A CMOS transistor manufacturing method includes: forming a gate insulating film on a semiconductor substrate; forming a first gate electrode pattern on the gate insulating film in an NMOS transistor area; forming a second gate electrode pattern on the gate insulating film in a PMOS transistor area; forming a first photoresist pattern covering the NMOS transistor area to expose the second gate electrode pattern; performing a first ion injection process into the PMOS transistor area to form an n-type well region and a p-type LDD region; removing the first photoresist pattern; forming a second photoresist pattern covering the PMOS transistor area to expose the first gate electrode pattern; performing a second ion injection process into the NMOS transistor area to form a p-type well region and an n-type LDD region; removing the second photoresist pattern; and forming sidewall spacers at sidewalls of the first and second gate electrode patterns.
|
9. A method to manufacture a complementary metal-oxide-semiconductor (CMOS) transistor, comprising:
forming a gate insulating film on a semiconductor substrate;
forming a first gate electrode pattern on the gate insulating film in an n-type metal-oxide-semiconductor (NMOS) transistor area;
forming a second gate electrode pattern on the gate insulating film in a p-type metal-oxide-semiconductor (PMOS) transistor area;
forming a first photoresist pattern covering the first gate electrode pattern and portions of the semiconductor substrate that are exposed on sides of the first gate electrode pattern;
performing a first ion injection process into the PMOS transistor area to form an n-type well region and a p-type lightly doped drain (LDD) region using the first photoresist pattern, wherein the performing of the first ion injection process comprises performing ion injection through the second gate electrode pattern;
removing the first photoresist pattern;
forming a second photoresist pattern covering the second gate electrode pattern and portions of the semiconductor substrate exposed on sides of the second gate electrode pattern;
performing a second ion injection process into the NMOS transistor area to form a p-type well region and an n-type LDD region using the second photoresist pattern, wherein the performing of the second ion injection process comprises performing ion injection through the first gate electrode pattern; and
removing the second photoresist pattern.
1. A method to manufacture a complementary metal-oxide-semiconductor (CMOS) transistor, comprising:
forming a gate insulating film on a semiconductor substrate;
forming a first gate electrode pattern on the gate insulating film in an n-type metal-oxide-semiconductor (NMOS) transistor area;
forming a second gate electrode pattern on the gate insulating film in a p-type metal-oxide-semiconductor (PMOS) transistor area;
forming a first photoresist pattern covering the NMOS transistor area to expose the second gate electrode pattern in the PMOS transistor area;
performing a first ion injection process into the PMOS transistor area to form an n-type well region and a p-type lightly doped drain (LDD) region in the PMOS transistor area using the first photoresist pattern, wherein the performing of the first ion injection process comprises performing ion injection through the exposed second gate electrode pattern in the PMOS transistor area;
removing the first photoresist pattern;
forming a second photoresist pattern covering the PMOS transistor area to expose the first gate electrode pattern in the NMOS transistor area;
performing a second ion injection process into the NMOS transistor area to form a p-type well region and an n-type LDD region in the NMOS transistor area using the second photoresist pattern, wherein the performing of the second ion injection process comprises performing ion injection through the exposed first gate electrode pattern in the NMOS transistor area;
removing the second photoresist pattern; and
forming sidewall spacers at sidewalls of the first and second gate electrode patterns.
2. The method of
3. The method of
performing ion injection such that the n-type well region is formed deeper than the separation films, and such that a depth of the n-type well region below the second gate electrode pattern is shallower than a depth of the n-type well region below the separation films.
4. The method of
performing ion injection such that the p-type well region is formed deeper than the separation films, and such that a depth of the p-type well region below the first gate electrode pattern is shallower than a depth of the p-type well region below the separation films.
5. The method of
performing an n-type ion injection process to form an n-type threshold voltage adjustment area below the second gate electrode pattern in the PMOS transistor area; and
performing an n-type ion injection process to form an n-type Halo region in the PMOS transistor area.
6. The method of
performing a p-type ion injection process to form a p-type threshold voltage adjustment area below the first gate electrode pattern in the NMOS transistor area; and
performing a p-type ion injection process to form a p-type Halo region in the NMOS transistor area.
7. The method of
forming a third photoresist pattern covering the PMOS transistor area; and
performing a high concentration n-type ion injection process into the NMOS transistor area to form an n-type source region and an n-type drain region.
8. The method of
removing the third photoresist pattern;
forming a fourth photoresist pattern covering the NMOS transistor area; and
performing a high concentration p-type ion injection process into the PMOS transistor area to form a p-type source region and a p-type drain region.
10. The method of
forming an n-type threshold voltage adjustment area in an upper portion of the n-type well region, at a surface of the semiconductor substrate below the gate insulating film.
11. The method of
forming a p-type threshold voltage adjustment area in an upper portion of the p-type well region, at a surface of the semiconductor substrate below the gate insulating film.
12. The method of
forming separation films in the semiconductor substrate before the forming of the gate insulating film,
wherein the performing of the first ion injection process further comprises performing ion injection such that the n-type well region is formed deeper than the separation films, and such that a depth of the n-type well region below the second gate electrode pattern is shallower than a depth of the n-type well region below the separation films, and
wherein the performing of the second injection process further comprises performing ion injection such that the p-type well region is formed deeper than the separation films, and such that a depth of the p-type well region below the first gate electrode pattern is shallower than a depth of the p-type well region below the separation films.
|
This application claims the benefit under 35 USC 119(a) of Korean Patent Application No. 10-2016-0093494 filed on Jul. 22, 2016 in the Korean Intellectual Property Office, the entire disclosure of which is incorporated herein by reference for all purposes.
1. Field
The following description relates to a semiconductor manufacturing process, and more particularly, to a complementary metal-oxide-semiconductor (CMOS) transistor manufacturing process.
2. Description of Related Art
Modern integrated circuit (IC) devices include a large number of complementary metal-oxide-semiconductor (CMOS) transistors that are wired together to form multiple circuits for implementing a variety of functions. A CMOS transistor includes a source region and a drain region formed in a semiconductor substrate, and a gate structure disposed between the source region and the drain region. The gate structure generally includes a gate electrode and a gate insulating film. The gate electrode is disposed on the gate insulating film and controls a flow of charge carriers in a channel region between the drain region and the source region below the gate insulating film to turn the transistor on or off.
The CMOS transistor has a p-type MOS (PMOS) having an excellent power consumption characteristic and an n-type MOS (NMOS) capable of high-speed operation that are arranged symmetrically. The CMOS transistor has the advantage of low power consumption, but on the other hand, it is disadvantageous with respect to degree of integration and manufacturing process. Accordingly, studies for simplifying a CMOS transistor manufacturing process are being conducted in the related industrial technology fields.
It is therefore desirable to provide an improved method of manufacturing a CMOS transistor.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.
In one general aspect, a method to manufacture a complementary metal-oxide-semiconductor (CMOS) transistor includes: preparing a semiconductor substrate; forming a gate insulating film on the semiconductor substrate; forming a first gate electrode pattern on the gate insulating film in an n-type metal-oxide-semiconductor (NMOS) transistor area; forming a second gate electrode pattern on the gate insulating film in a p-type metal-oxide-semiconductor (PMOS) transistor; forming a first photoresist pattern covering the NMOS transistor area to expose the second gate electrode pattern in the PMOS transistor area; performing a first ion injection process into the PMOS transistor area to form an n-type well region and a p-type lightly doped drain (LDD) region in the PMOS transistor area, wherein the performing of the first ion injection process includes performing ion injection through the exposed second gate electrode pattern in the PMOS transistor area; removing the first photoresist pattern; forming a second photoresist pattern covering the PMOS transistor area to expose the first gate electrode pattern in the NMOS transistor area; performing a second ion injection process into the NMOS transistor area to form a p-type well region and an n-type LDD region in the NMOS transistor area, wherein the performing of the second ion injection process includes performing ion injection through the exposed first gate electrode pattern in the NMOS transistor area; removing the second photoresist pattern; and forming sidewall spacers at sidewalls of the first and second gate electrode patterns.
The method may further include forming separation films before the forming of the gate insulating film.
The performing of the first ion injection process may further include: performing ion injection such that the n-type well region is formed deeper than the separation films, and such that a depth of the n-type well region below the second gate electrode pattern is shallower than a depth of the n-type well region below the separation films.
The performing of the second ion injection process may further include: performing ion injection such that the p-type well region is formed deeper than the separation films, and such that a depth of the p-type well region below the first gate electrode pattern is shallower than a depth of the p-type well region below the separation films.
The performing of the first ion injection process may further include either one or both of: performing an n-type ion injection process to form an n-type threshold voltage adjustment area below the second gate electrode pattern in the PMOS transistor area; and performing an n-type ion injection process to form an n-type Halo region in the PMOS transistor area.
The performing of the second ion injection process may further include either one or both of: performing a p-type ion injection process to form a p-type threshold voltage adjustment area below the first gate electrode pattern in the NMOS transistor area; and performing a p-type ion injection process to form a p-type Halo region in the NMOS transistor area.
The method may further include: forming a third photoresist pattern covering the PMOS transistor area; and performing a high concentration n-type ion injection process into the NMOS transistor area to form an n-type source region and an n-type drain region.
The method may further include: removing the third photoresist pattern; forming a fourth photoresist pattern covering the NMOS transistor area; and performing a high concentration p-type ion injection process into the PMOS transistor area to form a p-type source region and a p-type drain region.
In another general aspect, a method to manufacture a complementary metal-oxide-semiconductor (CMOS) transistor includes: forming a gate insulating film on a semiconductor substrate; forming a conductive film on the gate insulating film; patterning the conductive film to form a first gate electrode pattern and a second gate electrode pattern; performing a first ion injection process into the semiconductor substrate to form an n-type well region in the semiconductor substrate, wherein the performing of the first ion injection process includes performing ion injection through the second gate electrode pattern; forming a p-type lightly doped drain (LDD) region in the n-type well region; performing a second ion injection process into the semiconductor substrate to form a p-type well region in the semiconductor substrate, wherein the performing of the second ion injection process includes performing ion injection through the first gate electrode pattern; forming an n-type LDD region in the p-type well region; forming sidewall spacers at sidewalls of each of the first and second gate electrode patterns; forming an n-type source region and an n-type drain region in the p-type well region; and forming a p-type source region and a p-type drain region in the n-type well region.
The method may further include forming separation films in the semiconductor substrate before the forming of the gate insulating film.
The performing of the first ion injection process may further include: performing ion injection such that the n-type well region is formed deeper than the separation films, and such that a depth of the n-type well region below the second gate electrode pattern is shallower than a depth of the n-type well region below the separation films.
The performing of the second injection process may further include: performing ion injection such that the p-type well region is formed deeper than the separation films, and such that a depth of the p-type well region below the first gate electrode pattern is shallower than a depth of the p-type well region below the separation films.
The method may further include: forming an n-type threshold voltage adjustment area below the second gate electrode pattern after the performing of the first ion injection process, wherein the forming of the n-type threshold voltage adjustment area includes performing n-type ion injection into the semiconductor substrate through the second gate electrode pattern.
The method may further include: forming a p-type threshold voltage adjustment area below the first gate electrode pattern after the performing of the second ion injection process, wherein the forming of the p-type threshold voltage adjustment area includes performing p-type ion injection into the semiconductor substrate through the first gate electrode pattern.
The performing of the first ion injection process may further include: forming a PMOS threshold voltage adjustment area in an upper portion of the n-type well region, at a surface of the semiconductor substrate below the gate insulating film.
The performing of the second ion injection process may further include: forming an NMOS threshold voltage adjustment area in an upper portion of the p-type well region, at a surface of the semiconductor substrate below the gate insulating film.
In another general aspect, a method to manufacture a complementary metal-oxide-semiconductor (CMOS) transistor includes: forming a gate insulating film on a semiconductor substrate; forming a first gate electrode pattern on the gate insulating film in an n-type metal-oxide-semiconductor (NMOS) transistor area; forming a second gate electrode pattern on the gate insulating film in a p-type metal-oxide-semiconductor (PMOS) transistor area; forming a first photoresist pattern covering the first gate electrode pattern and portions of the semiconductor substrate that are exposed on sides of the first gate electrode pattern; performing a first ion injection process into the PMOS transistor area to form an n-type well region and a p-type lightly doped drain (LDD) region, wherein the performing of the first ion injection process includes performing ion injection through the second gate electrode pattern; removing the first photoresist pattern; forming a second photoresist pattern covering the second gate electrode pattern and portions of the semiconductor substrate exposed on sides of the second gate electrode pattern; performing a second ion injection process into the NMOS transistor area to form a p-type well region and an n-type LDD region, wherein the performing of the second ion injection process includes performing ion injection through the first gate electrode pattern; and removing the second photoresist pattern.
The performing of the first ion injection process may further include: forming an n-type threshold voltage adjustment area in an upper portion of the n-type well region, at a surface of the semiconductor substrate below the gate insulating film.
The performing of the second ion injection process may further include: forming a p-type threshold voltage adjustment area in an upper portion of the p-type well region, at a surface of the semiconductor substrate below the gate insulating film.
The method may further include forming separation films in the semiconductor substrate before the forming of the gate insulating film. The performing of the first ion injection process may further include performing ion injection such that the n-type well region is formed deeper than the separation films, and such that a depth of the n-type well region below the second gate electrode pattern is shallower than a depth of the n-type well region below the separation films. The performing of the second injection process may further include performing ion injection such that the p-type well region is formed deeper than the separation films, and such that a depth of the p-type well region below the first gate electrode pattern is shallower than a depth of the p-type well region below the separation films.
Other features and aspects will be apparent from the following detailed description, the drawings, and the claims.
Throughout the drawings and the detailed description, the same reference numerals refer to the same elements. The drawings may not be to scale, and the relative size, proportions, and depiction of elements in the drawings may be exaggerated for clarity, illustration, and convenience.
The following detailed description is provided to assist the reader in gaining a comprehensive understanding of the methods, apparatuses, and/or systems described herein. However, various changes, modifications, and equivalents of the methods, apparatuses, and/or systems described herein will be apparent after an understanding of the disclosure of this application. For example, the sequences of operations described herein are merely examples, and are not limited to those set forth herein, but may be changed as will be apparent after an understanding of the disclosure of this application, with the exception of operations necessarily occurring in a certain order. Also, descriptions of features that are known in the art may be omitted for increased clarity and conciseness.
The features described herein may be embodied in different forms, and are not to be construed as being limited to the examples described herein. Rather, the examples described herein have been provided merely to illustrate some of the many possible ways of implementing the methods, apparatuses, and/or systems described herein that will be apparent after an understanding of the disclosure of this application.
Throughout the specification, when an element, such as a layer, region, or substrate, is described as being “on,” “connected to,” or “coupled to” another element, it may be directly “on,” “connected to,” or “coupled to” the other element, or there may be one or more other elements intervening therebetween. In contrast, when an element is described as being “directly on,” “directly connected to,” or “directly coupled to” another element, there can be no other elements intervening therebetween.
As used herein, the term “and/or” includes any one and any combination of any two or more of the associated listed items.
Although terms such as “first,” “second,” and “third” may be used herein to describe various members, components, regions, layers, or sections, these members, components, regions, layers, or sections are not to be limited by these terms. Rather, these terms are only used to distinguish one member, component, region, layer, or section from another member, component, region, layer, or section. Thus, a first member, component, region, layer, or section referred to in examples described herein may also be referred to as a second member, component, region, layer, or section without departing from the teachings of the examples.
Spatially relative terms such as “above,” “upper,” “below,” and “lower” may be used herein for ease of description to describe one element's relationship to another element as shown in the figures. Such spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, an element described as being “above” or “upper” relative to another element will then be “below” or “lower” relative to the other element. Thus, the term “above” encompasses both the above and below orientations depending on the spatial orientation of the device. The device may also be oriented in other ways (for example, rotated 90 degrees or at other orientations), and the spatially relative terms used herein are to be interpreted accordingly.
The terminology used herein is for describing various examples only, and is not to be used to limit the disclosure. The articles “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. The terms “comprises,” “includes,” and “has” specify the presence of stated features, numbers, operations, members, elements, and/or combinations thereof, but do not preclude the presence or addition of one or more other features, numbers, operations, members, elements, and/or combinations thereof.
Due to manufacturing techniques and/or tolerances, variations of the shapes shown in the drawings may occur. Thus, the examples described herein are not limited to the specific shapes shown in the drawings, but include changes in shape that occur during manufacturing.
The features of the examples described herein may be combined in various ways as will be apparent after an understanding of the disclosure of this application. Further, although the examples described herein have a variety of configurations, other configurations are possible as will be apparent after an understanding of the disclosure of this application.
In this disclosure, various examples and implementations will be described in detail to provide a method of forming a complementary metal-oxide-semiconductor (CMOS) transistor. Embodiments will be described in more detail below with reference to the appended drawings.
After the ion injection for forming the NW region 325, in an embodiment, an n-type ion injection process is performed to form a PMOS threshold voltage (Vt) adjustment area 335 at an upper portion of the NW region 325. The PMOS threshold voltage (Vt) adjustment area 335 is formed at a surface of the semiconductor substrate 100 below the gate insulating film 215. Since the PMOS threshold voltage adjustment area 335 and the NW region 325 are formed of the same conductivity type, the n-type ion injection process for forming the PMOS threshold voltage adjustment area 335 may be performed immediately after the n-type well ion injection process for forming the NW region 325. In this case, since the ion injection for forming the PMOS threshold voltage adjustment area 335 is performed through the second gate electrode pattern 218, an energy level of ion injection needs to be controlled in consideration of a thickness of the second gate electrode pattern 218. In an embodiment, an energy level of ion injection is set higher than the energy level of ion injection would be set for a case where ion injection is performed in the absence of the second gate electrode pattern 218.
Thereafter, to form PMOS lightly doped drain (LDD) regions 327 (hereinafter, referred to as a “PLDD region”), a p-type LDD ion injection process is performed using p-type dopants. The pair of PLDD regions 327 are formed, for example, in the portions of the semiconductor substrate 100 that are exposed on both sides of the second gate electrode pattern 218. In an embodiment, a tilted ion injection method is implemented using n-type dopants to form an n-type Halo region or pocket region 336 near the PLDD regions 327. Ion injection is carried out into the peripheries of the PLDD regions 327 using the tilt ion injection method. The n-type Halo region 336 is provided to prevent punch-through in the source-drain region. That is, the n-type Halo region 336 is provided to prevent a channel region from disappearing as the depletion regions at the source-drain region gradually extend and merge at their ends.
Once the second photoresist pattern 414 is formed, an ion injection process is performed into the NMOS transistor area to form a p-type well region 425 (hereinafter, referred to as a “PW region”) in the form of a retrograde well in the NMOS transistor area. As in the case of forming the NW region 325 in the PMOS transistor area, the PW region 425 is formed by high-energy and medium-energy ion injections. The ion injection in this case is also performed through the gate insulating film 215 as well as the first gate electrode pattern 217 which is exposed in the NMOS transistor area. Similarly, the PW region 425 is formed deeper than the separation films 112, but a depth of the PW region 425 below the first gate electrode pattern 217 is shallower than a depth of the PW region 425 below the separation films 112. This is because the ion injection depth is limited by the first gate electrode pattern 217, which serves as a mask.
After the ion injection for forming the PW region 425, a p-type ion injection process is performed to form an NMOS threshold voltage (Vt) adjustment area 435 at an upper portion of the PW region 425. Since the NMOS threshold voltage (Vt) adjustment area 435 and the PW region 425 are formed of the same conductivity type, the p-type ion injection process for forming the NMOS threshold voltage adjustment area 435 may be performed immediately after the p-type well ion injection process for forming the PW region 425. The NMOS threshold voltage adjustment area 435 is formed at a surface of the semiconductor substrate 100 below the gate insulating film 215.
Thereafter, to form a pair of NMOS LDD regions 427 (hereinafter, referred to as an “NLDD regions”), an n-type LDD ion injection process is performed using n-type dopants. The pair of NLDD regions 427 are formed, for example in the portions of the semiconductor substrate 100 that are exposed on both sides of the first gate electrode pattern 217. Since the first gate electrode pattern 217 is exposed at the time of forming the NLDD regions 427, the ion injection may also be performed on the first gate electrode pattern 217. In an embodiment, a tilt ion injection is performed using a p-type dopant to form a p-type Halo region or pocket region 436 near the NLDD regions 427. Ion injection is carried out into the peripheries of the NLDD regions 427 using the tilt ion injection method. As described above, the p-type Halo region 436 is provided to prevent a channel region from disappearing as the depletion regions at the source-drain region gradually extend and merge at their ends.
While it has been described above that after one or more ion injection processes are performed into the PMOS transistor area and one or more ion injection processes are performed into the NMOS transistor area, it should be appreciated that the above description merely provides examples, and the disclosed ion injection processes may be carried out in the reverse order. In addition, while it has been described above that the threshold voltage adjustment areas 335 and 435 are formed first and then the LDD regions 327 and 427 and the Halo regions or pocket regions 336 and 436 are formed thereafter, it should be appreciated that the scope of the disclosure is not to be limited by the above-described order of forming the threshold adjustment areas 335 and 435 and the Halo or pocket regions 336 and 436.
Upon completion of the above-described processes illustrated in
As described above, according to the embodiments disclosed herein, after the first and second gate electrode patterns 217 and 218 are formed, ion injection for forming the well regions 325 and 425 and the LDD regions 327 and 427, channel ion implantation for forming the threshold voltage adjustment areas 335 and 435, and/or ion injection for forming the Halo regions 336 and 436 may be performed using one mask (photoresist pattern) per transistor area. According to the embodiments disclosed above, a total of four masks are used until the ion injection process for forming the source and drain regions 657 and 757 is finished. Furthermore, according to the embodiments disclosed above, the thermal budget can be reduced to thereby improve a reverse short channel effect.
The method of forming the CMOS transistor begins in operation S805 in which the separation films 112 for separating the NMOS transistor area from the PMOS transistor area are formed in the semiconductor substrate 100. In operation S810, the gate insulating film 215 is formed on the semiconductor substrate 100. In operation S815, the conductive film is formed on the gate insulating film 215 and the conductive film is patterned to form the first and second gate electrode patterns 217 and 218.
In operation S820, the NMOS transistor area is covered by the first photoresist pattern 314. In operation S825, an ion injection process is performed into the semiconductor substrate 100 for forming the NW region 325 in the semiconductor substrate 100. Ion injection is performed through the gate insulating film 215 and the second gate electrode pattern 218. In operation S830, the PMOS threshold voltage adjustment area 335 is formed below the second gate electrode pattern 218. In operation S835, the PLDD region 327 is formed in the NW region 325. The n-type Halo region 336 may be formed in the PMOS transistor area in operation S840.
In operation S845, the first photoresist pattern 314 is removed, and the PMOS transistor area is covered by the second photoresist pattern 414. In operation S850, an ion injection process is performed into the semiconductor substrate 100 to form the PW region 425 in the semiconductor substrate 100. Ion injection is performed through the gate insulating film 215 and the first gate electrode pattern 217. In operation S855, the NMOS threshold voltage adjustment area 435 is formed below the first gate electrode pattern 217. In operation S860, the NLDD region 427 is formed in the PW region 425. The p-type Halo region 436 may be formed in the NMOS transistor area in operation S865.
In operation S870, the second photoresist pattern 414 is removed. In operation 875, the sidewall spacers 535 are formed at the side walls of each of the first and second gate electrode patterns 217 and 218. In operation S880, the PMOS transistor area is covered by the third photoresist pattern 614. In operation S885, the NSD region 657 is formed in the p-type well region 425. In operation S890, the third photoresist pattern 614 is removed, and the NMOS transistor area is covered by the fourth photoresist pattern 714. In operation S895, the PSD region 757 is formed in the n-type well region 325. In operation S898, back end processing such as a salicide process, contact formation, metal layer formation, and pad formation is performed to complete the CMOS transistor fabrication process.
According to embodiments disclosed herein, it is possible to simplify a CMOS transistor manufacturing process, reduce the manufacturing costs, and shorten the manufacturing period. For example, according to the disclosed embodiments, it is possible to manufacture a CMOS transistor using a smaller number of masks compared to a conventional CMOS manufacturing process.
In the embodiments disclosed herein, the arrangement of the illustrated components may vary depending on an environment or requirements to be implemented. For example, some of the components may be omitted or several components may be integrated and carried out together. In addition, the arrangement order of some of the components can be changed.
While this disclosure includes specific examples, it will be apparent after an understanding of the disclosure of this application that various changes in form and details may be made in these examples without departing from the spirit and scope of the claims and their equivalents. The examples described herein are to be considered in a descriptive sense only, and not for purposes of limitation. Descriptions of features or aspects in each example are to be considered as being applicable to similar features or aspects in other examples. Suitable results may be achieved if the described techniques are performed in a different order, and/or if components in a described system, architecture, device, or circuit are combined in a different manner, and/or replaced or supplemented by other components or their equivalents. Therefore, the scope of the disclosure is defined not by the detailed description, but by the claims and their equivalents, and all variations within the scope of the claims and their equivalents are to be construed as being included in the disclosure.
Kim, Myeong Seok, Jung, In Chul, Cho, Min Kuck
Patent | Priority | Assignee | Title |
10290655, | Dec 27 2016 | WUHAN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO , LTD | Low temperature polysilicon array substrate and method for manufacturing the same |
Patent | Priority | Assignee | Title |
5792699, | Jun 03 1996 | Industrial Technology Research Institute | Method for reduction of reverse short channel effect in MOSFET |
20020187596, | |||
20070004159, | |||
20080233695, | |||
20140377919, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 14 2016 | CHO, MIN KUCK | MagnaChip Semiconductor, Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 040757 | /0480 | |
Dec 14 2016 | KIM, MYEONG SEOK | MagnaChip Semiconductor, Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 040757 | /0480 | |
Dec 14 2016 | JUNG, IN CHUL | MagnaChip Semiconductor, Ltd | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 040757 | /0480 | |
Dec 23 2016 | MagnaChip Semiconductor, Ltd. | (assignment on the face of the patent) | / | |||
Aug 28 2020 | MagnaChip Semiconductor, Ltd | KEY FOUNDRY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 053703 | /0227 | |
Jan 30 2024 | KEY FOUNDRY CO , LTD | SK KEYFOUNDRY INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 066794 | /0290 |
Date | Maintenance Fee Events |
Dec 13 2021 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 28 2021 | 4 years fee payment window open |
Feb 28 2022 | 6 months grace period start (w surcharge) |
Aug 28 2022 | patent expiry (for year 4) |
Aug 28 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 28 2025 | 8 years fee payment window open |
Feb 28 2026 | 6 months grace period start (w surcharge) |
Aug 28 2026 | patent expiry (for year 8) |
Aug 28 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 28 2029 | 12 years fee payment window open |
Feb 28 2030 | 6 months grace period start (w surcharge) |
Aug 28 2030 | patent expiry (for year 12) |
Aug 28 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |