One embodiment of a molded fuel tank includes a fuel tank molded from a synthetic material, such as a composite polymer. One embodiment may include molding a fuel tank with metal component fastening structures positioned within the fuel tank as it is molded. One embodiment may include molding a fuel tank and integral component fastening structures simultaneously from synthetic materials. One embodiment of a molded fuel tank may include a fuel tank formed by a rotational molding process.
|
11. A fuel tank, comprising:
a tank wall manufactured of synthetic material and including an exterior tank surface and an interior tank surface;
a component fastening structure secured within and extending through said tank wall, said fastening structure manufactured as a single, integral structure from a single piece of material, said component fastening structure defining an outermost exterior surface including a first region that extends through said exterior surface of said tank, a second region that extends through said interior surface of said tank, and a central region positioned between said first and second regions and completely within said tank wall of said fuel tank, said first, second and central regions each defining an outermost perimeter positioned within said outermost exterior surface wherein said central region outermost perimeter is smaller than said outermost perimeter of said first and said second regions; and
said tank wall defining a tank wall thickness measured adjacent to said component fastening structure, said thickness extending completely along said central region of said fastening structure and extending along at least part of each of said first and second regions.
14. A fuel tank, comprising:
a tank wall manufactured of a moldable material;
a component fastening structure secured within said tank wall, said fastening structure manufactured as a single, integral structure from a single piece of material, said component fastening structure defining an outermost exterior surface including a first region, a second region, and a central region positioned there between, said component fastening structure defining an elongate axis extending through said first, second and central regions, said first, second and central regions each arranged along said elongate axis in a non-overlapping sequence and defining an outermost perimeter measured perpendicular to said elongate axis and positioned within said outermost exterior surface of said component fastening structure wherein said central region outermost perimeter is smaller than said outermost perimeter of said first and said second regions; and
said tank wall defining a tank wall thickness measured adjacent to said component fastening structure and parallel to said elongate axis, said thickness extending along said elongate axis completely along said central region of said fastening structure and along at least part of each of said first and second regions.
1. A synthetic fuel tank, comprising:
a tank wall manufactured of synthetic material and including an exterior surface and an interior surface, said exterior surface in direct communication with and defining an exterior of said fuel tank and said interior surface in direct communication with and defining an interior of said fuel tank;
a component fastening structure, said fastening structure secured within and extending through said tank wall and between said exterior of said fuel tank and said interior of said fuel tank, said component fastening structure defining an outermost exterior surface including a first region having a first region exterior surface positioned in a plane of said tank wall exterior surface, a second region, and a central region positioned there between, said first, second and central regions each defining an outermost perimeter positioned within said component fastening structure outermost exterior surface and measured in a plane parallel to said plane of said fuel tank exterior surface at a position on said fuel tank exterior surface where said component fastening structure is secured, said central region outermost perimeter being smaller than said outermost perimeter of said first and said second regions; and
said tank wall defining a tank wall thickness measured perpendicular to said plane of said tank wall exterior surface and directly adjacent to said first region of said component fastening structure, a length of said thickness extending completely along said central region of said fastening structure and extending along at least part of each of said first and second regions and said tank wall exterior surface positioned perpendicular to an elongate axis of said fastening structure and in the same plane as said exterior surface of said first region of said fastening structure at a position on said fuel tank exterior surface where said component fastening structure is secured.
2. The tank of
3. The tank of
4. The tank of
5. The tank of
6. The fuel tank of
7. The fuel tank of
8. The fuel tank of
9. The fuel tank of
10. The fuel tank of
12. The fuel tank of
13. The fuel tank of
15. The fuel tank of
16. The fuel tank of
17. The fuel tank of
|
This application claims the benefit of U.S. provisional patent application Ser. No. 61/632,759, filed on Jan. 30, 2012, in the name of Neal Keefer and Bruce Bosch.
Truck fuel tanks typically are fabricated from multiple pieces of metal, such as steel or aluminum. The sheet of metal typically first is sheared to a rectangular shape, and then is punched or laser cut to form holes in the sheet. The sheet then is rolled into a cylinder, a “D” shape or a rectangular shape, and then welded along the longitudinal seam. The tank ends typically are formed from aluminum sheets which are welded to the built-up, i.e., rolled shell. In a final step, fittings for fuel fill, fuel drain, fuel vent, fuel suction and fuel return tubes are welded into place on the shell or on the tank ends.
This process has a number of challenges. One challenge occurs at the “T’ weld joint, i.e., the location where the longitudinal seam and the circumferential seam head welds overlap. This location at the seam overlap region experiences a large number of leaks. Moreover, the overall process of welded metal fuel tank construction is very labor intensive Efforts to automate the welding process by using robotic welders has been somewhat successful in reducing the number of leaks in these tank. However, in general, tank manufacturers have a difficult time being commercially viable due to the capital intensity of the welding operation and due to the low price that the final product purchasers are willing to pay for the finished product.
There is a need, therefore, for a fuel tank with reduced probability of leaks and for a method of manufacturing a tank that is more cost effective.
One embodiment of a molded fuel tank includes a fuel tank molded from synthetic material, such as a composite polymer. One embodiment may include molding a fuel tank from synthetic materials, with metal components positioned within the fuel tank as it is molded. One embodiment may include molding a fuel tank and integral components simultaneously from synthetic materials. One embodiment of a molded fuel tank may include a fuel tank formed by a rotational molding process.
One embodiment of the present invention includes a process of molding a one-piece fuel tank that contains all the component fastening structures on the tank, i.e., molding the tank with previously formed metal component fastening structures already in place. The advantages of this method include fewer manufacturing process steps, fewer leak paths, reduced cost and, possibly, reduced weight of the manufactured fuel tank, larger fuel tank capacity for the space occupied by the tank, when compared with prior art metal welded fuel tanks. In another embodiment the method may include molding a fuel tank with the components molded integral with the fuel tank during formation of the fuel tank. The use of a rotational molding process may allow fabrication of a fuel tank with molded metal fitting ports manufactured integral with the tank and within the polymer, eliminating subsequent welding operations. A rotational molding process may also allow fabrication of the fuel tank with synthetic material components manufactured integral with the fuel tank. Use of a molding process may allow the elimination of many of the currently used metal components by integrating threaded ports directly into the composite tank material. Another advantage of the use of a molding process may include fabrication of mounting bracketry integral with the tank during the molding process.
Fuel tank component attachment flanges: the attachment flanges described below may employ a flange/recess/flange design that promotes retention in the synthetic tank shell. This works as follows: the flange that lies on the outer plane of the tank may incorporate flat sides or slots to mechanically lock into the polymer shell and resist rotational forces. Next, an undercut region forms a cylindrical recess into which the molten polymer flows during the molding process. This helps to retain the part within the side wall of the molded tank. Finally, an integral flange below the undercut is further encapsulated by the polymer. The flange/undercut/flange design provides significant resistance to radial forces. Additionally or alternatively, (as in the case of the fuel fill flange) the inner flange may incorporate recesses, projections and/or flats designed to resist rotational forces.
The use of thermally conductive metal such as aluminum or brass ensures that the flanges will conduct heat from the mold surface throughout the flange profile. In the molding process, powdered polymer sticks to any mold surface that is heated, and thus sticks to all regions of the flanges as well as to the inside of the tank mold. The result is complete encapsulation of the flanges. Sealing and joint structural integrity is further ensured by the differential shrinkage between the cooling polymer and the aluminum attachment flanges, i.e., the synthetic material of the tank shrinks and/or tightens against the flange during cooling.
The tank 10 may also include a drain port 26 on an underside thereof. The cam neck assembly, the fuel sender port, the vent port, the drain port, and any components that may be secured thereon, may be manufactured of metal and secured to the composite material molded tank during or after formation of the tank. In another embodiment the component fastening structures secured thereon may be manufactured of synthetic material and may be molded integral with the tank during formation of the tank and the component fastening structures in a single process.
The tank and its attached component fastening structures may be manufactured of any material, such as a synthetic material for example, during a molding process such as rotational molding. In this process a heated hollow mold is filled with a charge or shot weight of material. The tank is then slowly rotated (usually around two perpendicular axes) causing the softened material to disperse and stick to the walls of the mold. In order to maintain even thickness throughout the part, the mold continues to rotate at all times during the heating phase and to avoid sagging or deformation during the cooling phase. The rotational molding process may be s a high-temperature, low-pressure plastic-forming process that uses heat and biaxial rotation (i.e., angular rotation on two axes) to produce hollow, one-piece parts. The process does have distinct advantages. Manufacturing such large hollow fuel tank is much easier by rotational molding than previously known methods. Rotational molds are significantly cheaper than other types of molds. Very little material is wasted using this process, and excess material can often be re-used, making it a very economically and environmentally viable manufacturing process.
The rotational molding process may consist of four distinct phases:
The material used to manufacture the fuel tank may include materials from the polyethylene family: cross-linked polyethylene (PEX), low-density polyethylene (LDPE), linear low-density polyethylene (LLDPE), high-density polyethylene (HDPE), and regrind. Other compounds are PVC plastisols, nylons, and polypropylene. In particular, the fuel tank and components may be manufactured from Polyethylene, Polypropylene, Polyvinyl chloride, Nylon, Polycarbonate, Aluminum, Acrylonitrile butadiene styrene (ABS), Acetal, Acrylic, Epoxy, Fluorocarbons, Ionomer, Polybutylene, Polyester, Polystyrene, Polyurethane, and Silicone.
Recessed fuel cap: In the embodiment shown, a fuel fill neck 28 is inset into the tank shell 12 a distance sufficient to locate the fill cap 30 flush (or slightly below) the surface 56 of the tank shell. This positioning is meant to reduce stresses on the interface between fill neck 28 and tank shell 12 during federal compliance testing fill pipe drop tests. The upper portion, or outer surface 32 (
Integrated fuel level sender port: The fuel level sending unit mounting flange 36 (
Drain port and vent port: A port mounting boss 38 (
Recessed tank support band grooves: Rotational molding facilitates the integration of inset areas 40 for tank support bands. This inset (or insets 40) adds structural rigidity to the tank shell 12 and helps the truck builder locate the tank on a truck chassis. Insets 40 may be referred to as a component fastening structure 40 that receives therein a component, such as tank straps or band 78, to secure the fuel tank 10 to a truck. In the example embodiment shown, insets 40 extend completely around the exterior surface 56 of tank wall 12 so that an outermost surface 80 of a tank strap 78 is positioned interiorally of exterior surface 56 of tank wall 12.
Supply and return tubes: The design of the present invention is specifically adapted to take advantage of the rotational molding process. The process facilitates the use of thin-walled extruded tubing for a significant material cost saving. The supply and return tubes 42 and 44 (
Referring now to
One or more of perimeter regions 66, 68 and 70 may include a non-circumferential shape around the perimeter of the first, second and/or central regions so as to inhibit rotation of the component fastening device 36 within a wall 12 of tank 10. In the embodiment shown in
Referring now to
In the above description numerous details have been set forth in order to provide a more through understanding of the present invention. It will be obvious, however, to one skilled in the art that the present invention may be practiced using other equivalent designs.
Patent | Priority | Assignee | Title |
10434701, | Oct 23 2015 | YACHIYO INDUSTRY CO , LTD | Welding method and welding structure |
10792845, | May 19 2017 | Toyota Jidosha Kabushiki Kaisha; Koyo Thermo Systems Co., Ltd. | Fuel tank producing apparatus |
11299040, | Mar 07 2019 | Exmark Manufacturing Company, Incorporated | Low-profile liquid storage tank and grounds maintenance vehicle incorporating same |
D974415, | Dec 23 2020 | Exmark Manufacturing Company, Incorporated | Fuel tank |
Patent | Priority | Assignee | Title |
1513638, | |||
1554764, | |||
1591058, | |||
1644154, | |||
1656241, | |||
3511515, | |||
3566443, | |||
3595422, | |||
3610457, | |||
3652368, | |||
3772760, | |||
3946894, | Nov 11 1974 | American Flange & Manufacturing Co. Inc. | Drum closure |
4023257, | Jan 21 1976 | UNITED TECHNOLOGIES AUTOMOTIVE, INC , 5200 AUTO CLUB DRIVE, DEARBORN, MICHIGAN 48126, A DE CORP | Method of making a hollow article having a reinforced aperture |
4043721, | Jan 24 1972 | Composite body molding apparatus | |
4137602, | Nov 11 1977 | Heyman Manufacturing Company | Multipurpose bushing and aperture locking system |
4357293, | Oct 22 1979 | Method for molding a mounting member in place | |
4371181, | Apr 29 1980 | Collision resistant auxiliary fuel system | |
4526286, | Feb 17 1982 | BASF Aktiengesellschaft | Thermoplastic fuel tank having a splash baffle |
4584041, | Apr 21 1983 | MONTREAL TRUST COMPANY OF CANADA, AS TRUSTEE | Method of making a containment vessel |
4625980, | Jul 01 1985 | Chrysler Motors | Fuel tank |
4679698, | Dec 28 1981 | Ford Motor Company | Fuel tank filler tube restrictor assembly |
5025618, | Apr 30 1990 | Deere & Company | Fuel tank with stepped interior gauge |
5056492, | Aug 11 1989 | FORD GLOBAL TECHNOLOGIES, INC A MICHIGAN CORPORATION | Fuel tank |
5344038, | Oct 14 1988 | The Budd Company | Composite fuel tank |
5415316, | Aug 31 1993 | C & V LEASING, INC | Fuel tank with a recessed fill cap |
5423702, | Jul 30 1993 | Moeller Marine Products | Fuel tank sump assembly for fuel injection engines |
5794805, | Nov 14 1994 | BLUE LEAF I P , INC | Fuel tank assembly for skid steer loaders |
632457, | |||
6398059, | Mar 04 1999 | Kuraray Co., Ltd. | Fuel container |
6613227, | Jan 11 2002 | GVS FILTRATION INC | Electrically conductive in-tank fuel filter |
6623682, | Jun 01 1999 | STANT USA CORP | Method for forming a weldable mount for fuel systems component |
6761380, | May 07 2002 | MAGNA STEYR Fuel Systems GesmbH | Filler neck assembly for fuel tank |
6982057, | Nov 15 2002 | TANK HOLDING CORP | Multi-layer rotational plastic molding |
7290675, | Apr 03 2000 | Plastic Omnium Advanced Innovation and Research | Method of manufacturing a tank of thermoplastic material including a portion in relief for mounting an attachment, and a tank manufactured thereby |
735377, | |||
8033415, | Aug 29 2008 | FTS CO., LTD. | Structure of opening section of fuel tank |
944378, | |||
20080203623, | |||
20080224349, | |||
20080308331, | |||
20090218730, | |||
20110084073, | |||
20110266289, | |||
20120181274, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Mar 07 2022 | REM: Maintenance Fee Reminder Mailed. |
Aug 22 2022 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Nov 22 2022 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Nov 22 2022 | M2558: Surcharge, Petition to Accept Pymt After Exp, Unintentional. |
Nov 22 2022 | PMFG: Petition Related to Maintenance Fees Granted. |
Nov 22 2022 | PMFP: Petition Related to Maintenance Fees Filed. |
Date | Maintenance Schedule |
Jul 17 2021 | 4 years fee payment window open |
Jan 17 2022 | 6 months grace period start (w surcharge) |
Jul 17 2022 | patent expiry (for year 4) |
Jul 17 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 17 2025 | 8 years fee payment window open |
Jan 17 2026 | 6 months grace period start (w surcharge) |
Jul 17 2026 | patent expiry (for year 8) |
Jul 17 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 17 2029 | 12 years fee payment window open |
Jan 17 2030 | 6 months grace period start (w surcharge) |
Jul 17 2030 | patent expiry (for year 12) |
Jul 17 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |