A component according to an exemplary aspect of the present disclosure includes, among other things a wall and a vascular engineered lattice structure formed inside of the wall. The vascular engineered lattice structure defines a hollow vascular structure configured to communicate a fluid through the vascular engineered lattice structure. The vascular engineered lattice structure has at least one inlet hole and at least one outlet hole that communicates the fluid into and out of the hollow vascular structure.

Patent
   10036258
Priority
Dec 28 2012
Filed
Mar 15 2013
Issued
Jul 31 2018
Expiry
Feb 15 2034
Extension
337 days
Assg.orig
Entity
Large
19
102
currently ok
1. A component, comprising:
a wall;
a vascular engineered lattice structure formed inside of said wall, with a lattice cavity defined between internal surfaces of said wall and external surfaces of said vascular engineered lattice structure, said vascular engineered lattice structure defining a hollow vascular structure configured to communicate a fluid through said vascular engineered lattice structure, said hollow vascular structure defined by a plurality of nodes and a plurality of branches each extending from at least one of said plurality of nodes, with respective internal passages defined within each node of said plurality of nodes and within each branch of said plurality of branches for communicating fluid, said internal passages being distinct from said lattice cavity; and
said vascular engineered lattice structure having at least one inlet hole and at least one outlet hole that communicate the fluid into and out of said hollow vascular structure.
18. A method for producing a component, comprising the steps of:
forming a vascular engineered lattice structure inside of a wall of the component, said vascular engineered lattice structure having a hollow lattice structure and a solid lattice structure and including at least one inlet hole and at least one outlet hole that communicate a fluid into and out of said vascular engineered lattice structure;
wherein said wall is part of a combustor panel of a gas turbine engine;
a lattice cavity is defined between internal surfaces of said wall and external surfaces of said vascular engineered lattice structure; and
each of said hollow lattice structure and said solid lattice structure is defined by a plurality of nodes and a plurality of branches each extending from at least one of said plurality of nodes, with at least some of said plurality of branches being spaced apart from internal surfaces of said wall defining said lattice cavity such that fluid is communicated in said lattice cavity around and over said plurality of nodes and said plurality of branches.
10. A component, comprising:
a wall defining exterior surfaces of said component;
a vascular engineered lattice structure formed inside of said wall, and interconnected lattice passages defined between internal surfaces of said wall and external surfaces of said vascular engineered lattice structure, said vascular engineered lattice structure defining a solid vascular structure configured to communicate a fluid through said vascular engineered lattice structure, wherein said solid vascular structure includes a plurality of nodes, a plurality of branches that extend between said plurality of nodes, said lattice passages extending between said plurality of nodes and said plurality of branches;
said vascular engineered lattice structure having at least one inlet hole and at least one outlet hole that communicate the fluid into and out of said solid vascular structure;
wherein said wall is part of a combustor panel of a gas turbine engine; and
wherein said plurality of nodes and said plurality of branches are non-uniformly distributed throughout said vascular engineered lattice structure.
2. The component as recited in claim 1, wherein said one or more nodes and branches are uniformly distributed throughout said vascular engineered lattice structure.
3. The component as recited in claim 1, wherein said one or more nodes and branches are non-uniformly distributed throughout said vascular engineered lattice structure.
4. The component as recited in claim 1, wherein said branches are orthogonal to said nodes.
5. The component as recited in claim 1, wherein said branches are non-orthogonal to said nodes.
6. The component as recited in claim 1, wherein said vascular engineered lattice structure is one of a co-flow vascular engineered lattice structure and a counter-flow vascular engineered lattice structure.
7. The component as recited in claim 1, wherein said outlet hole is a film cooling hole.
8. The component as recited in claim 1, wherein said wall is part of a blade, a vane, a blade outer air seal (BOAS), a combustor panel or a turbine exhaust case liner of a gas turbine engine.
9. The component as recited in claim 1, wherein said at least one inlet hole includes a different shape and geometry from said at least one outlet hole.
11. The component as recited in claim 10, wherein said plurality of branches are orthogonal to said plurality of nodes.
12. The component as recited in claim 10, wherein said plurality of branches are non-orthogonal to said plurality of nodes.
13. The component as recited in claim 10, wherein said at least one outlet hole includes a film cooling hole.
14. The component as recited in claim 10, wherein said at least one inlet hole includes a different shape and geometry from said at least one outlet hole.
15. The component as recited in claim 10, wherein said plurality of nodes and said plurality of branches are arranged such that fluid is communicated in said lattice passages around and over said plurality of nodes and said plurality of branches.
16. The component as recited in claim 15, wherein said vascular engineered lattice structure is a counter-flow vascular engineered lattice structure.
17. The component as recited in claim 15, wherein said vascular engineered lattice structure is a co-flow vascular engineered lattice structure.
19. The method as recited in claim 18, wherein the step of forming the vascular engineered lattice structure includes:
forming a core using an additive manufacturing process; and
using the core to cast the vascular engineered lattice structure.

This application claims priority to U.S. Provisional Application No. 61/746,893, which was filed on Dec. 28, 2012, and claims priority to U.S. Provisional Application No. 61/757,441, which was filed on Jan. 28, 2013.

This disclosure relates to a gas turbine engine, and more particularly to a gas turbine engine component having an engineered vascular structure.

Gas turbine engines typically include a compressor section, a combustor section and a turbine section. In general, during operation, air is pressurized in the compressor section and is mixed with fuel and burned in the combustor section to generate hot combustion gases. The hot combustion gases flow through the turbine section, which extracts energy from the hot combustion gases to power the compressor section and other gas turbine engine loads.

Due to exposure to hot combustion gases, numerous components of a gas turbine engine may include cooling schemes that circulate airflow to cool the component during engine operation. Thermal energy is transferred from the component to the airflow as the airflow circulates through the cooling scheme to cool the component. Known cooling schemes may be inefficient and lack structural integrity.

A component according to an exemplary aspect of the present disclosure includes, among other things a wall and a vascular engineered lattice structure formed inside of the wall. The vascular engineered lattice structure defines a hollow vascular structure configured to communicate a fluid through the vascular engineered lattice structure. The vascular engineered lattice structure has at least one inlet hole and at least one outlet hole that communicates the fluid into and out of the hollow vascular structure.

In a further non-limiting embodiment of the foregoing component, the hollow vascular structure includes hollow passages that extend through one or more nodes and branches of the vascular engineered lattice structure.

In a further non-limiting embodiment of either of the foregoing components, the one or more nodes and branches are uniformly distributed throughout the vascular engineered lattice structure.

In a further non-limiting embodiment of any of the foregoing components, the one or more nodes and branches are non-uniformly distributed throughout the vascular engineered lattice structure.

In a further non-limiting embodiment of any of the foregoing components, the branches are orthogonal to the nodes.

In a further non-limiting embodiment of any of the foregoing components, the branches are non-orthogonal to the nodes.

In a further non-limiting embodiment of any of the foregoing components, the vascular engineered lattice structure is one of a co-flow vascular engineered lattice structure and a counter-flow vascular engineered lattice structure.

In a further non-limiting embodiment of any of the foregoing components, the outlet hole is a film cooling hole.

In a further non-limiting embodiment of any of the foregoing components, the wall is part of a blade, a vane, a blade outer air seal (BOAS), a combustor panel or a turbine exhaust case liner of a gas turbine engine.

In a further non-limiting embodiment of any of the foregoing components, the at least one inlet hole includes a different shape and geometry from the at least one outlet hole.

A component according to an exemplary aspect of the present disclosure includes, among other things, a wall and a vascular engineered lattice structure formed inside of the wall. The vascular engineered lattice structure defines a solid vascular structure configured to communicate a fluid through the vascular engineered lattice structure. The vascular engineered lattice structure has at least one inlet hole and at least one outlet hole that communicate the fluid into and out of the solid vascular structure.

In a further non-limiting embodiment of the foregoing component, the solid vascular structure includes a plurality of nodes, a plurality of branches that extend between the plurality of nodes, and a plurality of passages extending between the plurality of nodes and the plurality of passages.

In a further non-limiting embodiment of either of the foregoing components, the plurality of nodes and the plurality of branches are uniformly distributed throughout the vascular engineered lattice structure.

In a further non-limiting embodiment of any of the foregoing components, the plurality of nodes and the plurality of branches are non-uniformly distributed throughout the vascular engineered lattice structure.

In a further non-limiting embodiment of any of the foregoing components, the plurality of branches are orthogonal to the plurality of nodes.

In a further non-limiting embodiment of any of the foregoing components, the plurality of branches are non-orthogonal to the plurality of nodes.

In a further non-limiting embodiment of any of the foregoing components, the at least one outlet hole includes a film cooling hole.

In a further non-limiting embodiment of any of the foregoing components, the vascular engineered lattice structure is one of a counter-flow vascular engineered lattice structure and a co-flow vascular engineered lattice structure.

In a further non-limiting embodiment of any of the foregoing components, the wall is part of a blade, a vane or a blade outer air seal (BOAS) of a gas turbine engine.

In a further non-limiting embodiment of any of the foregoing components, the at least one inlet hole includes a different shape and geometry from the at least one outlet hole.

A method for producing a component according to another exemplary aspect of the present disclosure includes, among other things, forming a vascular engineered lattice structure inside of a wall of the component. The vascular engineered lattice structure has at least one of a hollow lattice structure and a solid lattice structure and includes at least one inlet hole and at least one outlet hole that communicate a fluid into and out of the vascular engineered lattice structure.

In a further non-limiting embodiment of the foregoing method, the step of forming the vascular engineered lattice structure includes forming a core using an additive manufacturing process and using the core to cast the vascular engineered lattice structure.

The various features and advantages of this disclosure will become apparent to those skilled in the art from the following detailed description. The drawings that accompany the detailed description can be briefly described as follows.

FIG. 1 illustrates a schematic, cross-sectional view of a gas turbine engine.

FIG. 2 illustrates a component that can be incorporated into a gas turbine engine.

FIG. 3 shows one exemplary engineered vascular structure of a gas turbine engine component.

FIG. 4 illustrates another view of the engineered vascular structure of FIG. 3.

FIG. 5 shows additional features of an engineered vascular structure.

FIG. 6 illustrates another exemplary engineered vascular structure.

FIG. 7 illustrates another view of the engineered vascular structure of FIG. 6.

FIG. 8 illustrates another engineered vascular structure embodiment having a co-flow design.

FIG. 9 illustrates another embodiment of an engineered vascular structure embodying a counter-flow design.

FIG. 10 illustrates yet another exemplary vascular engineered lattice structure.

FIG. 1 schematically illustrates a gas turbine engine 20. The exemplary gas turbine engine 20 is a two-spool turbofan engine that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engines might include an augmenter section (not shown) among other systems for features. The fan section 22 drives air along a bypass flow path B, while the compressor section 24 drives air along a core flow path C for compression and communication into the combustor section 26. The hot combustion gases generated in the combustor section 26 are expanded through the turbine section 28. Although depicted as a turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to turbofan engines and these teachings could extend to other types of engines, including but not limited to, three-spool engine architectures.

The gas turbine engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine centerline longitudinal axis A. The low speed spool 30 and the high speed spool 32 may be mounted relative to an engine static structure 33 via several bearing systems 31. It should be understood that other bearing systems 31 may alternatively or additionally be provided.

The low speed spool 30 generally includes an inner shaft 34 that interconnects a fan 36, a low pressure compressor 38 and a low pressure turbine 39. The inner shaft 34 can be connected to the fan 36 through a geared architecture 45 to drive the fan 36 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 35 that interconnects a high pressure compressor 37 and a high pressure turbine 40. In this embodiment, the inner shaft 34 and the outer shaft 35 are supported at various axial locations by bearing systems 31 positioned within the engine static structure 33.

A combustor 42 is arranged between the high pressure compressor 37 and the high pressure turbine 40. A mid-turbine frame 44 may be arranged generally between the high pressure turbine 40 and the low pressure turbine 39. The mid-turbine frame 44 can support one or more bearing systems 31 of the turbine section 28. The mid-turbine frame 44 may include one or more airfoils 46 that extend within the core flow path C.

The inner shaft 34 and the outer shaft 35 are concentric and rotate via the bearing systems 31 about the engine centerline longitudinal axis A, which is co-linear with their longitudinal axes. The core airflow is compressed by the low pressure compressor 38 and the high pressure compressor 37, is mixed with fuel and burned in the combustor 42, and is then expanded over the high pressure turbine 40 and the low pressure turbine 39. The high pressure turbine 40 and the low pressure turbine 39 rotationally drive the respective high speed spool 32 and the low speed spool 30 in response to the expansion.

The pressure ratio of the low pressure turbine 39 can be pressure measured prior to the inlet of the low pressure turbine 39 as related to the pressure at the outlet of the low pressure turbine 39 and prior to an exhaust nozzle of the gas turbine engine 20. In one non-limiting embodiment, the bypass ratio of the gas turbine engine 20 is greater than about ten (10:1), the fan diameter is significantly larger than that of the low pressure compressor 38, and the low pressure turbine 39 has a pressure ratio that is greater than about five (5:1). It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present disclosure is applicable to other gas turbine engines, including direct drive turbofans.

In this embodiment of the exemplary gas turbine engine 20, a significant amount of thrust is provided by the bypass flow path B due to the high bypass ratio. The fan section 22 of the gas turbine engine 20 is designed for a particular flight condition—typically cruise at about 0.8 Mach and about 35,000 feet. This flight condition, with the gas turbine engine 20 at its best fuel consumption, is also known as bucket cruise Thrust Specific Fuel Consumption (TSFC). TSFC is an industry standard parameter of fuel consumption per unit of thrust.

Fan Pressure Ratio is the pressure ratio across a blade of the fan section 22 without the use of a Fan Exit Guide Vane system. The low Fan Pressure Ratio according to one non-limiting embodiment of the example gas turbine engine 20 is less than 1.45. Low Corrected Fan Tip Speed is the actual fan tip speed divided by an industry standard temperature correction of [(Tram ºR)/(518.7 ºR)]0.5. The Low Corrected Fan Tip Speed according to one non-limiting embodiment of the example gas turbine engine 20 is less than about 1150 fps (351 m/s).

Each of the compressor section 24 and the turbine section 28 may include alternating rows of rotor assemblies and vane assemblies (shown schematically) that carry airfoils that extend into the core flow path C. For example, the rotor assemblies can carry a plurality of rotating blades 25, while each vane assembly can carry a plurality of vanes 27 that extend into the core flow path C. The blades 25 create or extract energy (in the form of pressure) from the core airflow that is communicated through the gas turbine engine 20 along the core flow path C. The vanes 27 direct the core airflow to the blades 25 to either add or extract energy.

Various components of the gas turbine engine 20, including but not limited to the airfoils of the blades 25 and the vanes 27 of the compressor section 24 and the turbine section 28, may be subjected to repetitive thermal cycling under widely ranging temperatures and pressures. The hardware of the turbine section 28 is particularly subjected to relatively extreme operating conditions. Therefore, some components may require internal cooling schemes for cooling the parts during engine operation.

Among other features, this disclosure relates to gas turbine engine component cooling schemes that include vascular engineered lattice structures inside the walls of the gas turbine engine component. The exemplary structures described herein provide effective localized convective cooling, and is some embodiments, can provide resupply and film cooling for gas turbine engine components that may be subject to the hot combustion gases that are communicated through the core flow path C.

FIG. 2 illustrates a component 50 that can be incorporated into a gas turbine engine, such as the gas turbine engine 20 of FIG. 1. The component 50 includes a body portion 52 that axially extends between a leading edge portion 54 and a trailing edge portion 56. The body portion 52 may further include a first (pressure) side wall 58 and a second (suction) side wall 60 that are spaced apart from one another and axially extend between the leading edge portion 54 and the trailing edge portion 56. Although shown in cross-section, the body portion 52 would also extend radially across a span.

In this embodiment, the body portion 52 is representative of an airfoil. For example, the body portion 52 could be an airfoil that extends from platform and root portions (i.e., where the component is a blade), or could alternatively extend between inner and outer platforms (i.e., where the component 50 is a vane). In yet another embodiment, the component 50 could include a non-airfoil component, including but not limited to, a blade outer air seal (BOAS), a combustor liner, a turbine exhaust case liner, or any other part that may require dedicated cooling.

A gas path 62 is communicated axially downstream through the gas turbine engine 20 in a direction that extends from the leading edge portion 54 toward the trailing edge portion 56 of the body portion 52. The gas path 62 represents the communication of core airflow along the core flow path C (see FIG. 1).

A cooling scheme 64 may be disposed inside of the body portion 52 for cooling the internal and external surface areas of the component 50. For example, the cooling scheme 64 can include one or more cavities 72 that may radially, axially and/or circumferentially extend inside of the body portion 52 to establish cooling passages for receiving an airflow 68 (or some other fluid). The airflow 68 may be communicated into one or more of the cavities 72 from an airflow source 70 that is external to the component 50 to cool the component 50. In one embodiment, the airflow 68 is communicated to the cooling scheme 64 through a root portion of the component 50 (e.g., where the component is a blade).

The airflow 68 is generally of a lower temperature than the airflow of the gas path 62 that is communicated across the body portion 52. In one particular embodiment, the airflow 68 is a bleed airflow that can be sourced from the compressor section 24 or any other portion of the gas turbine engine 20 that has a lower temperature as compared to the component 50. The airflow 68 can be circulated through the cooling scheme 64 to transfer thermal energy from the component 50 to the airflow 68 thereby cooling the component 50.

In this non-limiting embodiment, the exemplary cooling scheme 64 includes a plurality of cavities 72 that extend inside of the body portion 52. However, the cooling scheme 64 is not necessarily limited to the configuration shown, and it will be appreciated that a greater or fewer number of cavities, including only a single cavity, may be defined inside of the body portion 52. The cavities 72 communicate the airflow 68 through the cooling scheme 64, such as along a serpentine or linear path, to cool the body portion 52.

Ribs 74 may extend between the first side wall 58 and the second side wall 60 of the body portion 52. The ribs 74 may also radially extend across a span of the body portion 52.

The exemplary cooling scheme 64 may additionally include one or more vascular engineered lattice structures 80 that are disposed inside sections of the body portion 52 of the component 50. For example, discrete portions of the component 50 may embody a vascular engineered lattice structure, or the entire component 50 can be constructed of a vascular engineered lattice structure. Multiple embodiments of such vascular engineered lattice structures are described in detail below.

FIGS. 3 and 4 illustrate one exemplary vascular engineered lattice structure 80 that can be incorporated into a component 50. The vascular engineered lattice structure 80 may be incorporated into any section or sections of a gas turbine engine component. In this disclosure, the term “vascular engineered lattice structure” denotes a structure of known surface and flow areas that includes a specific structural integrity.

As discussed in greater detail below, the vascular engineered lattice structure 80 of FIGS. 3 and 4 is a hollow vascular structure. The hollow vascular structure shown in FIGS. 3 and 4 defines a solid material with discrete, interconnected cooling passages that are connected through common nodes to control the flow of airflow throughout the hollow vascular structure.

The specific design and configuration of the vascular engineered lattice structure 80 of FIG. 3 is not intended to be limited to only the configuration shown. It will be appreciated that because the vascular engineered lattice structure 80 is an engineered structure, the vascular arrangement of these structures can be tailored to the specific cooling and structural needs of any given gas turbine engine component. In other words, the vascular engineered lattice structure 80 can be tailored to match external heat load and local life requirements by changing the design and density of the vascular engineered lattice structure 80. The actual design of any given vascular engineered lattice structure may depend on geometry requirements, pressure loss, local cooling flow, cooling air heat pickup, thermal efficiency, film effectiveness, overall cooling effectiveness, aerodynamic mixing, and produceability considerations, among other gas turbine engine specific parameters. In one embodiment, the vascular engineered lattice structure 80 is sized based on a minimum size that can be effectively manufactured and that is not susceptible to becoming plugged by dirt or other debris.

The exemplary vascular engineered lattice structure 80 extends between a first wall 82 and a second wall 84 of the component 50. The first wall 82 is spaced from the second wall 84. The first wall 82 may be exposed to the gas path 62, whereas the second wall 84 may be remotely positioned from the gas path 62. For example, the second wall 84 could face into one of the cooling source cavities 72 of the cooling scheme 64 (see FIG. 2). The vascular engineered lattice structure 80 includes a thickness T between the first wall 82 and the second wall 84. The thickness T can be of any dimension.

Airflow 68 migrates through the vascular engineered lattice structure 80 to convectively cool the component 50. In this embodiment, the vascular engineered lattice structure 80 embodies a hollow configuration in which the airflow 68 may be circulated inside of the various passages defined by the vascular engineered lattice structure 80. For example, the hollow configuration of the vascular engineered lattice structure 80 may establish a porous flow area for the circulation of airflow 68. Additionally, airflow 68 could be communicated over and around the vascular engineered lattice structure 80.

The vascular engineered lattice structure 80 can be manufactured by using a variety of manufacturing techniques. For example, the vascular engineered lattice structure 80 may be created using an additive manufacturing process such as direct metal laser sintering (DMLS). Another additive manufacturing process that can be used to manufacture the vascular engineered lattice structure 80 is electron beam melting (EBM). In another embodiment, select laser sintering (SLS) or select laser melting (SLM) processes may be utilized.

In yet another embodiment, a casting process can be used to create the vascular engineered lattice structure 80. For example, an additive manufacturing process can be used to produce a molybdenum based Refractory Metal Core (RMC) that can be used to cast the vascular engineered lattice structure 80. In one embodiment, the additive manufacturing process includes utilizing a powder bed technology for direct fabrication of airfoil lattice geometry features, while in another embodiment, the additive manufacturing process can be used to produce “core” geometry features which can then be integrated and utilized directly in the investment casting process using a lost wax process.

The exemplary vascular engineered lattice structure 80 includes a plurality of nodes 92, a plurality of branches 94 that extend between the nodes 92, and a plurality of hollow passages 96 between the branches 94 and the nodes 92. The number, size and distribution of nodes 92, branches 94 and hollow passages 96 can vary from the specific configuration shown. In other words, the configuration illustrated by FIG. 4 is but one possible design.

The branches 94 may extend orthogonally or non-orthogonally to the nodes 92. The nodes 92 and branches 94 can be manufactured as a single contiguous structure made of the same material. In one embodiment, the nodes 92 and branches 94 are uniformly distributed throughout the vascular engineered lattice structure 80. In another embodiment, the nodes 92 and branches 94 are non-uniformly distributed throughout the vascular engineered lattice structure 80.

In this “hollow lattice” structure configuration, airflow 68 can be circulated inside hollow passages 96 of the nodes 92 and the branches 94 to cool the component 50 in the space between the walls 82, 84 (see FIG. 3). For example, the “hollow” lattice structure may include multiple continuous hollow spoke cavity passages 96 thru which airflow 68 is passed. The airflow 68 flows from each of the hollow branches 94 and coalesces into the nodes 92, which serve as a plenum for the airflow 68 to be redistributed to the next set of hollow branches 94 and nodes 92. The “hollow” lattice structure forms multiple circuitous continuous passages in which the airflow 68 flows to maximize the internal convective cooling surface area and coolant mixing. Additionally, airflow 68 could be communicated over and around the nodes 92 and branches 94 of the vascular engineered lattice structure 80.

The nodes 92 and the branches 94 additionally act as structural members that can be tailored to “tune” steady and unsteady airfoil vibration responses in order to resist and optimally manage steady and unsteady pressure forces, centrifugal bending and curling stresses, as well as provide for improved airfoil local and section average creep and untwist characteristics and capability. In one embodiment, one or more of the nodes 92 and branches 94 may include augmentation features 95 (shown schematically in FIG. 4) that augment the heat transfer effect of the airflow 68 as it is communicated through the vascular engineered lattice structure 80. The augmentation features 95 can also be made using the additive manufacturing processes describe above.

As mentioned above, the vascular arrangement of the vascular engineered lattice structure 80 can be tailored to the specific cooling and structural needs of any given gas turbine engine component. For example, a first portion of the vascular engineered lattice structure 80 can include a different combination of nodes 92, branches 94 and hollow passages 96 compared to a second portion of the vascular engineered lattice structure 80. In one embodiment, a first portion of the vascular engineered lattice structure 80 may include a greater amount of cooling area whereas a second portion of the vascular engineered lattice structure 80 may provide a greater amount of structural area.

Referring to FIG. 5, the vascular engineered lattice structure 80 can include one or more inlet holes 88 and outlet holes 90. In this embodiment, the inlet holes 88 extend through the second wall 84 and connect the vascular engineered lattice structure 80 to a cavity 72 of the component 50, and the outlet holes 90 are disposed at the first wall 82. Airflow 68 may be extracted from the cavity 72 as resupply air that is communicated through the inlet holes 88 and into the nodes 92 and branches 94 of the vascular engineered lattice structure 80. The airflow 68 may be circulated through the various nodes 92 and branches 94 to convectively cool the component 50. The airflow 68 may exit the vascular engineered lattice structure 80 through the outlet holes 90 as film cooling air 99.

Although multiple inlet holes 88 and outlet holes 90 are depicted, any number of such holes can be incorporated into the vascular engineered lattice structure 80. In this embodiment, the inlet holes 88 are round shaped and the outlet holes 90 are film cooling holes having multi-lobed diffusion sections 97. The geometry and shape of the inlet and outlet holes 88, 90 could embody other geometries and shapes within the scope of this disclosure. Film hole geometries of any shape can be manufactured in order to provide the necessary adiabatic film effectiveness and can include but are not limited to round, conical, cone, diffused shaped, multi-lobed and/or slot film cooling geometries. Moreover, the holes 88, 90 can be manufactured using an additive manufacturing process, including but not limited to, DMLS, EBM, SLS and SLM.

FIGS. 6 and 7 illustrate another exemplary vascular engineered lattice structure 180. In this embodiment, the vascular engineered lattice structure 180 embodies a solid lattice structure in which airflow is communicated over and around the solid lattice structure thereby governing flow and providing structural support. The vascular engineered lattice structure 180 is disposed between a first wall 182 and a second wall 184 of the component 50.

The vascular engineered lattice structure 180 includes a plurality of nodes 192, a plurality of branches 194 that extend between the nodes 92, and a plurality of open passages 196 between the branches 194 and the nodes 192. The nodes 192, branches 194 and open passages 196 can be manufactured as a single contiguous structure made of the same material.

In this “solid” lattice structure configuration, airflow 68 can be circulated through the open passages 196 to cool the component 50 in the space between the walls 182, 184. In other words, in contrast to the hollow lattice structure embodiment which communicates airflow through the insides of the nodes 192 and branches 194, the airflow 68 is circulated over and around these parts as part of a porous flow area. For example, the “solid” lattice structure includes multiple continuous solid branches 194 over which airflow 68 is passed. The “solid” lattice structure forms circuitous passages for the airflow 68 to traverse around as it migrates through the vascular engineered lattice structure to maximize the convective cooling surface area and coolant mixing around the nodes 192 and the branches 194. The nodes 192 and the branches 194 additionally act as structural members that resist and dampen pressure, rotation forces, and vibratory loads.

The exemplary vascular engineered lattice structure 180 establishes a ratio of cooling area to structural area. The cooling area is established by the open passages 196, while the nodes 192 and branches 194 determine the amount of structural area. In one embodiment, the amount of cooling area exceeds the structural area (cooling area>structural area). In another embodiment, a ratio of the cooling area to the structural area is less than 1 (cooling area<structural area). In yet another embodiment, a ratio of the cooling area to the structural area is between 1 and 4. Other configurations are also contemplated.

The vascular engineered lattice structures can be configured in either a co-flow or counter-flow heat exchanger design concepts. For example, FIG. 8 depicts a vascular engineered lattice structure 280 providing a co-flow design. In other words, the airflow 68 is circulated through the vascular engineered lattice structure 280 in substantially the same direction as the gas path 62 flow direction. Although a hollow configuration is depicted, a co-flow design could also be incorporated into a “solid” configuration.

This particular vascular engineered lattice structure 280 includes a plurality of inlet holes 288 and a plurality of outlet holes 290. The outlet holes 290 of this embodiment are positioned in staggered rows R1 and R2 and include shaped diffusion sections 297. Of course, a single row of outlet holes 290 could also be utilized. The outlet holes 290 may embody other diffusion shapes and geometries than are shown.

FIG. 9 illustrates yet another exemplary vascular engineered lattice structure 380 that could be incorporated into a gas turbine engine component. In this embodiment, the vascular engineered lattice structure 380 provides a counter-flow design. In other words, the airflow 68 is circulated through the vascular engineered lattice structure 380 in a direction that is generally opposite to the flow direction of the gas path 62.

FIG. 10 illustrates yet another exemplary vascular engineered lattice structure 480 that could be incorporated into a gas turbine engine component. In this embodiment, the vascular engineered lattice structure 480 includes a first portion 480A that can include a hollow lattice structure and a second portion 480B that can include a solid lattice structure. The distribution and interchangeability of the hollow and solid lattice structures is dependent on design requirements and other considerations.

The exemplary vascular engineered lattice structures described in this disclosure may be incorporated into any relatively high heat load gas turbine engine applications where both convective and film cooling is desired. Among other possible design configurations, the vascular engineered lattice structures of this disclosure may be implemented as a co-flow or counter-flow configurations and may either include or exclude airflow resupply to more efficiently provide localized convective cooling and film cooling to achieve extended component operating life.

Although the different non-limiting embodiments are illustrated as having specific components, the embodiments of this disclosure are not limited to those particular combinations. It is possible to use some of the components or features from any of the non-limiting embodiments in combination with features or components from any of the other non-limiting embodiments.

It should be understood that like reference numerals identify corresponding or similar elements throughout the several drawings. It should also be understood that although a particular component arrangement is disclosed and illustrated in these exemplary embodiments, other arrangements could also benefit from the teachings of this disclosure.

The foregoing description shall be interpreted as illustrative and not in any limiting sense. A worker of ordinary skill in the art would understand that certain modifications could come within the scope of this disclosure. For these reasons, the following claims should be studied to determine the true scope and content of this disclosure.

Propheter-Hinckley, Tracy A., Mongillo, Dominic J., Zelesky, Mark F., Wagner, Joel H., Slavens, Thomas N.

Patent Priority Assignee Title
10301943, Jun 30 2017 GE INFRASTRUCTURE TECHNOLOGY LLC Turbomachine rotor blade
10370980, Dec 23 2013 RTX CORPORATION Lost core structural frame
10400608, Nov 23 2016 General Electric Company Cooling structure for a turbine component
10550701, Jul 13 2015 SIEMENS ENERGY GLOBAL GMBH & CO KG Blade for a turbo engine
10557464, Dec 23 2015 Emerson Climate Technologies, Inc. Lattice-cored additive manufactured compressor components with fluid delivery features
10578020, Jul 21 2015 Unison Industries, LLC Integral oil tank heat exchanger
10871074, Feb 28 2019 RTX CORPORATION Blade/vane cooling passages
10982672, Dec 23 2015 Emerson Climate Technologies, Inc. High-strength light-weight lattice-cored additive manufactured compressor components
11085305, Dec 23 2013 RTX CORPORATION Lost core structural frame
11149550, Feb 07 2019 RTX CORPORATION Blade neck transition
11248595, Dec 23 2015 Emerson Climate Technologies, Inc. Lattice-cored additive manufactured compressor components with fluid delivery features
11448221, Dec 23 2015 Emerson Electric Co. Thermal and sound optimized lattice-cored additive manufactured compressor components
11639685, Nov 29 2021 General Electric Company Blades including integrated damping structures and methods of forming the same
11668316, Jan 07 2022 Hamilton Sundstrand Corporation Rotor formed of multiple metals
11761338, May 22 2017 SIEMENS ENERGY GLOBAL GMBH & CO KG Method for producing a vibration-damping structure combination for damping vibrations of movable masses
11773746, Sep 10 2021 Hamilton Sundstrand Corporation Turbomachinery rotor shroud with variable lattice densities
11802488, Sep 10 2021 Hamilton Sundstrand Corporation Turbomachinery seal plate with variable lattice densities
11933554, Dec 22 2014 Hamilton Sundstrand Corporation Pins for heat exchangers
11994141, Sep 10 2021 Hamilton Sundstrand Corporation Turbomachinery shaft with variable lattice densities
Patent Priority Assignee Title
3584972,
3864199,
3900629,
4004056, Jul 24 1975 Allison Engine Company, Inc Porous laminated sheet
4091146, Oct 01 1975 General Electric Company Flexible, low porosity airfoil skin
4168348, Dec 13 1974 Rolls-Royce Limited Perforated laminated material
4269032, Jun 13 1979 Allison Engine Company, Inc Waffle pattern porous material
4292376, Oct 28 1978 Rolls-Royce Limited Porous metal sheet laminate
4302940, Jun 13 1979 Allison Engine Company, Inc Patterned porous laminated material
4359181, May 25 1978 Process for making a high heat transfer surface composed of perforated or expanded metal
4407632, Jun 26 1981 United Technologies Corporation Airfoil pedestaled trailing edge region cooling configuration
4440834, May 28 1980 Societe Nationale d'Etude et de Construction de Moteurs d'Aviation, Process for the manufacture of turbine blades cooled by means of a porous body and product obtained by the process
4751962, Feb 10 1986 General Motors Corporation Temperature responsive laminated porous metal panel
5193611, May 04 1989 CHART HEAT EXCHANGERS LIMITED PARTERSHIP Heat exchangers
5353867, Mar 31 1992 Akzo N V Heat exchanger, a method of manufacturing same, and applications
5370499, Feb 03 1992 General Electric Company Film cooling of turbine airfoil wall using mesh cooling hole arrangement
5545003, Feb 18 1992 Rolls-Royce Corporation Single-cast, high-temperature thin wall gas turbine component
5607778, Jul 20 1995 PUROLATOR FACET, INC Method of manufacturing a porous metal mat
5660523, Feb 03 1992 General Electric Company Turbine blade squealer tip peripheral end wall with cooling passage arrangement
5752801, Feb 20 1997 SIEMENS ENERGY, INC Apparatus for cooling a gas turbine airfoil and method of making same
5960863, Jan 07 1998 Dissipating device for computer chips
5975841, Oct 03 1997 Thermal Corp. Heat pipe cooling for turbine stators
6126396, Dec 09 1998 General Electric Company AFT flowing serpentine airfoil cooling circuit with side wall impingement cooling chambers
6167952, Mar 03 1998 Hamilton Sundstrand Corporation Cooling apparatus and method of assembling same
6235370, Mar 03 1999 SIEMENS ENERGY, INC High temperature erosion resistant, abradable thermal barrier composite coating
6397922, May 24 2000 Massachusetts Institute of Technology Molds for casting with customized internal structure to collapse upon cooling and to facilitate control of heat transfer
6412541, May 17 2000 ANSALDO ENERGIA IP UK LIMITED Process for producing a thermally loaded casting
6508623, Mar 07 2000 MITSUBISHI HITACHI POWER SYSTEMS, LTD Gas turbine segmental ring
6511762, Nov 06 2000 General Electric Company Multi-layer thermal barrier coating with transpiration cooling
6599568, Nov 06 2000 General Electric Company Method for cooling engine components using multi-layer barrier coating
6617003, Nov 06 2000 General Electric Company Directly cooled thermal barrier coating system
6629559, May 24 2000 Massachusetts Institute of Technology Molds for casting with customized internal structure to collapse upon cooling and to facilitate control of heat transfer
6761956, Dec 20 2001 General Electric Company Ventilated thermal barrier coating
6955523, Aug 08 2003 SIEMENS ENERGY, INC Cooling system for a turbine vane
7048986, Jun 12 2003 Northrop Grumman Systems Corporation End gaps of filled honeycomb
7063131, Jul 12 2001 HYDROGEN FUELING CORP Perforated fin heat exchangers and catalytic support
7070853, Jan 15 2002 Siemens Aktiengesellschaft Layer system comprising a substrate, and an outer porous layer
7141812, Jun 05 2002 RTX CORPORATION Devices, methods, and systems involving castings
7144220, Jul 30 2004 RTX CORPORATION Investment casting
7153464, Dec 01 2003 General Electric Company Method of making porous ceramic matrix composites
7204089, Sep 04 2003 Rolls-Royce Deutschland Ltd & Co KG Arrangement for the cooling of thermally highly loaded components
7294164, Jul 29 2004 Corning Incorporated Narrow pore size distribution aluminum titanate body and method for making same
7328580, Jun 23 2004 General Electric Company Chevron film cooled wall
7402335, Jul 09 2003 Siemens Aktiengesellschaft Layer structure and method for producing such a layer structure
7500828, May 05 2005 FLORIDA TURBINE TECHNOLOGIES, INC Airfoil having porous metal filled cavities
7540710, Oct 27 2003 Siemens Aktiengesellschaft Turbine blade for use in a gas turbine
7597533, Jan 26 2007 SIEMENS ENERGY INC BOAS with multi-metering diffusion cooling
7658590, Sep 30 2005 FLORIDA TURBINE TECHNOLOGIES, INC Turbine airfoil with micro-tubes embedded with a TBC
7665956, Oct 26 2005 Rolls-Royce plc Wall cooling arrangement
7670675, Nov 14 2003 SIEMENS ENERGY GLOBAL GMBH & CO KG High-temperature layered system for dissipating heat and method for producing said system
7717677, Jan 31 2007 FLORIDA TURBINE TECHNOLOGIES, INC Multi-metering and diffusion transpiration cooled airfoil
7775766, Dec 20 2003 MTU Aero Engines GmbH Gas turbine component
7785098, Jun 05 2001 RTX CORPORATION Systems for large area micro mechanical systems
7810552, Dec 20 2006 The Boeing Company; Boeing Company, the Method of making a heat exchanger
7866372, Dec 20 2006 The Boeing Company; Boeing Company, the Method of making a heat exchanger core component
7866377, Dec 20 2006 The Boeing Company; Boeing Company, the Method of using minimal surfaces and minimal skeletons to make heat exchanger components
7968144, Apr 10 2007 SIEMENS ENERGY, INC System for applying a continuous surface layer on porous substructures of turbine airfoils
8052389, Aug 25 2004 Rolls-Royce plc Internally cooled airfoils with load carrying members
8079821, May 05 2009 Siemens Energy, Inc. Turbine airfoil with dual wall formed from inner and outer layers separated by a compliant structure
8167573, Sep 19 2008 SIEMENS ENERGY, INC Gas turbine airfoil
8257809, Mar 08 2007 SIEMENS ENERGY, INC CMC wall structure with integral cooling channels
8327911, Aug 09 2009 Rolls-Royce Corporation Method for forming a cast article
20050045306,
20060099074,
20060251515,
20060285975,
20070031252,
20070214759,
20070243069,
20070275210,
20080080979,
20080254276,
20090011919,
20090274549,
20100011775,
20100025001,
20100119377,
20100284798,
20100291401,
20110052412,
20110180245,
20110262695,
20110265406,
20110268580,
20110293434,
20120006518,
20120034075,
20120070306,
20120237786,
20120243970,
20120291991,
20130001837,
DE10261071,
EP475658,
EP896127,
EP2199725,
GB2284825,
WO2003006883,
WO2007014005,
WO2011069015,
WO2011133359,
WO2013013995,
/////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 08 2013MONGILLO, DOMINIC J United Technologies CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0342950096 pdf
Mar 08 2013PROPHETER-HINCKLEY, TRACY A United Technologies CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0342950096 pdf
Mar 08 2013ZELESKY, MARK F United Technologies CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0342950096 pdf
Mar 08 2013WAGNER, JOEL H United Technologies CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0342950096 pdf
Mar 08 2013SLAVENS, THOMAS N United Technologies CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0342950096 pdf
Mar 15 2013United Technologies Corporation(assignment on the face of the patent)
Apr 03 2020United Technologies CorporationRAYTHEON TECHNOLOGIES CORPORATIONCORRECTIVE ASSIGNMENT TO CORRECT THE AND REMOVE PATENT APPLICATION NUMBER 11886281 AND ADD PATENT APPLICATION NUMBER 14846874 TO CORRECT THE RECEIVING PARTY ADDRESS PREVIOUSLY RECORDED AT REEL: 054062 FRAME: 0001 ASSIGNOR S HEREBY CONFIRMS THE CHANGE OF ADDRESS 0556590001 pdf
Apr 03 2020United Technologies CorporationRAYTHEON TECHNOLOGIES CORPORATIONCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0540620001 pdf
Jul 14 2023RAYTHEON TECHNOLOGIES CORPORATIONRTX CORPORATIONCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0647140001 pdf
Date Maintenance Fee Events
Dec 17 2021M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Jul 31 20214 years fee payment window open
Jan 31 20226 months grace period start (w surcharge)
Jul 31 2022patent expiry (for year 4)
Jul 31 20242 years to revive unintentionally abandoned end. (for year 4)
Jul 31 20258 years fee payment window open
Jan 31 20266 months grace period start (w surcharge)
Jul 31 2026patent expiry (for year 8)
Jul 31 20282 years to revive unintentionally abandoned end. (for year 8)
Jul 31 202912 years fee payment window open
Jan 31 20306 months grace period start (w surcharge)
Jul 31 2030patent expiry (for year 12)
Jul 31 20322 years to revive unintentionally abandoned end. (for year 12)