electromagnetic detectors and methods for manufacturing electromagnetic detectors are described. The electromagnetic detectors include at least one electromagnetic sensor, where each electromagnetic sensor includes a conductive part having a perimeter, a first connection point on the perimeter of the conductive part, a second connection point on the perimeter of the conductive part, a connection point axis extending between the first and the second connection points, a secondary axis perpendicular to the connection point axis extending through a midpoint between the first and second connection points, the secondary axis dividing the conductive part into two portions that are asymmetrical to one another. The electromagnetic detector also includes a voltage detector coupled to the first and the second connection points to detect voltages produced by the conductive part when exposed to electromagnetic waves.
|
1. An electromagnetic wave detector comprising:
at least one electromagnetic sensor, each electromagnetic sensor including:
a conductive part having a perimeter;
a first connection point on the perimeter of the conductive part;
a second connection point on the perimeter of the conductive part;
a connection point axis extending between the first and the second connection points;
a secondary axis perpendicular to the connection point axis extending through a midpoint between the first and second connection points, the secondary axis dividing the conductive part into two portions that are asymmetrical to one another, the secondary axis set to produce Hall Effect voltages across the conductive part in response to electromagnetic waves; and
a voltage detector coupled to the first and the second connection points to detect the Hall Effect voltages produced by the conductive part when exposed to the electromagnetic waves.
2. The detector of
a substrate on which the conductive part is supported.
5. The detector of
a processor coupled to the voltage detector, the processor configured to interpret the voltages detected by the voltage detector.
7. The detector of
8. The detector of
9. The detector of
10. The detector of
11. The detector of
12. The detector of
14. The detector of
15. A method for forming an electromagnetic detector comprising:
depositing a conductive material on a substrate;
forming an electromagnetic sensor as described in
coupling the formed electromagnetic sensor to a voltage detector.
|
This application claims priority to U.S. Provisional Application Ser. No. 62/363,397 entitled A VERY SIMPLE ELECTROMAGNETIC DETECTOR, filed on Jul. 18, 2017, the contents of which are incorporated fully herein by reference.
This invention was not made with government support. The government has no rights in this invention.
The invention relates to electromagnetic detectors and more particularly to electromagnetic detectors that are asymmetric about an axis extending through contact points on a perimeter of the detector.
In the last several decades, the rapid development and commercialization of wireless technology has fundamentally changed society. From the development of smart devices to driver-less transportation, this wireless revolution has changed how one interacts with their environment. With an ever growing set of devices that utilize wireless communication, there is a need for low-cost electromagnetic (EM) radiation sensors.
Conventional millimeter (mm) and sub mm wavelength detection technology (e.g. very small band gap semiconductors and/or cryogenically cooled detectors) are too expensive to be commercially developed for the standard consumer.
In most methods of detecting optical EM radiation, the photoconductive response of a semi-conductor is often used, e.g., silicon based photo-receivers. While useful in the optical regime, due to the low photon energy of mid to far-infrared radiation, other materials must be sought out. For mid-infrared detection (λ=3-8 μm) mercury cadmium telluride (MCT) detectors have become widely used, however their sensitivity dramatically decreases as one increases the EM wavelength. In addition, both single and multi-channel MCT detectors can be very expensive (greater and $2,000 and $50,000, respectively) and require complex control circuitry for bias and readout.
For radiation wavelengths that exceed 10 μm, cryogenically cooled detectors such as liquid helium cooled silicon bolometers are used. While efficient, the size (approximately the size of a toaster oven) and cost (greater than $30,000) of the single channel bolometers makes them impractical for many field and/or clinical applications. In addition, making these devices into multi-dimensional arrays for imaging is very challenging and cost-prohibitive.
Recent alternatives to direct detection methods include optical based THz spectroscopy methods. In these method free space electro-optic sampling (FSEOS) or optical gating of a photoconductive switches are typically used. FSEOS converts the temporal signature of THz radiation to the visible portion of the electromagnetic spectrum, thereby allowing optical detection technologies to measure the amplitude and phase of coherent THz radiation. Optical gating of photoconductive switches utilizes the transient electric field of the THz radiation to drive a current in optically excited semi-conductor. However, as the time-integrated electric field of the EM wave is still zero, this device requires the use of an ultrafast optical source to temporally gate the signal to determine the magnitude and direction the propagating wave.
There is a need for EM sensors that are smaller and more cost-effective than conventional sensors such as those described above. The invention addresses these needs among others.
Aspects of the invention are embodied in electromagnetic detectors and methods for manufacturing electromagnetic detectors. The electromagnetic detectors include at least one electromagnetic sensor, where each electromagnetic sensor includes a conductive part having a perimeter, a first connection point on the perimeter of the conductive part, a second connection point on the perimeter of the conductive part, a connection point axis extending between the first and the second connection points, a secondary axis perpendicular to the connection point axis extending through a midpoint between the first and second connection points, the secondary axis dividing the conductive part into two portions that are asymmetrical to one another. The electromagnetic detector also includes a voltage detector coupled to the first and the second connection points to detect voltages produced by the conductive part when exposed to electromagnetic waves.
The invention is best understood from the following detailed description when read in connection with the accompanying drawings, with like elements having the same reference numerals. When a plurality of similar elements are present, a single reference numeral may be assigned to the plurality of similar elements with a small letter designation referring to specific elements. When referring to the elements collectively or to a non-specific one or more of the elements, the small letter designation may be dropped. This emphasizes that according to common practice, the various features of the drawings are not drawn to scale unless otherwise indicated. On the contrary, the dimensions of the various features may be expanded or reduced for clarity. Included in the drawings are the following figures:
Because of its extreme simplicity in design and manufacture, these sensors such as depicted in
In one embodiment, all the components of the electromagnetic detector may all be formed on a substrate 116 such as a semiconductor or insulator substrate. Suitable substrates will be understood by one of skill in the art from the description herein.
In another embodiment one or more of the components may be formed on separate substrates or a stand-alone components. For example, the electromagnetic sensor 100 and the voltage detector 112 may be formed on a common substrate and the processor 114 may be a separate stand-alone component that receives signals from the voltage detector.
The electromagnetic sensor includes a conductive part 100 having a perimeter 102. The conductive part may be a film or sheet of conductive material formed on a substrate 116. The conductive material may be bismuth or other material having a relatively large Hall coefficient (e.g., greater than 1016 m3/coulomb). The size and shape of the perimeter 102 of the electromagnetic sensor is selected to sense particular wavelengths/frequencies of electromagnetic waves. Additional details regarding the selection of the size and shape of the perimeter 102 is set forth below.
The perimeter 102 of the illustrated electromagnetic sensor is an equilateral triangle having three vertices connected by three legs. In an embodiment, the perimeter at the vertices has a relatively sharp angle (the signal may become smaller as the corners get more rounded). Without being limited to any particular theory, as current goes into a corner of the perimeter 102 it has to turn and corner vortices are created. The EM filed injects static voltage through these corner “fractional vortices,” which are made finite for a triangular perimeter by a “branch cut” behavior. A first connection point 104 is arranged at one of the vertices and a second connection point 106 is arranged on a leg of the perimeter 102 opposite connection point 104 at a midpoint between the other two vertices.
A connection point axis 108 extends through the conductive part 100 between the first connection point 104 and the second connection point 106. The connection point axis 108 divides the conductive part 100 illustrated in
A secondary axis 110 extends through the conductive part 100 and bisects the connection point axis 108 at a midpoint between the first and second connection points. The illustrated secondary axis 110 is perpendicular to the connection point axis 108. The secondary axis 110 divides the conductive part 100 into two portions that are asymmetrical to one another
The voltage detector 112 is coupled to the first connection point 104 and the second connection point 106. The voltage detector 112 may be coupled to the connection points 104/106 with conductive traces formed on the substrate 116. The processor 114 is coupled to the voltage detector 112. The processor 114 may be coupled to the voltage detector 114 with conductive traces formed on the substrate.
In use, electromagnetic waves impinging on the conductive part 100 produce a voltage differential between the first connection point 104 and the second connection point 106 that is proportional to the magnitude of the impinging electromagnetic waves. The voltage detector 112 coupled to the first connection point 104 and the second connection point detects the voltage differential and produces a signal that is processed by processor 114 to provide a human readable value that corresponds to the magnitude of the impinging electromagnetic waves.
As illustrated in
If electromagnetic sensors having a perimeter 102 of the same size and shape are used, such as perimeters 102a-c depicted in
If electromagnetic sensors having a perimeter 102 of different sizes and shapes are used, such as perimeters 102d-f depicted in
At step 502, a conductive material is deposited on a substrate. The conductive material may be bismuth or another conductive material with a relatively large Hall coefficient. The conductive material may be deposited on a semiconductor or insulator substrate using conventional deposition techniques.
At step 504, the electromagnetic sensors and connectors are formed. The electromagnetic sensors and connectors may be formed by etching the deposited conductive materials around the perimeters of each sensor and around where the interconnecting traces are to be positioned. Standard optical photo-lithography techniques may be used in conjunction with molecular evaporation to form the sensors and connectors.
At a first resonance, the length of the sides of, for example, a triangle, is approximately equal to 0.4 times the wavelength λ. A series of triangular geometries, with lateral dimensions on order of 1 mm, easily obtainable with standard optical patterning. Bismuth films that are approximately 100 nm thick may be deposited directly on standard silicon substrates. In such a geometry, a significant fraction of the far-infrared radiation is absorbed in the bismuth film, which increases the potential electrical response upon illumination.
At step 506, the formed electromagnetic sensors are coupled to a voltage detector and a processor.
The films may be produced using lithographic techniques to from a thin metallic film. A metal with a large figure of merit is desirable. The figure of merit is the ratio of the Hall coefficient RH divided by the resistivity ρ. An example of such a material is Bismuth, which has a Hall coefficient 6000 times that of Copper. Such films can be made by techniques such as sputtering, chemical vapor deposition or molecular beam epitaxy. The thickness of the film is desirably less than or equal to the skin depth at the frequency of interest in sensing. This is because the electromagnetic signal can only penetrate up to this distance and the extra material will be wasted for thicker films. Typical thickness can be of the order of 10 nm for infrared frequencies. For applications at angular frequency ω, the optimum size of an equilateral triangle with base length a is such that ωa/c˜3 where c is the speed of light.
An array of triangles may be created from the film and the patterning of the array can be done with conventional lithographical techniques. The arrays may include different patterns of the triangles of different sizes and/or orientations, depending on the frequency range and the polarization of the application. Typical patterns are periodic arrays that form triangular, square, rectangular or hexagonal lattices. There can be triangles of different sizes and orientations inside each unit cell of the lattice. The power of the incoming electromagnetic wave is measured as a voltage between a tip of the triangle and the middle of the base opposite to it. Some of the triangles in a unit cell can also be connected by thin metallic connects. In this case, the voltage across the small chain of the triangles in series is enhanced relative to the noise.
The sensor need not be exactly triangular in shape. In general, the perimeter of the figure can be described by its distance r at azimuthal angle φ. Thus a circle is described by the trajectory r(φ)=constant. For any general shape, we can write r(φ) as a Fourier series so that r(φ) Σmrmeimφ. Any shape that possesses a triangular “component” r3≈0 will also produce a finite voltage.
These arrays of triangles can be used in devices that require the sensing of objects. Examples of possible uses are: cameras to capture images, in smart cars to sense other nearby objects or in remote controls.
Without being limited to any particular theory, the physics behind the operation of the electromagnetic sensor is now provided. When an external linearly polarized EM wave is incident on the metallic triangular film, currents are induced. Near the frequency with ωa/c˜3 the induced current flow creates a magnetic field in a direction perpendicular to the film. Through the Hall effect, the current and the magnetic field together induce a spatially varying static electric field. For an incoming linearly polarized EM wave, the average voltage across the triangle in the direction of the connection point axis 108 (y) is nonzero. For an incoming circularly polarized EM wave, the average voltage across an equilateral triangle in the direction of the connection point axis 108 is zero.
For a linearly polarized external EM field, the current j induced in the sensor will have the form:
j=ΣnrnΣmeimnφ[Ame_exp(2iφ)+Bme+]+complex conjugate
Here n, m are integers and e±=(ex±iey)/√2 are circularly polarized unit vectors. The corresponding component of the magnetic field perpendicular to the film will have the form B=ΣnrnΣmeimnφCmez exp(iφ)+complex conjugate. The Hall electric field is proportional to the cross product j×B. Its spatial dependence contains terms of the form rnΣmeimnφexp(3iφ). The average of this field over the angle φ is finite if the senor perimeter contains a triangular component with n=3 for m=−1.
The static voltages produced by sensors such as those described herein enable these sensors to be used as a simple sensor of EM waves. An estimate of the order of magnitude of the sensitivity of an equilateral triangle is now provided. The conventional figure of merit is the noise equivalent power (NEP), the absorbed power required to get a signal the same order of magnitude as the noise. For a sensor of thickness t the NEP scales as t3/2 and can be made essentially as small as desired, limited by current fabrication precision. More precisely, the static electric field is of the order of magnitude:
EH=βRHjB=β(RH/ρ0)EB
where β is −0.03. For a sensor of linear dimension a and thickness t the power absorbed is Pat with:
P=EB/μ0≈E2a/ρ0
and the Johnson noise N is:
N=0.13√RnV/√Hz
at room temperature where R, of the order of ρ0t, is the resistance in units of Ohm. Thus, N is proportional to t1/2. Now the voltage is VH=EHa. The noise equivalent power (NEP) of the sensor:
NEP=(Pat)N/VH=ρ0tN/(βμ0RH),
scales with t3/2 and thus can be made as small as desired, limited by current fabrication precision.
In the free electron approximation, 1/ρ exhibits a frequency dependence that is of a Drude form whereas RH is frequency independent.
Another figure of merit (NEIP) is used to normalize the voltage with respect to the incoming power and not the absorbed power. For ordinary sensors which are usually operated off resonance, the power absorbed P′ at is much less than that of the incoming power:
P′(R/Z0)2P≈10−6P
for a resistance R=0.1Ω and the permitivity of the vacuum Z0=377Ω. For the triangular sensor at resonance the power absorbed is of the same order of magnitude as the incoming power. If t is taken to be of the order of the 0.1 μm, NEIP≈10-12 W/√Hz, which is two orders of magnitude smaller than that of existing sensors if one uses a large RH metal such as Bismuth. Relative to the power flux, VH/P≈0.01V/MW-cm−2. This estimate for the inventive sensor is two orders of magnitude larger than the value of 0.1 mV/MW-cm−2 obtained for two dimensional photonic crystals, but is easier to make, has a faster response time, and does not require refrigeration.
Although the invention is illustrated and described herein with reference to specific embodiments, the invention is not intended to be limited to the details shown. Rather, various modifications may be made in the details within the scope and range of equivalents of the claims and without departing from the invention.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
8957379, | Oct 30 2012 | International Business Machines Corporation | Suspended wideband planar skirt antenna having low thermal mass for detection of terahertz radiation |
9105791, | Sep 16 2013 | National Technology & Engineering Solutions of Sandia, LLC | Tunable plasmonic crystal |
20090001980, | |||
20090262766, | |||
20140061469, | |||
20140124885, | |||
20140231648, | |||
20140264029, | |||
20140267757, | |||
20150123741, | |||
JP2007033160, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 31 2017 | CHUI, SIU-TAT | University of Delaware | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 042823 | /0294 | |
Jun 08 2017 | University of Delaware | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jan 10 2022 | M3551: Payment of Maintenance Fee, 4th Year, Micro Entity. |
Date | Maintenance Schedule |
Jul 10 2021 | 4 years fee payment window open |
Jan 10 2022 | 6 months grace period start (w surcharge) |
Jul 10 2022 | patent expiry (for year 4) |
Jul 10 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 10 2025 | 8 years fee payment window open |
Jan 10 2026 | 6 months grace period start (w surcharge) |
Jul 10 2026 | patent expiry (for year 8) |
Jul 10 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 10 2029 | 12 years fee payment window open |
Jan 10 2030 | 6 months grace period start (w surcharge) |
Jul 10 2030 | patent expiry (for year 12) |
Jul 10 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |