroxide were added at 75-77° C., stirred for another 6-8 hours, followed by another equivalent of aqueous hydrogen peroxide solution. Upon completion of the reaction, the mixture was cooled to room temperature and white solid precipitated out. The solid product was filtered, washed with cold water, and dried under vacuum. The solid was identified as azelaic acid which was produced at a yield of 76%.

Dantale, Shubhada, Havelka, Kathleen, Metsi-Guckel, Efimia

Patent Priority Assignee Title
Patent Priority Assignee Title
8846962, Dec 30 2009 NOVAMONT S P A Continuous process for the production of derivatives of saturated carboxylic acids
20110300590,
20140171677,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 02 2008METSI-GUCKEL, EFIMIAELEVANCE RENEWABLE SCIENCES, INC EMPLOYEE AGREEMENT0521940624 pdf
Sep 01 2011HAVELKA, KATHLEEN O LEARYELEVANCE RENEWABLE SCIENCES, INC EMPLOYEE AGREEMENT0521940574 pdf
Oct 01 2013DANTALE, SHUBHADAELEVANCE RENEWABLE SCIENCES, INC EMPLOYEE AGREEMENT0521940518 pdf
Nov 12 2015Elevance Renewable Sciences, Inc.(assignment on the face of the patent)
May 29 2020ELEVANCE RENEWABLE SCIENCES, INC Wilmar Trading Pte LtdASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0529420933 pdf
Date Maintenance Fee Events
Dec 24 2021M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Jul 10 20214 years fee payment window open
Jan 10 20226 months grace period start (w surcharge)
Jul 10 2022patent expiry (for year 4)
Jul 10 20242 years to revive unintentionally abandoned end. (for year 4)
Jul 10 20258 years fee payment window open
Jan 10 20266 months grace period start (w surcharge)
Jul 10 2026patent expiry (for year 8)
Jul 10 20282 years to revive unintentionally abandoned end. (for year 8)
Jul 10 202912 years fee payment window open
Jan 10 20306 months grace period start (w surcharge)
Jul 10 2030patent expiry (for year 12)
Jul 10 20322 years to revive unintentionally abandoned end. (for year 12)