A keyswitch includes a base having a pillar, a cap having a rib and movable relative to the base, a sleeve rotatably sleeving the pillar and having first and second top surfaces and convex and concave portions, an elastic member abutting against the sleeve and the base, and a resilient arm abutting against a first or second position on the convex portion with rotation of the sleeve. When the resilient arm abuts against the first position, the rib abuts against the first top surface to prepress the elastic member for generating a first preload. When the cap is pressed for moving the sleeve downward, the resilient arm moves from the first or second position to the concave portion. When the resilient arm abuts against the second position, the rib abuts against the second top surface to prepress the elastic member for generating a second preload larger than the first preload.
|
39. A switch comprising:
a base having a positioning structure extending along a Z-axis, the Z-axis, an X-axis and a Y-axis being perpendicular to each other;
a resilient arm adjacent to the positioning structure;
a sleeve having an outer annular surface and rotatably sleeving the positioning structure for rotating on the positioning structure around the Z-axis and moving upward and downward between a high position and a low position along the Z-axis, the outer annular surface having a first large radius portion, a first small radius portion, a second large radius portion, and a second small radius portion, the resilient arm selectively abutting against the first large radius portion or the second large radius portion when the sleeve is located at the high position; and
an elastic member abutting against the sleeve and the base respectively for driving the sleeve to move away from the base;
wherein when the resilient arm abuts against the first large radius portion and the sleeve moves downward along the Z-axis, the resilient arm moves from the first large radius portion to the first small radius portion along a first path and the first path interacts with the resilient arm to generate a first tactile feedback;
when the resilient arm abuts against the second large radius portion and the sleeve moves downward along the Z-axis, the resilient arm moves from the second large radius portion to the second small radius portion along a second path and the second path interacts with the resilient arm to generate a second tactile feedback;
when the sleeve is released, the elastic member drives the sleeve to move upward along the Z-axis, so as to make the resilient arm move back to abut against the first large radius portion or the second large radius portion.
9. A keyswitch comprising:
a base having a pillar extending along a Z-axis, the Z-axis, an X-axis and a Y-axis being perpendicular to each other;
a cap having a limiting arm, the limiting arm protruding toward the base along the Z-axis and being movably connected to the base, so as to make the cap movable upward and downward between a high position and a low position along the Z-axis;
a resilient arm adjacent to the pillar;
a sleeve abutting against the cap and rotatably sleeving the pillar for rotating on the pillar around the Z-axis, the sleeve having an outer annular surface formed thereon, the outer annular surface having a first convex portion, a first concave portion, a second convex portion, a second concave portion and an arc-shaped bar, the arc-shaped bar extending above the second convex portion but not extending above the first convex portion, the resilient arm selectively abutting against the first convex portion or the second convex portion when the cap is located at the high position; and
an elastic member abutting against the sleeve and the base respectively for driving the sleeve to move away from the base;
wherein when the resilient arm abuts against the second convex portion and the cap is pressed to move the sleeve downward along the Z-axis, the resilient arm needs to cross the arc-shaped bar with downward movement of the sleeve during the resilient arm moves from the second convex portion to the second concave portion;
when the resilient arm abuts against the first convex portion and the cap is pressed to move the sleeve downward, the resilient arm does not need to cross the arc-shaped bar during the resilient arm moves from the first convex portion to the first concave portion;
when the cap is released, the elastic member drives the sleeve to move upward along the Z-axis relative to the pillar, so as to make the resilient arm move back to abut against the first convex portion or the second convex portion.
16. A keyswitch comprising:
a base having a pillar, a top surface and a protruding block adjacent to the pillar, the pillar protruding from the top surface along a Z-axis, the Z-axis, an X-axis and a Y-axis being perpendicular to each other, the protruding block being higher than the top surface along the Z-axis;
a cap having a limiting arm extending toward the base along the Z-axis, the limiting arm being movably connected to the base to make the cap movable upward and downward between a high position and a low position along the Z-axis;
a sleeve abutting against the cap and rotatably sleeving the pillar, the sleeve having an outer annular surface formed thereon, the outer annular surface having a first convex portion, a first concave portion, a second convex portion, and a second concave portion, a groove and a bottom surface being formed on a bottom end of the sleeve, the sleeve rotating on the pillar around the Z-axis to make the protruding block selectively located under the groove or the bottom surface;
an elastic member abutting against the sleeve and the base respectively for driving the sleeve to move away from the base; and
a resilient arm adjacent to the pillar, the resilient arm abutting against the first convex portion when the sleeve rotates around the Z-axis to make the protruding block located under the groove, and the resilient arm abutting against the second convex portion when the sleeve rotates around the Z-axis to make the protruding block located under the bottom surface;
wherein when the protruding block is located under the groove and the cap is pressed, the sleeve moves downward and the resilient arm moves from the first convex portion to the first concave portion until the protruding block is contained in the groove, so that a maximum movable distance of the cap along the Z-axis is set as a first travel distance;
when the protruding block is located under the bottom surface and the cap is pressed, the sleeve moves downward and the resilient arm moves from the second convex portion to the second concave portion until the protruding block abuts against the bottom surface, so that the maximum movable distance of the cap along the Z-axis is set as a second travel distance less than the first travel distance;
when the cap is released, the elastic member drives the sleeve to move upward along the Z-axis relative to the pillar, so as to make the resilient arm move back to abut against the first convex portion or the second convex portion.
1. A keyswitch comprising:
a base having a pillar extending along a Z-axis, the Z-axis, an X-axis and a Y-axis being perpendicular to each other;
a cap having a first rib and a limiting arm, the first rib protruding toward the base along the Z-axis, the limiting arm protruding toward the base along the Z-axis and being movably connected to the base, so as to make the cap movable upward and downward between a high position and a low position along the Z-axis;
a sleeve rotatably sleeving the pillar, the sleeve being located under the cap and having a first top surface, a second top surface, and an outer annular surface formed thereon, the first top surface being higher than the second top surface along the Z-axis, the outer annular surface having a convex portion and a concave portion;
an elastic member abutting against the sleeve and the base for driving the sleeve to move away from the base; and
a resilient arm adjacent to the pillar, corresponding to the rotation of the sleeve on the pillar around the Z-axis, the resilient arm selectively abutting against a first position or a second position on the convex portion to have a first amount of deformation when the cap is located at the high position, the resilient arm abutting against the concave portion to have a second amount of deformation when the cap is located at the low position, the first amount of deformation being different from the second amount of deformation;
wherein when the resilient arm abuts against the first position, the first rib abuts against the first top surface to make the sleeve prepress the elastic member at a first length for generating a first preload, and when the cap moves downward along the Z-axis to move the sleeve downward, the resilient arm moves from the first position to the concave portion;
when the resilient arm abuts against the second position, the first rib abuts against the second top surface to make the sleeve prepress the elastic member at a second length for generating a second preload, the first length is larger than the second length to make the first preload smaller than the second preload, and when the cap moves downward along the Z-axis to move the sleeve downward, the resilient arm moves from the second position to the concave portion;
when the cap is released, the elastic member drives the sleeve to move to the high position along the Z-axis relative to the pillar, so as to make the resilient arm back to abut against the first position or the second position on the convex portion.
23. A keyswitch comprising:
a base having a pillar extending along a Z-axis, the Z-axis, an X-axis and a Y-axis being perpendicular to each other;
a cap having a limiting arm, the limiting arm protruding toward the base along the Z-axis and being movably connected to the base, so as to make the cap movable upward and downward between a high position and a low position along the Z-axis;
a switch unit adjacent to the pillar, the switch unit having a resilient arm and a contact point opposite to the resilient arm, the contact point and the resilient arm extending toward the cap respectively, the switch unit being electrically connected to a circuit board;
a sleeve abutting against the cap and rotatably sleeving the pillar for rotating on the pillar around the Z-axis, the sleeve having an outer annular surface formed thereon, the outer annular surface having a first convex portion, a first concave portion, a second convex portion, a second concave portion, a first transition portion, and a second transition portion lower than the first transition portion along the Z-axis, the first convex portion, the first transition portion and the first concave portion being arranged from down to up along the Z-axis, the second convex portion, the second transition portion and the second concave portion being arranged from down to up along the Z-axis, the resilient arm selectively abutting against the first convex portion or the second convex portion when the cap is located at the high position; and
an elastic member abutting against the sleeve and the base respectively for driving the sleeve to move away from the base;
wherein when the resilient arm abuts against the first convex portion and the cap is pressed to move the sleeve downward along the Z-axis, the resilient arm abuts against the sleeve member and moves from the first convex portion to the first concave portion along the first transition portion to make the resilient arm located at a first triggering position for triggering the contact point;
when the resilient arm abuts against the second convex portion and the cap is pressed to move the sleeve downward along the Z-axis, the resilient arm abuts against the sleeve member and moves from the second convex portion to the second concave portion along the second transition portion to make the resilient arm located at a second triggering position lower than the first triggering position along the Z-axis for triggering the contact point;
when the cap is released, the elastic member drives the sleeve to move upward along the Z-axis relative to the pillar, so as to make the resilient arm move to abut against the first convex portion or the second convex portion and to be separate from the contact point.
30. A keyswitch comprising:
a base having a pillar extending along a Z-axis, the Z-axis, an X-axis and a Y-axis being perpendicular to each other;
a cap having a first rib and a limiting arm, the first rib and the limiting arm protruding toward the base along the Z-axis, the limiting arm being movably connected to the base to make the cap movable upward and downward between a high position and a low position along the Z-axis;
a resilient arm adjacent to the pillar;
an internal sleeve having a support surface;
an external sleeve supported on the support surface, the external sleeve rotatably sleeving the pillar for rotating on the pillar around the Z-axis, the external sleeve having a first top surface, a second top surface, and an outer annular surface formed thereon, the first top surface being higher than the second top surface along the Z-axis, the outer annular surface having a first convex portion, a first concave portion, a second convex portion, a second concave portion, and an arc-shaped bar, the resilient arm selectively abutting against the first convex portion or the second convex portion when the cap is located at the high position, the arc-shaped bar at least extending above the second convex portion and having a bottom edge surface and an upper edge surface; and
an elastic member abutting against the internal sleeve and the base for driving the internal sleeve to move away from the base;
wherein when the resilient arm abuts against the second convex portion, the first rib of the cap is separate from the second top surface of the external sleeve at a gap, and the resilient arm needs to cross the arc-shaped bar during the resilient arm moves from the second convex portion to the second concave portion;
when a downward moving distance of the cap is less than the gap, the cap drives the internal sleeve to move downward and the resilient arm abuts against the bottom edge surface to make the external sleeve not move together with the internal sleeve, so as to make the external sleeve separate from the support surface of the internal sleeve;
when the downward moving distance of the cap is larger than the gap to make the cap drive the external sleeve to move downward, the resilient arm crosses the arc-shaped bar to abut against the upper edge surface with downward movement of the external sleeve, and then the resilient arm drives the external sleeve to collide with the support surface of the internal sleeve for making a sound;
when the resilient arm abuts against the first convex portion, the first rib abuts against the first top surface, and then the resilient arm moves from the first convex portion to the first concave portion when the cap is pressed to move the internal sleeve and the external sleeve downward along the Z-axis;
when the cap is released, the elastic member drives the external sleeve via the internal sleeve to move upward along the Z-axis relative to the pillar, so as to make the resilient arm back to abut against the first convex portion or the second convex portion.
2. The keyswitch of
3. The keyswitch of
4. The keyswitch of
5. The keyswitch of
wherein when the cap is located at the high position, the convex portion abuts against the resilient arm to cause outward deformation of the resilient arm for generating the first amount of deformation of the resilient arm, so as to make the resilient arm separate from the contact point, and when the cap is located at the low position, the resilient arm moves to abut against the concave portion to reduce deformation of the resilient arm for generating the second amount of deformation of the resilient arm, so as to make the resilient arm abut against the contact point.
6. The keyswitch of
a linkage mechanism connected to the sleeve for driving the sleeve to rotate on the pillar around the Z-axis, so as to make the resilient arm selectively abut against the first position or the second position on the convex portion;
wherein the linkage mechanism comprises a sliding plate and a linkage member, the sliding plate is movable between a third position and a fourth position, and the linkage member extends outwardly from the outer annular surface of the sleeve to be movably connected to the sliding plate;
when the sliding plate is located at the third position, the linkage member drives the sleeve to rotate on the pillar around the Z-axis with movement of the sliding plate, so as to make the resilient arm abut against the first position on the convex portion;
when the sliding plate is located at the fourth position, the linkage member drives the sleeve to rotate on the pillar around the Z-axis with movement of the sliding plate, so as to make the resilient arm abut against the second position on the convex portion.
7. The keyswitch of
8. The keyswitch of
an adjusting tool having two third ribs, the two third ribs protruding downward and being separate from each other;
wherein after the cap is detached from the base, the adjusting tool sleeves an top end of the sleeve to make the two third ribs laterally abut against the first top surface for driving the sleeve to rotate on the pillar around the Z-axis, so as to make the resilient arm selectively abut against the first position or the second position.
10. The keyswitch of
11. The keyswitch of
12. The keyswitch of
wherein when the cap is located at the high position, the first convex portion or the second convex portion abuts against the resilient arm to cause outward deformation of the resilient arm, so as to make the resilient arm separate from the contact point;
when the cap is located at the low position, the resilient arm moves to abut against the first concave portion or the second concave portion to reduce deformation of the resilient arm, so as to make the resilient arm abut against the contact point.
13. The keyswitch of
a linkage mechanism connected to the sleeve and movably disposed on the base for driving the sleeve to rotate on the pillar around the Z-axis, so as to make the resilient arm selectively abut against the first convex portion or the second convex portion;
wherein the linkage mechanism comprises a linkage member and a sliding plate slidable relative to the base, and the linkage member extends outwardly from the outer annular surface of the sleeve to be movably connected to the sliding plate;
when the sliding plate slides relative to the base, the linkage member swings with sliding of the sliding plate to drive the sleeve to rotate on the pillar around the Z-axis, so as to make the resilient arm selectively abut against the first convex portion or the second convex portion.
14. The keyswitch of
15. The keyswitch of
an adjusting tool, the adjusting tool sleeving an top end of the sleeve for driving the sleeve to rotate on the pillar around the Z-axis after the cap is detached from the base, so as to make the resilient arm selectively abut against the first convex portion or the second convex portion.
17. The keyswitch of
18. The keyswitch of
19. The keyswitch of
wherein when the cap is located at the high position, the first convex portion or the second convex portion abuts against the resilient arm to cause outward deformation of the resilient arm, so as to make the resilient arm separate from the contact point;
when the cap is located at the low position, the resilient arm moves to abut against the first concave portion or the second concave portion to reduce deformation of the resilient arm, so as to make the resilient arm abut against the contact point.
20. The keyswitch of
a linkage mechanism connected to the sleeve and movably disposed on the base for driving the sleeve to rotate on the pillar around the Z-axis, so as to make the resilient arm selectively abut against the first convex portion or the second convex portion;
wherein the linkage mechanism comprises a linkage member and a sliding plate slidable relative to the base, and the linkage member extends outwardly from the outer annular surface of the sleeve to be movably connected to the sliding plate;
when the sliding plate slides relative to the base, the linkage member swings with sliding of the sliding plate to drive the sleeve to rotate on the pillar around the Z-axis, so as to make the resilient arm selectively abut against the first convex portion or the second convex portion.
21. The keyswitch of
22. The keyswitch of
an adjusting tool, the adjusting tool sleeving an top end of the sleeve for driving the sleeve to rotate on the pillar around the Z-axis after the cap is detached from the base, so as to make the resilient arm selectively abut against the first convex portion or the second convex portion.
24. The keyswitch of
25. The keyswitch of
26. The keyswitch of
27. The keyswitch of
a linkage mechanism connected to the sleeve and movably disposed on the base for driving the sleeve to rotate on the pillar around the Z-axis, so as to make the resilient arm selectively abut against a position under the first transition portion or the second transition portion;
wherein the linkage mechanism comprises a linkage member and a sliding plate slidable relative to the base, and the linkage member extends outwardly from the outer annular surface of the sleeve to be movably connected to the sliding plate;
when the sliding plate slides relative to the base, the linkage member swings with sliding of the sliding plate to drive the sleeve to rotate on the pillar around the Z-axis, so as to make the resilient arm selectively abut against the position under the first transition portion or the second transition portion.
28. The keyswitch of
29. The keyswitch of
an adjusting tool, the adjusting tool sleeving an top end of the sleeve for driving the sleeve to rotate on the pillar around the Z-axis after the cap is detached from the base, so as to make the resilient arm selectively abut against a position under the first transition portion or the second transition portion.
31. The keyswitch of
32. The keyswitch of
33. The keyswitch of
34. The keyswitch of
35. The keyswitch of
wherein when the cap is located at the high position, the first convex portion or the second convex portion abuts against the resilient arm to cause outward deformation of the resilient arm, so as to make the resilient arm separate from the contact point, and when the cap is located at the low position, the resilient arm moves to abut against the first concave portion or the second concave portion to reduce deformation of the resilient arm, so as to make the resilient arm abut against the contact point.
36. The keyswitch of
a linkage mechanism connected to the external sleeve and movably disposed on the base for driving the external sleeve to rotate on the pillar around the Z-axis, so as to make the resilient arm selectively abut against the first convex portion or the second convex portion;
wherein the linkage mechanism comprises a linkage member and a sliding plate slidable relative to the base, and the linkage member extends outwardly from the outer annular surface of the external sleeve to be movably connected to the sliding plate;
when the sliding plate slides relative to the base, the linkage member swings with sliding of the sliding plate to drive the external sleeve to rotate on the pillar around the Z-axis, so as to make the resilient arm selectively abut against the first convex portion or the second convex portion.
37. The keyswitch of
38. The keyswitch of
an adjusting tool having two third ribs, the two third ribs protruding downward and being separate from each other;
wherein after the cap is detached from the base, the adjusting tool sleeves an top end of the external sleeve to make the two third ribs laterally abut against the first top surface for driving the external sleeve to rotate on the pillar around the Z-axis, so as to make the resilient arm selectively abut against the first convex portion or the second convex portion.
40. The switch of
a cap connected to the sleeve, the cap having a limiting arm protruding toward the base along the Z-axis, the limiting arm being movably connected to the base to make the cap movable upward and downward between the high position and the low position along the Z-axis.
41. The switch of
wherein when the sleeve is located at the high position, the first large radius portion or the second large radius portion abuts against the resilient arm to cause outward deformation of the resilient arm, so as to make the resilient arm separate from the contact point;
when the sleeve is located at the low position, the resilient arm moves to abut against the first small radius portion or the second small radius portion to reduce deformation of the resilient arm, so as to make the resilient arm abut against the contact point.
42. The switch of
a linkage mechanism connected to the sleeve for driving the sleeve to rotate on the positioning structure around the Z-axis, so as to make the resilient arm selectively abut against the first large radius portion or the second large radius portion;
wherein the linkage mechanism comprises a linkage member and a sliding plate slidable relative to the base, and the linkage member extends outwardly from the outer annular surface of the sleeve to be movably connected to the sliding plate;
when the sliding plate slides relative to the base, the linkage member swings with sliding of the sliding plate to drive the sleeve to rotate on the positioning structure around the Z-axis, so as to make the resilient arm selectively abut against the first large radius portion or the second large radius portion.
43. The switch of
44. The switch of
an adjusting tool, the adjusting tool sleeving an top end of the sleeve for driving the sleeve to rotate on the positioning structure around the Z-axis after the cap is detached from the base, so as to make the resilient arm selectively abut against the first large radius portion or the second large radius portion.
|
The present invention relates to a keyswitch and a switch thereof, and more specifically, to a keyswitch with an adjustable tactile feedback via rotation of a sleeve relative to a base and a switch thereof.
A keyboard, which is the most common input device, could be found in variety of electronic apparatuses for users to input characters, symbols, numerals and so on. Furthermore, from consumer electronic products to industrial machine tools, they are all equipped with a keyboard for performing input operations.
In practical application, there are various kinds of keyswitches for providing different tactile feedbacks. For example, a gaming keyboard would indicates that it has red, brown or black keyswitches installed thereon on its packing box to remind the user of what kind of tactile feedback (e.g. high or low triggering position, long or short travel distance, required actuation force, tactile or linear feedback, clicky or non-clicky tactile feedback, etc.) the gaming keyboard could provide. That is to say, a conventional mechanical keyswitch could only provide one single kind of tactile feedback without a tactile feedback adjusting function. Thus, if the user wants to experience different kinds of tactile feedbacks, the user must buy a new keyboard or replace the original keyswitches on the gaming keyboard with new keyswitches for providing another kind of tactile feedback. In such a manner, it would cause a high replacement cost, so as to greatly limit flexibility in use and operational convenience of the mechanical keyswitch.
The present invention provides a keyswitch. The keyswitch includes a base, a cap, a sleeve, an elastic member, and a resilient arm. The base has a pillar extending along a Z-axis. The Z-axis, an X-axis and a Y-axis are perpendicular to each other. The cap has a first rib and a limiting arm. The first rib protrudes toward the base along the Z-axis. The limiting arm protrudes toward the base along the Z-axis and is movably connected to the base, so as to make the cap movable upward and downward between a high position and a low position along the Z-axis. The sleeve rotatably sleeves the pillar. The sleeve is located under the cap and has a first top surface, a second top surface, and an outer annular surface formed thereon. The first top surface is higher than the second top surface along the Z-axis. The outer annular surface has a convex portion and a concave portion. The elastic member abuts against the sleeve and the base for driving the sleeve to move away from the base. The resilient arm is adjacent to the pillar. The resilient arm selectively abuts against a first position or a second position on the convex portion with rotation of the sleeve on the pillar around the Z-axis to have a first amount of deformation when the cap is located at the high position. The resilient arm abuts against the concave portion to have a second amount of deformation when the cap is located at the low position. The first amount of deformation is different from the second amount of deformation. When the resilient arm abuts against the first position, the first rib abuts against the first top surface to make the sleeve prepress the elastic member at a first length for generating a first preload. When the cap moves downward along the Z-axis to move the sleeve downward, the resilient arm moves from the first position to the concave portion. When the resilient arm abuts against the second position, the first rib abuts against the second top surface to make the sleeve prepress the elastic member at a second length for generating a second preload, the first length is larger than the second length to make the first preload smaller than the second preload. When the cap moves downward along the Z-axis to move the sleeve downward, the resilient arm moves from the second position to the concave portion. When the cap is released, the elastic member drives the sleeve to move to the high position along the Z-axis relative to the pillar, so as to make the resilient arm back to abut against the first position or the second position on the convex portion.
The present invention further provides a keyswitch. The keyswitch includes a base, a cap, a sleeve, an elastic member, and a resilient arm. The base has a pillar extending along a Z-axis. The Z-axis, an X-axis and a Y-axis are perpendicular to each other. The cap has a limiting arm. The limiting arm protrudes toward the base along the Z-axis and is movably connected to the base, so as to make the cap movable upward and downward between a high position and a low position along the Z-axis. The resilient arm is adjacent to the pillar. The sleeve abuts against the cap and rotatably sleeves the pillar for rotating on the pillar around the Z-axis. The sleeve has an outer annular surface formed thereon. The outer annular surface has a first convex portion, a first concave portion, a second convex portion, a second concave portion and an arc-shaped bar. The arc-shaped bar extends above the second convex portion but not extends above the first convex portion. The resilient arm selectively abuts against the first convex portion or the second convex portion when the cap is located at the high position. The elastic member abuts against the sleeve and the base respectively for driving the sleeve to move away from the base. When the resilient arm abuts against the second convex portion and the cap is pressed to move the sleeve downward along the Z-axis, the resilient arm needs to cross the arc-shaped bar with downward movement of the sleeve during the resilient arm moves from the second convex portion to the second concave portion. When the resilient arm abuts against the first convex portion and the cap is pressed to move the sleeve downward, the resilient arm does not need to cross the arc-shaped bar during the resilient arm moves from the first convex portion to the first concave portion. When the cap is released, the elastic member drives the sleeve to move upward along the Z-axis relative to the pillar, so as to make the resilient arm move back to abut against the first convex portion or the second convex portion.
The present invention further provides a keyswitch. The keyswitch includes a base, a cap, a sleeve, an elastic member, and a resilient arm. The base has a pillar. A top surface and a protruding block are adjacent to the pillar. The pillar protrudes from the top surface along a Z-axis. The Z-axis, an X-axis and a Y-axis are perpendicular to each other. The protruding block is higher than the top surface along the Z-axis. The cap has a limiting arm extending toward the base along the Z-axis. The limiting arm is movably connected to the base to make the cap movable upward and downward between a high position and a low position along the Z-axis. The sleeve abuts against the cap and rotatably sleeves the pillar. The sleeve has an outer annular surface formed thereon. The outer annular surface has a first convex portion, a first concave portion, a second convex portion, and a second concave portion. A groove and a bottom surface are formed on a bottom end of the sleeve. The sleeve rotates on the pillar around the Z-axis to make the protruding block selectively located under the groove or the bottom surface. The elastic member abuts against the sleeve and the base respectively for driving the sleeve to move away from the base. The resilient arm is adjacent to the pillar. The resilient arm abuts against the first convex portion when the sleeve rotates around the Z-axis to make the protruding block located under the groove, and the resilient arm abuts against the second convex portion when the sleeve rotates around the Z-axis to make the protruding block located under the bottom surface. When the protruding block is located under the groove and the cap is pressed, the sleeve moves downward and the resilient arm moves from the first convex portion to the first concave portion until the protruding block is contained in the groove, so that a maximum movable distance of the cap along the Z-axis is set as a first travel distance. When the protruding block is located under the bottom surface and the cap is pressed, the sleeve moves downward and the resilient arm moves from the second convex portion to the second concave portion until the protruding block abuts against the bottom surface, so that the maximum movable distance of the cap along the Z-axis is set as a second travel distance less than the first travel distance. When the cap is released, the elastic member drives the sleeve to move upward along the Z-axis relative to the pillar, so as to make the resilient arm move back to abut against the first convex portion or the second convex portion.
The present invention further provides a keyswitch. The keyswitch includes a base, a cap, a sleeve, a switch unit, and an elastic member. The base has a pillar extending along a Z-axis. The Z-axis, an X-axis and a Y-axis are perpendicular to each other. The cap has a limiting arm. The limiting arm protrudes toward the base along the Z-axis and is movably connected to the base, so as to make the cap movable upward and downward between a high position and a low position along the Z-axis. The switch unit is adjacent to the pillar. The switch unit has a resilient arm and a contact point opposite to the resilient arm. The contact point and the resilient arm extend toward the cap respectively. The switch unit is electrically connected to a circuit board. The sleeve abuts against the cap and rotatably sleeves the pillar for rotating on the pillar around the Z-axis. The sleeve has an outer annular surface formed thereon. The outer annular surface has a first convex portion, a first concave portion, a second convex portion, a second concave portion, a first transition portion, and a second transition portion lower than the first transition portion along the Z-axis. The first convex portion, the first transition portion and the first concave portion are arranged from down to up along the Z-axis. The second convex portion, the second transition portion and the second concave portion are arranged from down to up along the Z-axis. The resilient arm selectively abuts against the first convex portion or the second convex portion when the cap is located at the high position. The elastic member abuts against the sleeve and the base respectively for driving the sleeve to move away from the base. When the resilient arm abuts against the first convex portion and the cap is pressed to move the sleeve downward along the Z-axis, the resilient arm moves from the first convex portion to the first concave portion along the first transition portion to make the resilient arm located at a first triggering position for triggering the contact point. When the resilient arm abuts against the second convex portion and the cap is pressed to move the sleeve downward along the Z-axis, the resilient arm moves from the second convex portion to the second concave portion along the second transition portion to make the resilient arm located at a second triggering position lower than the first triggering position along the Z-axis for triggering the contact point. When the cap is released, the elastic member drives the sleeve to move upward along the Z-axis relative to the pillar, so as to make the resilient arm move to abut against the first convex portion or the second convex portion and to be separate from the contact point.
The present invention further provides a keyswitch. The keyswitch includes a base, a cap, a resilient arm, an internal sleeve, an external sleeve, and an elastic member. The base has a pillar extending along a Z-axis. The Z-axis, an X-axis and a Y-axis are perpendicular to each other. The cap has a first rib and a limiting arm. The first rib and the limiting arm protrude toward the base along the Z-axis. The limiting arm is movably connected to the base to make the cap movable upward and downward between a high position and a low position along the Z-axis. The resilient arm is adjacent to the pillar. The internal sleeve has a support surface. The external sleeve is supported on the support surface. The external sleeve rotatably sleeves the pillar for rotating on the pillar around the Z-axis. The external sleeve has a first top surface, a second top surface, and an outer annular surface formed thereon. The first top surface is higher than the second top surface along the Z-axis. The outer annular surface has a first convex portion, a first concave portion, a second convex portion, a second concave portion, and an arc-shaped bar. The resilient arm selectively abuts against the first convex portion or the second convex portion when the cap is located at the high position. The arc-shaped bar at least extends above the second convex portion and has a bottom edge surface and an upper edge surface. The elastic member abuts against the internal sleeve and the base for driving the internal sleeve to move away from the base. When the resilient arm abuts against the second convex portion, the first rib of the cap is separate from the second top surface of the external sleeve at a gap, and the resilient arm needs to cross the arc-shaped bar during the resilient arm moves from the second convex portion to the second concave portion. When a downward moving distance of the cap is less than the gap, the cap drives the internal sleeve to move downward and the resilient arm abuts against the bottom edge surface to make the external sleeve not move together with the internal sleeve, so as to make the external sleeve separate from the support surface of the internal sleeve. When the downward moving distance of the cap is larger than the gap to make the cap drive the external sleeve to move downward, the resilient arm crosses the arc-shaped bar to abut against the upper edge surface with downward movement of the external sleeve, and then the resilient arm drives the external sleeve to collide with the support surface of the internal sleeve for making a sound. When the resilient arm abuts against the first convex portion, the first rib abuts against the first top surface, and then the resilient arm moves from the first convex portion to the first concave portion when the cap is pressed to move the internal sleeve and the external sleeve downward along the Z-axis. When the cap is released, the elastic member drives the external sleeve via the internal sleeve to move upward along the Z-axis relative to the pillar, so as to make the resilient arm back to abut against the first convex portion or the second convex portion.
The present invention further provides a switch. The switch includes a base, a resilient arm, a sleeve, and an elastic arm. The base has a positioning structure extending along a Z-axis. The Z-axis, an X-axis and a Y-axis are perpendicular to each other. The resilient arm is adjacent to the positioning structure. The sleeve has an outer annular surface and rotatably sleeves the positioning structure for rotating on the positioning structure around the Z-axis and moving upward and downward between a high position and a low position along the Z-axis. The outer annular surface has a first large radius portion, a first small radius portion, a second large radius portion, and a second small radius portion. The resilient arm selectively abuts against the first large radius portion or the second large radius portion when the sleeve is located at the high position. The elastic member abuts against the sleeve and the base respectively for driving the sleeve to move away from the base. When the resilient arm abuts against the first large radius portion and the sleeve moves downward along the Z-axis, the resilient arm moves from the first large radius portion to the first small radius portion along a first path and the first path interacts with the resilient arm to generate a first tactile feedback. When the resilient arm abuts against the second large radius portion and the sleeve moves downward along the Z-axis, the resilient arm moves from the second large radius portion to the second small radius portion along a second path and the second path interacts with the resilient arm to generate a second tactile feedback. When the sleeve is released, the elastic member drives the sleeve to move upward along the Z-axis, so as to make the resilient arm move back to abut against the first large radius portion or the second large radius portion.
These and other objectives of the present invention will no doubt become obvious to those of ordinary skill in the art after reading the following detailed description of the preferred embodiment that is illustrated in the various figures and drawings.
Please refer to
To be more specific, the first rib 24 and the second rib 26 could have the same center of curvature, and a curvature radius of the first rib 24 could be larger than a curvature radius of the second rib 26. Via the design that the second rib 26 and the first rib 24 are in an arc shape to abut against the external sleeve 18, abutting between the cap 14 and the external sleeve 18 could be more steady, but not limited thereto, meaning that the present invention could adopt the cap could abut against the external sleeve via one single rib in another embodiment.
An upper section of the external sleeve 18 is supported on a support surface 17 of the internal sleeve 16, and a bottom section of the external sleeve 18 rotatably sleeves the pillar 22. The external sleeve 18 is located under the cap 14 and has a top surface 30, a top surface 32, atop surface 34, atop surface 36, and an outer annular surface 38 formed thereon. In this embodiment, the top surface 30 is higher than the top surface 32 along the Z-axis. The top surface 30 and the top surface 34 are opposite to each other and are in an arc shape for abutting against the first rib 24 and the second rib 26 respectively. The top surface 32 and the top surface 36 are opposite to each other and are in an arc shape for abutting against the first rib 24 and the second rib 26 respectively. The outer annular surface 38 could have a first convex portion 40 and a first concave portion 42. The first convex portion 40 and the first concave portion 42 are in an annular shape and extend along a plane formed by the X-axis and the Y-axis in parallel. The elastic member 19 could abut against the internal sleeve 16 and the base 12 respectively and could be preferably a spring (but not limited thereto), for providing an elastic force to drive the external sleeve 18 to move away from the base 12.
Via the aforesaid design, when the first rib 24 and the second rib 26 abut against the top surface 32 and the top surface 36 of the external sleeve 18 respectively and the cap 14 is located at the high position, the resilient arm 20 abuts against a first position P1 on the first convex portion 40 (as shown in
In this embodiment, as shown in
More detailed description for the tactile feedback adjusting operation of the keyswitch 10 is provided as follows. Please refer to
During the aforesaid process, for making the user surely aware of whether the external sleeve 18 is rotated to a right position, as shown in
After the aforesaid operation are completed and the cap 14 is assembled with the base 12, as shown in
On the other hand, when the cap 14 is located at the high position as shown in
Please refer to
Via the aforesaid design, when the user wants to switch the keyswitch 10 to provide a clicky tactile feedback, the user just needs to rotate the external sleeve 18 on the pillar 22 around the Z-axis (e.g. rotating the external sleeve 18 by the user's fingers or utilizing the adjusting tool 52 to rotate the external sleeve 18) from a position where the resilient arm 20 abuts against the first convex portion 40 as shown in
After the rotation operation of the external sleeve 18 is completed and the cap 14 is assembled with the base 12, the keyswitch 10 could provide a clicky tactile feedback during the user presses the cap 14. To be more specific, when the cap 14 is located at the high position as shown in
On the other hand, when the external sleeve 18 is rotated from the position where the resilient arm 20 abuts against the second convex portion 56 as shown in
Please refer to
As shown in
After the rotation operation of the external sleeve 18 is completed and the cap 14 is assembled with the base 12, the keyswitch 10 could provide a tactile feedback with a clicky sound when the user presses the cap 14. To be more specific, when the cap 14 is located at the high position as shown in
During the aforesaid process, when the downward moving distance of the cap 14 is less than the gap d (at this time, the cap 14 has not contacted the external sleeve 18 yet), the resilient arm 20 stops the external sleeve 18 from moving together with the cap 14 since the resilient arm 20 abuts against the bottom edge surface 62 of the external sleeve 18. Accordingly, the cap 14 could only drive the internal sleeve 16 to move downward, so as to make the external sleeve 18 separate from the support surface 17 of the internal sleeve (as shown in
On the contrary, when the external sleeve 18 is rotated from the position where the resilient arm 20 abuts against the second convex portion 56 as shown in
It should be mentioned that the switching design of the keyswitch provided by the present invention is not limited to the aforesaid embodiments (i.e. switching the keyswitch 10 from a tactile feedback with a small preload to a tactile feedback with a large preload, a clicky tactile feedback or a tactile feedback with a clicky sound). For example, in another embodiment that the design in which the rib of the cap could selectively abut against one of the top surfaces with different heights is omitted, the present invention could only adopt the design that the resilient arm abuts against the first convex portion or the second convex portion under the arc-shaped bar with rotation of the external sleeve, so as to switch the keyswitch to provide a clicky or non-clicky tactile feedback for simplifying the structural design of the keyswitch. As for other derived embodiments, the related description could be reasoned by analogy according to the aforesaid embodiments and omitted herein.
Furthermore, in another embodiment that the design in which the keyswitch could provide a tactile feedback with a clicky sound (e.g. utilizing the external sleeve to collide with the internal sleeve to generate the clicky sound) is omitted, the external sleeve could be formed with the internal sleeve integrally for simplifying the sleeve design of the keyswitch provided by the present invention.
Please refer to
More detailed description for the mechanical design of the keyswitch 102 is provided as follows. As shown in
In practical application, as shown in
To be more specific, when the cap 116 is located at the high position as shown in
On the other hand, when the user wants to perform the travel distance adjusting operation of the keyswitch 102, the user just needs to rotate the sleeve 118 around the Z-axis from a position where the resilient arm 122 abuts against the first convex portion 128 as shown in
Please refer to
As shown in
A first triggering position is defined by where the first transition portion 166 and the first concave portion 160 meet, and a second triggering position is defined by where the second transition portion 168 and the second concave portion 164 meet (but not limited thereto). That is to say, the first triggering position is higher than the second triggering position. In practical application, as shown in
To be more specific, when the cap 144 is located at the high position as shown in
On the other hand, when the user wants to adjust the triggering position of the cap 144, the user just needs to rotate the sleeve 148 around the Z-axis from a position where the resilient arm 152 abuts against the first convex portion 158 as shown in
As shown in
In practical application, the sleeve rotating design provided by the present invention is not limited to the aforesaid embodiments. More detailed description for the embodiment that the keyswitch 102 adopts a mechanical linkage design for performing the travel distance adjusting operation is provided as follows (but not limited thereto, meaning that the aforesaid mechanical linkage design could be applied to the keyswitch 10 or the keyswitch 106). Please refer to
As shown in
To be noted, the present invention could omit the cap to provide a switch with different tactile feedbacks. For example, in another embodiment, a switch provided by the present invention could include a base, a resilient arm, a sleeve, and an elastic member. The sleeve rotatably sleeves a positioning structure (e.g. a pillar) of the base and has an outer annular surface. The outer annular surface has a first large radius portion, a first small radius portion, a second large radius portion, and a second small radius portion (e.g. the first convex portion, the first concave portion, the second convex portion, and the second concave portion). The sleeve could rotate on the positioning structure to make the resilient arm selectively abut against the first large radius portion or the second large radius portion.
In such a manner, when the resilient arm abuts against the first large radius portion and the sleeve moves downward, the resilient arm moves from the first large radius portion to the first small radius portion along a first path (e.g. the first transition portion), so as to make the first path interact with the resilient arm to generate a first tactile feedback (e.g. a tactile feedback that the cap is triggered at a relatively low triggering position when the user presses the switch). When the resilient arm abuts against the second large radius portion and the sleeve moves downward, the resilient arm moves from the second large radius portion to the second small radius portion along a second path (e.g. the second transition portion), so as to make the second path interact with the resilient arm to generate a second tactile feedback (e.g. a tactile feedback that the cap is triggered at a relatively high triggering position when the user presses the switch). The first path is different from the second path to make the first tactile feedback different from the second tactile feedback.
On the other hand, when the sleeve is released, the elastic member drives the sleeve to move upward, so as to make the resilient arm move back to abut against the first large radius portion or the second large radius portion. As for the related description for other related designs (e.g. disposal of the contact point, the linkage mechanism, or the adjusting tool, the rotating design that the sleeve rotatably sleeves the positioning structure, etc.) and other derived embodiments (e.g. the design that the resilient arm crosses the arc-shaped bar to generate a clicky tactile feedback, the design that the external sleeve collides with the internal sleeve to generate a clicky sound, etc.), it could be reasoned by analogy according to the aforementioned embodiments and omitted herein.
Furthermore, the design that the rib of the cap could abut against the top surface of the sleeve for prepressing the elastic member, the design that the protruding block of the base could be contained in the groove of the sleeve or abut against the bottom surface of the sleeve to change the travel distance of the cap, the design that the resilient arm could abut against different triggering positions of the sleeve, the design that the resilient arm could cross the arc-shaped bar to generate a clicky tactile feedback, and the design that the external sleeve could collide with the internal sleeve to make a clicky sound could be applied to each other, so that the keyswitch and the switch thereof provided by the present invention could provide a tactile feedback adjusting function via the multi-stage rotating operation of the sleeve (e.g. the four-stage or two-stage rotating operation mentioned in the aforesaid embodiment).
For example, in another embodiment, the present invention could adopt the design that the user could perform the sleeve rotating operation to make the rib of the cap abut against the top surface of the sleeve for prepressing the elastic member and make the protruding block of the base located under the groove of the sleeve so that the keyswitch could provide a tactile feedback with a large preload and a long travel distance of the cap during the user presses the keyswitch. In another embodiment, the present invention could adopt the design that the user could perform the sleeve rotating operation to make the resilient arm trigger the contact point at a low triggering position and make the external sleeve collide with the internal sleeve so that the keyswitch could make a clicky sound and provide a tactile feedback that the cap is triggered at a high triggering position during the user presses the keyswitch.
Compared with the prior art only providing one single kind of tactile feedback without a tactile feedback adjusting function, the present invention adopts the design that the sleeve could rotate relative to the base for performing the tactile feedback adjustment operation of the keyswitch to generate the inventive effect that the user could switch the keyswitch to provide a desired tactile feedback, so as to greatly improve flexibility and convenience of the mechanical keyswitch structure in use.
Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.
Patent | Priority | Assignee | Title |
10431402, | Dec 04 2017 | Darfon Electronics Corp. | Button switch with adjustable tactile feedback |
11327573, | May 15 2020 | Darfon Electronics Corp. | Keyboard and keyswitch and adjustment mechanism thereof |
11551888, | Feb 06 2020 | Darfon Electronics Corp.; Darfon Electronics Corp | Keyswitch structure and keyboard |
11735380, | Feb 06 2020 | Darfon Electronics Corp. | Keyswitch structure and keyboard |
Patent | Priority | Assignee | Title |
4500758, | Jul 05 1983 | Hewlett-Packard Company | Keyboard switch assembly having sensory feedback |
4597681, | Dec 15 1983 | Adjustable keyboard | |
4795888, | Apr 29 1985 | A & K MacFarlane Pty. Ltd. | Variable keystroke pressure apparatus |
5391006, | Aug 20 1993 | Snap on ergonomic keycaps | |
5677826, | Jun 30 1994 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Double spring collapsible keyboard structure for a notebook computer, responsive to opening and closing of the computer's lid via relatively shiftable key support structure and shift member |
5767464, | Dec 05 1996 | Texas Instruments Incorporated | Electronic device low profile keyboard switch assembly with deployed and stored actuating mechanism |
5879088, | Nov 24 1997 | Key Tronic Corporation | Computer keyboard with adjustable force keystroke feature using air pressure |
8928621, | Oct 20 2010 | TACTUS TECHNOLOGY, INC | User interface system and method |
9760172, | Jul 23 2014 | TACTUS TECHNOLOGY, INC | Dynamic tactile interface |
20090153370, | |||
20180006648, | |||
CN203536260, | |||
TW201005778, | |||
TW230958, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 07 2017 | LIU, CHIA-HUNG | Darfon Electronics Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 042855 | /0520 | |
Jun 29 2017 | Darfon Electronics Corp. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 02 2022 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Sep 18 2021 | 4 years fee payment window open |
Mar 18 2022 | 6 months grace period start (w surcharge) |
Sep 18 2022 | patent expiry (for year 4) |
Sep 18 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 18 2025 | 8 years fee payment window open |
Mar 18 2026 | 6 months grace period start (w surcharge) |
Sep 18 2026 | patent expiry (for year 8) |
Sep 18 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 18 2029 | 12 years fee payment window open |
Mar 18 2030 | 6 months grace period start (w surcharge) |
Sep 18 2030 | patent expiry (for year 12) |
Sep 18 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |