Disclosed herein is an electronic display assembly including a backlight that is positioned to illuminate a liquid crystal display, and a novel cooling mechanism in the form of a thermal plate that is located and configured to transfer heat from the backlight to a thermally conductive housing of the electronic display assembly. The thermal plate is preferably placed in conductive thermal communication with the backlight and with the thermally conductive housing for this purpose. One or more air flow apertures may pass through the thermal plate. A convective cooling loop may also be provided, which cooling loop may include a fan that is located to move cooling air over the thermal plate and/or though one or more apertures in the thermal plate. Both a top and bottom thermal plate may be employed in some exemplary embodiments.

Patent
   10080316
Priority
Nov 13 2009
Filed
Apr 11 2016
Issued
Sep 18 2018
Expiry
Mar 30 2030

TERM.DISCL.
Extension
137 days
Assg.orig
Entity
Large
29
302
currently ok
1. An electronic display assembly comprising:
a thermally conductive housing;
a liquid crystal display positioned within the thermally conductive housing;
a backlight positioned to illuminate the liquid crystal display;
a thermal plate in conductive thermal communication with the backlight and with the thermally conductive housing; and
one or more air flow apertures that pass through the thermal plate.
9. An electronic display assembly comprising:
a thermally conductive housing having a front portion which faces an intended observer;
a liquid crystal display positioned within the thermally conductive housing;
a backlight positioned behind the liquid crystal display;
a thermal plate in contact with the backlight and with the thermally conductive housing; and
one or more air flow apertures that pass through the thermal plate.
16. An electronic display assembly comprising:
a thermally conductive housing;
a liquid crystal display positioned within the thermally conductive housing;
a backlight having a top portion and a bottom portion and positioned to backlight the liquid crystal display;
a top thermal plate contacting the top portion of the backlight; and
a bottom thermal plate contacting the bottom portion of the backlight;
wherein the top thermal plate and the bottom thermal plate are located and configured to transfer heat from the backlight to the thermally conductive housing.
2. The electronic display assembly of claim 1 wherein:
the thermal plate is positioned between an edge of the liquid crystal display and the housing.
3. The electronic display assembly of claim 1 wherein:
the backlight is a LED backlight.
4. The electronic display assembly of claim 1 further comprising:
a fan located within the thermally conductive housing and configured to cause a flow of cooling air through the one or more apertures in the thermal plate.
5. The electronic display assembly of claim 4 wherein:
the one or more apertures are oriented horizontally relative to the ground when the electronic display is in a typical viewing orientation, while the flow path of the cooling air extends vertically through the one or more apertures.
6. The electronic display assembly of claim 1 wherein:
the thermal plate is located and configured to transfer heat from the backlight to the thermally conductive housing.
7. The electronic display assembly of claim 4 wherein:
the thermal plate is located and configured to accept heat from the backlight, and is positioned for convective removal of said heat by the flow of cooling air.
8. The electronic display assembly of claim 1 wherein:
the thermal plate and housing are metallic.
10. The electronic display assembly of claim 9 wherein:
the thermal plate is located and configured to absorb heat from the backlight and to transfer the heat forwardly towards the front portion of the thermally conductive housing.
11. The electronic display assembly of claim 9 wherein:
the thermal plate contains a portion which is oriented substantially horizontally, and is positioned above both the backlight and the liquid crystal display.
12. The electronic display assembly of claim 9 wherein:
the backlight is a LED backlight.
13. The electronic display assembly of claim 9 wherein:
the thermal plate is positioned in a cooling air path that travels over and through the thermal plate.
14. The electronic display assembly of claim 13 further comprising:
a fan located within the thermally conductive housing and configured to cause cooling air to flow within the cooling air path.
15. The electronic display assembly of claim 13 wherein:
the cooling air path travels through the apertures within the plate.
17. The electronic display assembly of claim 16 further comprising:
one or more fans located within the thermally conductive housing and configured to cause a flow of cooling air that will pass through one or more apertures in the top thermal plate and the bottom thermal plate.
18. The electronic display assembly of claim 17 further comprising:
a vertically oriented channel through the housing, the channel forming a cooling air pathway between the thermal plates.
19. The electronic display assembly of claim 16 wherein:
the top thermal plate spans across the backlight and the liquid crystal display and is located above the backlight and the liquid crystal display; and
the bottom thermal plate spans across the backlight and the liquid crystal display and is located below the backlight and the liquid crystal display.
20. The electronic display assembly of claim 16 further comprising:
one or more apertures passing through the top thermal plate;
one or more apertures passing through the bottom thermal plate; and
a fan located within the thermally conductive housing and configured to cause a flow of cooling air to pass through the aperture(s) in the top thermal plate and the aperture(s) in the bottom thermal plate.

This application is a continuation of U.S. application Ser. No. 13/954,469, filed on Jul. 30, 2013, now U.S. Pat. No. 9,313,917, issued on Apr. 12, 2016. U.S. application Ser. No. 13/954,469 is a continuation of U.S. application Ser. No. 12/630,469, filed on Dec. 3, 2009, now U.S. Pat. No. 8,497,972. application Ser. No. 12/630,469 is a continuation in part of U.S. application Ser. No. 12/618,104, filed Nov. 14, 2009, now U.S. Pat. No. 8,310,824 issued on Nov. 13, 2012. All aforementioned applications are hereby incorporated by reference in their entirety as if fully cited herein

The exemplary embodiments herein are directed towards an electronic display having a thermal plate with an optional cooling loop for conductive and convective cooling.

Electronic displays are now being used for not only indoor entertainment purposes, but are now being utilized for indoor and outdoor advertising/informational purposes. For example, liquid crystal displays (LCDs), plasma displays, light emitting diode (LED), electroluminescence, light-emitting polymers, organic light emitting diode displays (OLEDs) and many other displays can now be used to display information and advertising materials to consumers in locations outside of their own home or within airports, arenas, transit stations, stadiums, restaurants/bars, gas station pumps, billboards, and even moving displays on the tops of automobiles or on the sides of trucks.

The rapid development of these displays has allowed users to mount them in a variety of locations that were not previously available. Further, the popularity of high definition (HD) television has increased the demand for larger and brighter displays, especially large displays which are capable of producing HD video. The highly competitive field of consumer advertising has also increased the demand for large, attention-grabbing, bright displays

When used outdoors, high ambient temperatures and solar loading can present several thermal-regulatory issues. When a display is exposed to direct sunlight this can increase the temperature of the display dramatically due to the solar loading of the front display surface due to the radiative heat of the sun. It has been found, that moving air through a gap between the exterior transparent plate and the image assembly can sometimes provide adequate cooling of the display assembly. Further, when producing an image with a display that has been placed in direct sunlight, the illumination of the display assembly must overcome the high ambient light levels. Thus, the display must be very bright and sometimes produce high levels of illumination which can generate high levels of heat coming from the image assembly (or backlight if necessary). This heat must be removed from the display or it may damage the electrical assemblies. If an LCD is used, high internal temperatures can cause the liquid crystal material to malfunction and may produce noticeable failures on the image. LEDs can degrade in performance and efficiency when exposed to high temperatures. Other technologies (OLED, light-emitting polymers, etc.) can also malfunction when exposed to high temperatures.

An exemplary embodiment may contain a thermal plate which can transfer heat from the image assembly to the housing of the display and into the ambient air through convection. A transparent plate assembly may be used which can provide the front surface for a narrow channel of cooling air which may be directed between the transparent plate assembly and the image assembly. The cooling air can also pass over the thermal plate in order to aid in cooling the thermal plate. In some embodiments, the thermal plate may run the entire length of the image assembly and may contain several apertures which allow cooling air to pass through the plate. When using an LCD display with an LED backlight, the heat generated by the LED backlight can also be transferred through the thermal plate and into the display housing as well as the cooling air. The display housing can be sealed and does not require an inlet of ambient air so that the display can be used in environments which have contaminates (dust, grease, pollen, dirt, leaves, garbage, water, insects, smoke, salt, fumes, etc.) present within the ambient air.

The exemplary embodiments herein are not intended to be exhaustive or to unnecessarily limit the scope of the invention. The exemplary embodiments were chosen and described in order to explain the principles so that others skilled in the art may practice the embodiments. Having shown and described exemplary embodiments, those skilled in the art will realize that many variations and modifications may be made to affect the described invention. Many of those variations and modifications will provide the same result and fall within the spirit of the exemplary embodiments. It is the intention, therefore, to limit the embodiments only as indicated by the scope of the claims.

In addition to the features mentioned above, other aspects of the present invention will be readily apparent from the following descriptions of the drawings and exemplary embodiments, wherein like reference numerals across the several views refer to identical or equivalent features, and wherein:

FIG. 1 provides a perspective view of an embodiment which uses two displays in a back-to-back arrangement;

FIG. 2 provides a perspective sectional view of the embodiment shown in FIG. 1 and showing the air flow through the housing;

FIG. 3 provides a detailed view of insert A from FIG. 2;

FIG. 4 provides a detailed view of insert B from FIG. 2; and

FIG. 5 provides a perspective view of one embodiment for an exemplary thermal plate.

FIG. 1 provides a perspective view of one embodiment which uses a dual-display assembly 100. In a preferred embodiment, the housing 115 and the door frames 105 and 110 would provide an environmentally-sealed enclosure to protect the internal components of the display assembly 100 from damage due to dust, grease, pollen, dirt, leaves, garbage, water, insects, smoke, salt, fumes, etc. Although shown with two displays back-to-back, this setup is not required. A single display assembly can be used as well. The exemplary embodiments herein are capable of cooling the display without having to ingest ambient air (although this can be used if desired).

FIG. 2 provides a sectional view of the embodiment shown in FIG. 1. This figure illustrates the air flow (dashed lines) through the housing 115. A transparent plate assembly 200 may be placed in front of the image assembly 30. For this embodiment, the transparent plate assembly 200 may be contained within the door frame 110 which is then attached to the housing 115. However, in other embodiments the door frame would not be a separate piece but would simply be provided by the housing. In these embodiments, the housing 115 would extend around the transparent plate assembly 200 without the need for a separate door frame 110.

The image assembly 30 will vary depending on the type of display being used with the particular embodiment. For example, if an LCD display is being used the image assembly 30 will typically comprise several layers including: a backlight, front and rear polarizers, liquid crystal material sandwiched between two transparent plates, an electrically-conductive layer, and possibly additional polarizing/anti-reflective layers. An OLED display on the other hand, may comprise: a cathode, emissive layer, conductive layer, and an anode. As mentioned above, embodiments can be practiced with any type of flat panel display, including but not limited to: LCD, OLED, plasma, light emitting polymer (LEP) and organic electro luminescence (OEL) displays.

The transparent plate assembly 200 can be made of a variety of materials and may have one or more layers. Various transparent glasses, plastics, or composite materials may be used to produce the transparent plate assembly 200. However, in an exemplary embodiment the transparent plate assembly 200 would be made of glass and even more preferably would be made of two or more plates of glass which are laminated together with index-matching optical adhesive. Further, an exemplary embodiment would also contain a polarizer on the transparent plate assembly 200. Preferably, the polarizer would be placed on the inside surface of the glass assembly and would also contain an anti-reflective (AR) layer. It has been found that adding the polarizer layer on the transparent plate assembly 200 can reduce reflections and also reduce the solar loading on the image assembly 30.

A channel 550 may be defined by the rear surface of the transparent plate assembly 200 and the front surface of the image assembly 30. The channel 550 has an inlet opening 551 and exit opening 552. In the dual-display embodiment, the display assembly 100 is mostly symmetrical, having a second channel 560, second image assembly 31, and second transparent plate assembly 201 on the opposing side of the dual-display assembly 100.

A fan 500 may be used to draw air through the channels 560 and 550 and circulate it though the housing 115. While being circulated through the housing 115, the air may transfer heat to the interior walls of the housing 115 where it can then be transferred from the housing 115 to the ambient air. In an exemplary embodiment, the fan 500 may be mounted on a separating plate 300 which divides the interior cavity of the housing 115 into upper and lower portions. It has been found that this type of setup may provide an area of high pressure in one portion and low pressure in the other portion which can further drive the movement of air throughout the cavity. For example, in an exemplary embodiment the separating plate 300 may be used to create an area of high pressure in the top portion (near the inlet opening 551 of the channel 550) and an area of low pressure in the bottom portion (near the exit opening 552 of the channel 550) which may drive the air to flow through the channel 550 and return to the fan 500.

It has been found that solar loading of the front surface of the image assembly 31 and 30 can occur when the display assembly 100 is used in direct sunlight. This solar loading can result in a heat buildup on the front surface of the image assembly 30 and 31. By using the channels 560 and 550, this heat can be removed from the image assemblies and transferred to the display housing 115 (and optionally the door frame 110) where it can be transferred to the ambient air through convection.

Thus, in an exemplary embodiment, the thermal conductivity of the display housing 115 and door frame 110 would be high. Thus, metals are an exemplary material for constructing the display housing 115 and door frame 110. Preferably, there would be a low level of thermal resistivity between the inner and outer surfaces of the housing 115 and door frame 110 so that heat can be effectively transferred to the surrounding ambient air. Thermoelectric modules (not shown) may also be used in order to cool the interior of the display housing 115. Fins or heat sinks (not shown) may also be placed on the interior or exterior of the housing 115 and/or door frame 110 to increase the ability to absorb heat from the interior of the display and transfer it to the ambient surroundings.

FIG. 3 provides a detailed view of insert A from FIG. 2. In this embodiment, an LED edge-lit LCD is used as the image assembly 30. An array of LEDs 620 are provided along the edge of the LCD in order to provide a source of illumination. When used in outdoor environments, the illumination of the image assembly 30 must compete with the ambient light levels and sometimes with direct sunlight. In order to remain visible (and preferably very bright and clear), the illumination coming from the image assembly 30 must of course be brighter than the surroundings. Thus, when using an LED backlit LCD, the LEDs 620 must produce a high level of luminance which can sometimes cause the LEDs 620 to generate a substantial amount of heat.

The various optical properties of the light which is output from an LED are typically dependant upon temperature. Thus, as the temperature of the LED array 620 varies, the optical properties of the light may vary as well. These variations are undesirable because they may alter the image (color saturation, color temperature, brightness, contrast, etc.) that is being produced by the image assembly 30. Therefore, in an exemplary embodiment the heat that is produced by the image assembly 30 (in this case an edge-lit LED LCD) may be removed to maintain the image assembly 30 at a consistent temperature. This helps to ensure image accuracy as well as avoids damage or a shortened lifetime due to high temperatures.

Although described here in relation to an LED edge-lit LCD, it should be noted that these thermal effects are also observed when using other types of image assemblies, including but not limited to: plasma displays, direct backlit LCDs, light emitting diode (LED) displays, electroluminescence, light-emitting polymers, and organic light emitting diode displays (OLEDs). Thus, embodiments can be designed which would remove heat from these image assemblies as well.

In the embodiment shown in FIG. 3, the LED array 620 is placed in thermal communication with the door frame 110 and optionally the housing 115 as well. Once the heat has been transferred to the door frame 110 (and optionally the housing 115) it may be transferred to the ambient surroundings through convection. In an exemplary embodiment, a thermal plate 675 may be used to place the LED array 620 in thermal communication with the door frame 110 (and optionally the housing 115). An exemplary thermal plate 675 would have an ‘L-shaped’ cross-section containing a first and second portion. The first portion would have a distal end 710 and the second portion would have a distal end 715 where the two portions are joined at their proximal ends 712 (see FIGS. 4 and 5) in order to form the ‘L’ shape. (See FIG. 5 for more information on an exemplary thermal plate).

For the embodiment shown in FIG. 3, heat from the LED array 620 is transferred to the distal end 710 of the first portion of the thermal plate 675 where it may be transferred by conduction to the distal end 715 of the second portion. Once the heat has been transferred to the distal end 715 of the second portion then it may be transferred to the door frame 110. In an exemplary embodiment, the door frame 110 would also be in thermal communication with the housing 115 so that heat can also be transferred (preferably by conduction) to the housing 115 and further dissipate to the surroundings. As discussed above, in other embodiments the door frame 110 would not be a separate piece but would simply be provided by the housing 115. In these embodiments, the housing 115 would extend around the transparent plate assembly 200 without the need for a separate door frame 110. Thus, with these embodiments the thermal plate 675 would simply be in thermal communication with the housing 115.

An exemplary thermal plate 675 would also be placed in the path of cooling air 600, which aids in the transfer of heat from the LED array 620. As the heat moves from the distal end 710 of the first portion to the distal end 715 of the second portion, a plurality of apertures (see FIG. 5) may be located on the thermal plate 675 to allow the cooling air 600 to pass through the thermal plate 675 and traverse through channel 550. Optionally, the cooling air 600 can also pass over the surfaces of the thermal plate which oppose the LED array (see element 755 of FIG. 5). The cooling air 600 may be used to cause convective heat transfer from the thermal plate 675. A heat sink 650 may be used to place the LED array 620 and the thermal plate 675 in thermal communication with one another.

Specifically, when used with edge-lit LCDs, the exemplary embodiments have been found to be very effective in removing heat from the backlight. Edge-lit backlights concentrate a large amount of the heat along the edges of the image assembly 30. Because most of the heat is concentrated along the edges, it can be effectively removed by an exemplary thermal plate 675.

FIG. 4 provides a detailed view of insert B from FIG. 2. Here, a similar configuration as shown in FIG. 3 may be used. For this embodiment, the LED array 620 may be placed in thermal communication with the door frame 110 and optionally the housing 115 as well. Once the heat has been transferred to the door frame 110 (and optionally the housing 115) it may be transferred to the ambient surroundings through convection. In an exemplary embodiment, a thermal plate 675 may be used to place the LED array 620 in thermal communication with the door frame 110 (and optionally the housing 115).

For the embodiment shown in FIG. 4, heat from the LED array 620 is transferred to the distal end 710 of the first portion of the thermal plate 675 where it may be transferred by conduction to the distal end 715 of the second portion. Once the heat has been transferred to the distal end 715 of the second portion then it may be transferred to the door frame 110 where it can then be transferred to the ambient surroundings. In an exemplary embodiment, the door frame 110 would also be in thermal communication with the housing 115 so that heat can also be transferred (preferably by conduction) to the housing 115 and further dissipate to the surroundings. As discussed above, in other embodiments the door frame 110 would not be a separate piece but would simply be provided by the housing 115. In these embodiments, the housing 115 would extend around the transparent plate assembly 200 without the need for a separate door frame 110. Thus, with these embodiments the thermal plate 675 would simply be in thermal communication with the housing 115.

An exemplary thermal plate 675 would also be placed in the path of cooling air 600, which aids in the transfer of heat from the LED array 620 (or image assembly 30—if an edge-lit LCD is not being used). As the heat moves from the distal end 710 of the first portion to the distal end 715 of the second portion, a plurality of apertures (see FIG. 5) may be located on the thermal plate 675 to allow the cooling air 600 to pass through the thermal plate 675 and traverse through channel 550. Optionally, the cooling air 600 can also pass over the surfaces of the thermal plate which oppose the LED array (see element 755 of FIG. 5). The cooling air 600 may be used to cause convective heat transfer from the thermal plate 675. A heat sink 650 may be used to place the LED array 620 and the thermal plate 675 in thermal communication with one another.

FIG. 5 provides a perspective view of an exemplary embodiment for a thermal plate 675. As discussed above, an exemplary thermal plate 675 would have an ‘L-shaped’ cross-section containing a first and second portion. The first portion would have a distal end 710 and the second portion would have a distal end 715 where the two portions are joined at their proximal ends 712 in order to form the ‘L’ shape.

The LED array (or any other heat-producing portion of an image assembly 30) may be in thermal communication with surface 750 of the thermal plate 675. This heat may be transferred to the opposing side of the thermal plate 755 where cooling air (dashed lines) may pass over the surface 750 in order to remove the heat by convection. The remaining heat (indicated by the arrows 900) can also travel towards the proximal end 712 of the first portion where a plurality of apertures 700 allow the cooling air (dashed lines) to pass through the thermal plate 675 and further extract heat. Any heat that is still remaining (indicated by the arrows 900) continues to travel along the thermal plate 675 towards the distal end 715 of the second portion which is preferably in thermal communication with the door frame 110 (or the housing 115 or both the housing 115 and the door frame 110). The remaining heat is then transferred to the various portions of the door frame 110 and optionally the housing 115 so that it can be removed by convection into the surrounding ambient air.

Some embodiments may not utilize the apertures 700 in the thermal plate 675. Alternatively, these designs may use a plurality of smaller thermal plates 675 (those which do not run the entire length of the image assembly) and allow spacing in between these smaller plates for the cooling air to pass through.

The door frames 110 and 105, thermal plate(s) 675, and housing 115 would preferably be made out of a thermally conductive material and preferably with a low thermal resistance. An exemplary material may be metal, and preferably formed sheet metal, but could also be cast and/or machined or injection molded. Any thermally-conductive materials can be used.

Again, while some embodiments have been described herein with reference to back-to-back displays, the various teachings can be used with single display setups as well. In an exemplary embodiment, the thermal plate and cooling loop arrangement can be used in combination with a single display setup. Alternatively, the thermal plate could be used with or without the cooling air loop, in a single or dual display setup.

Exemplary embodiments provide display assemblies which may be mounted in areas which are subject to high ambient temperatures and even direct sunlight and will be able to dissipate the solar load as well as the heat produced by the image assembly and/or backlight (if necessary). The exemplary embodiments herein are capable of cooling the display without having to ingest ambient air (although this can be used if desired) which can be especially useful in environments which contain contaminates in the ambient air.

While certain embodiments are described in detail above, the scope of the invention is not to be considered limited by such disclosure, and modifications are possible without departing from the spirit of the invention as evidenced by the following claims.

Dunn, William, Le, Don, Bedell, Ware

Patent Priority Assignee Title
10314212, Dec 18 2008 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with circulating gas and ambient gas
10548247, Feb 17 2015 Manufacturing Resources International, Inc. Perimeter ventilation system
10687446, Apr 30 2014 Manufacturing Resources International, Inc. Back to back electronic display assembly
10716224, Apr 27 2017 Manufacturing Resources International, Inc. Field serviceable and replaceable assembly
10721836, Mar 03 2008 Manufacturing Resources International, Inc. Electronic display with cooling
10757844, Apr 27 2017 Manufacturing Resources International, Inc. System and method for reducing or combating display bowing
10795413, Apr 03 2019 MANUFACTURING RESOURCES INTERNATIONAL, INC Electronic display assembly with a channel for ambient air in an access panel
10827656, Dec 18 2008 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with circulating gas and ambient gas
10925174, Apr 27 2017 Manufacturing Resources International, Inc. Field serviceable and replaceable assembly
10973156, Apr 30 2014 Manufacturing Resources International, Inc. Dual electronic display assembly
11013142, Mar 03 2008 Manufacturing Resources International, Inc. Electronic display with cooling
11019735, Jul 30 2018 Manufacturing Resources International, Inc. Housing assembly for an integrated display unit
11032923, Apr 27 2017 Manufacturing Resources International, Inc. Field serviceable display assembly
11096317, Feb 26 2019 Manufacturing Resources International, Inc. Display assembly with loopback cooling
11191193, Dec 18 2008 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with circulating gas and ambient gas
11206750, Dec 22 2017 SAMSUNG ELECTRONICS CO , LTD Display apparatus
11459737, Apr 12 2019 The Curators of the University of Missouri Low-cost water production system
11470749, Oct 23 2020 MANUFACTURING RESOURCES INTERNATIONAL, INC Forced air cooling for display assemblies using centrifugal fans
11477923, Oct 02 2020 MANUFACTURING RESOURCES INTERNATIONAL, INC Field customizable airflow system for a communications box
11507141, Apr 03 2019 Manufacturing Resources International, Inc. Electronic display assembly with a channel for ambient air in an access panel
11540418, Mar 03 2008 Manufacturing Resources International, Inc. Electronic display with cooling
11596081, Mar 03 2008 Manufacturing Resources International, Inc. Electronic display with cooling
11617287, Feb 26 2019 Manufacturing Resources International, Inc. Display assembly with loopback cooling
11744036, Mar 04 2016 Manufacturing Resources International, Inc. Cooling system for double sided display assembly
11744054, Aug 23 2021 MANUFACTURING RESOURCES INTERNATIONAL, INC Fan unit for providing improved airflow within display assemblies
11762231, Aug 23 2021 MANUFACTURING RESOURCES INTERNATIONAL, INC Display assemblies inducing turbulent flow
11778757, Oct 23 2020 MANUFACTURING RESOURCES INTERNATIONAL, INC Display assemblies incorporating electric vehicle charging equipment
11822171, Apr 27 2017 Manufacturing Resources International, Inc. Field serviceable and replaceable assembly
11889636, Jul 30 2018 Manufacturing Resources International, Inc. Housing assembly for an integrated display unit
Patent Priority Assignee Title
4093355, Feb 04 1977 General Motors Corporation Symmetrical internal heater for liquid crystal display
4593978, Mar 18 1983 Thomson-CSF Smectic liquid crystal color display screen
4634225, Dec 24 1984 AMETEK, INC ; AMETEK AEROSPACE PRODUCTS, INC Transflective liquid crystal display with integral heating unit and temperature sensor
4748765, Jul 18 1986 Livewell apparatus and method
4763993, Apr 30 1987 n-View Corporation Liquid crystal display for projection systems
4921041, Jun 23 1987 Actronics Kabushiki Kaisha Structure of a heat pipe
4952783, Mar 20 1989 3M Innovative Properties Company Light transmitting flexible film electrical heater panels
4952925, Jan 25 1988 Seiko Epson Corporation Projectable passive liquid-crystal flat screen information centers
5029982, Sep 11 1989 SAMSUNG ELECTRONICS CO , LTD LCD contrast adjustment system
5088806, Jan 16 1990 Honeywell, Inc. Apparatus and method for temperature compensation of liquid crystal matrix displays
5132666, Sep 17 1990 Travel-Ad, Inc. Vehicle-mounted electronic display system
5247374, Apr 05 1990 Stanley Electric Co., Ltd. Liquid crystal display device with common heater between two cells
5282114, Nov 05 1991 CODAR TECHNOLOGY INC Ruggedized computer assembly providing accessibility and adaptability to, and effective cooling of, electronic components
5293930, Sep 24 1992 Hewlett-Packard Company Surface-to-air heat exchanger for electronic devices
5432526, Dec 28 1970 Liquid crystal display having conductive cooling
5535816, Oct 15 1993 Diamond Electroic Mfg. Co. Ltd. Heat sink
5559614, May 01 1995 Motorola, Inc. Liquid crystal display with integral heater and method of fabricating same
5621614, Aug 24 1995 FIFTH LABOR, INC Apparatus for mounting and enclosing an appliance
5657641, Sep 13 1995 Kooltronic, Inc. Panel mounted cooling system
5748269, Nov 21 1996 Westinghouse Air Brake Company Environmentally-sealed, convectively-cooled active matrix liquid crystal display (LCD)
5765743, Jun 13 1996 Fujitsu Limited Outdoor installation type cabinet
5767489, Dec 14 1994 AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD ; AVAGO TECHNOLOGIES GENERAL IP PTE LTD Enhanced resolution liquid crystal microthermography method and apparatus
5808418, Nov 07 1997 Honeywell Inc. Control mechanism for regulating the temperature and output of a fluorescent lamp
5818010, Oct 31 1995 GE Aviation UK Display assemblies
5818694, Feb 16 1996 Hitachi, Ltd. Cooling apparatus for electronic devices
5835179, Aug 30 1996 Sony Corporation Liquid crystal display
5864465, Nov 04 1997 Device for cooling central processing units
5869818, Apr 10 1997 SAMSUNG ELECTRONICS CO , LTD Microwave oven with enclosed choke printed circuit board
5869919, Jun 09 1994 Canon Kabushiki Kaisha Air cooling for flat panel displays
5903433, Dec 14 1994 Telefonaktiebolaget LM Ericsson Cooling system for telecommunications equipment arranged in a cabinet or similar
5991153, Oct 31 1997 Lacerta Enterprises, Inc. Heat transfer system and method for electronic displays
6003015, Feb 28 1996 H M ELECTRONICS, INC Order confirmation system and method of using same
6007205, Mar 30 1995 Seiko Epson Corporation Optical lens unit having internalized fan unit and projection apparatus housing the same
6089751, Dec 30 1996 Honeywell INC Transparent temperature sensor for an active matrix liquid crystal display
6104451, Mar 16 1998 MAXELL, LTD Thin display housing with multiple chambers and fans
6157432, Jan 29 1999 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Heated ferroelectric liquid crystal spatial light modulator with improved contrast, improved grayscale resolution, and decreased pixel sticking when operated in a non-DC balanced mode
6181070, Feb 19 1998 ESL ACQUISITION SUBSIDIARY CORPORATION; Universal Avionics Systems Corporation Method for cooling a lamp backlighting module of a liquid crystal display
6191839, May 03 1999 Rockwell Collin, Inc.; Rockwell Collins, Inc Patterned thermal sensor
6198222, Jun 15 1998 AU Optronics Corp Plasma display device with heat dissipation channels
6211934, Dec 24 1997 Honeywell INC Method of and apparatuses for reducing infrared loading on display devices
6215655, Oct 31 1997 Lacerta Enterprises, Inc. Drive-in ordering apparatus
6351381, Jun 20 2001 Thermal Corp. Heat management system
6392727, Dec 31 1998 Honeywell, Inc Reduced reflectance polarized display
6417900, Mar 21 1997 LG DISPLAY CO , LTD Liquid crystal display unit with conductive light-shielding member having substantially the same potential as common electrode
6428198, Jul 07 1998 AlliedSignal Inc. Display system having a light source separate from a display device
6473150, Jul 21 1999 Sharp Kabushiki Kaisha Liquid crystal display apparatus with a first blower for blue section and a second blower for red and green sections
6493440, Apr 23 2001 Gilbarco Inc Thermal management for a thin environmentally-sealed LCD display enclosure
6504713, Jan 22 1998 IV Phoenix Group, Inc. Ultra-rugged, high-performance computer system
6535266, Dec 16 1999 Rockwell Collins, Inc Closed loop LCD heater system
6628355, Dec 17 1996 Matsushita Electric Industrial Co., Ltd. Liquid crystal display panel including a light shielding film to control incident light
6701143, Dec 15 1999 VERT, INC Apparatus, methods, and computer programs for displaying information on mobile signs
6714410, Feb 12 2001 Innowert GmbH Apparatus for mounting and cooling a flat screen
6727468, Aug 06 2001 Rockwell Collins Flexible heating system having high transmissivity
6812851, Dec 15 1999 VERT, INC , A DELAWARE CORPORATION Apparatuses for displaying information on vehicles
6825828, Feb 23 2001 General Digital Corporation Backlit LCD monitor
6839104, Nov 22 2000 UNIFIED INNOVATIVE TECHNOLOGY, LLC Common electrode substrate and liquid crystal display device having the same
6850209, Dec 29 2000 VERT, INC Apparatuses, methods, and computer programs for displaying information on vehicles
6885412, Aug 22 2002 Sharp Kabushiki Kaisha Liquid crystal display device, image shifting device, and image display apparatus
6886942, Jul 26 2001 SHARP NEC DISPLAY SOLUTIONS, LTD Projector with light source having variable brightness based on detected temperature information
6891135, Dec 11 2002 DENSO International America, Inc. High temperature shut-off for an LCD heater
6909486, Feb 18 2003 Liquid crystal display viewable under all lighting conditions
6943768, Feb 21 2003 II-VI Incorporated; MARLOW INDUSTRIES, INC ; EPIWORKS, INC ; LIGHTSMYTH TECHNOLOGIES, INC ; KAILIGHT PHOTONICS, INC ; COADNA PHOTONICS, INC ; Optium Corporation; Finisar Corporation; II-VI OPTICAL SYSTEMS, INC ; M CUBED TECHNOLOGIES, INC ; II-VI PHOTONICS US , INC ; II-VI DELAWARE, INC; II-VI OPTOELECTRONIC DEVICES, INC ; PHOTOP TECHNOLOGIES, INC Thermal control system for liquid crystal cell
6961108, Feb 18 2003 Liquid crystal display viewable under all lighting conditions
7015470, Jul 15 2003 Lear Corporation Active night vision cooling system
7059757, Jul 17 2002 Sharp Kabushiki Kaisha Liquid crystal display device
7083285, Jun 13 2003 Coretronic Corporation Cooling structure for projection apparatus
7157838, Oct 10 2002 BARCO N V Light emission display arrangements
7161803, Apr 12 2004 Frontline Systems Cooling system for an electronic display
7190587, Sep 22 2004 Samsung Electro-Mechanics Co., Ltd. Fanless high-efficiency cooling device using ion wind
7209349, Oct 28 2004 Quanta Computer, Inc. Heat dissipation device
7212403, Oct 25 2004 Rocky Research Apparatus and method for cooling electronics and computer components with managed and prioritized directional air flow heat rejection
7259964, Oct 04 2004 Sony Corporation Display device
7269023, Jul 12 2004 Sony Corporation Display panel device
7284874, Jun 28 2004 LG DISPLAY CO , LTD LED backlight unit including cooling structure
7452121, Aug 17 2005 SAMSUNG DISPLAY CO , LTD Backlight assembly and display device having the same
7457113, Oct 11 2006 International Business Machines Corporation Venturi bernoulli heat extraction system for laptop computers
7480140, Sep 16 2004 International Business Machines Corporation System for cooling interior and external housing surfaces of an electronic apparatus
7535543, Dec 15 2004 Sony Corporation Liquid crystal display apparatus and cooling device
7591508, Nov 02 2005 VOXX International Corporation Headrest mounted entertainment system
7602469, Dec 29 2005 LG DISPLAY CO , LTD Cooling apparatus and method for manufacturing liquid crystal display device using the same
7667964, Jan 08 2007 Samsung Electronics Co., Ltd. Panel type display device
7752858, Nov 25 2002 Schneider Electric IT Corporation Exhaust air removal system
7753567, Sep 01 2005 LG DISPLAY CO , LTD Backlight unit for test device of LCD panel
7800706, Oct 16 2006 Samsung Electronics Co., Ltd. Cooling fan unit and display apparatus having the same
7813124, Apr 11 2006 Symbicon Oy Electronic information board
7903416, Jan 05 2009 Coretronic Display Solution Corporation Flat panel display
7995342, Sep 30 2008 Sanyo Electric Co., Ltd. Display device
8004648, Nov 16 2007 MANUFACTURING RESOURCES INTERNATIONAL, INC ; MANUFACURING RESOURCES INTERNATIONAL, INC Air curtain for display
8035968, Aug 30 2007 LG Electronics Inc Display apparatus
8081465, Nov 28 2008 FUJI ELECTRIC CO , LTD Cooling apparatus for semiconductor chips
8102173, Apr 17 2008 Teradyne, Inc.; Teradyne, Inc Thermal control system for test slot of test rack for disk drive testing system with thermoelectric device and a cooling conduit
8142027, Jul 04 2007 Seiko Epson Corporation Electronic device and method for controlling the same
8208115, Nov 16 2007 MANUFACTURING RESOURCES INTERNATIONAL, INC Fluid cooled display
8223311, Jun 13 2008 Samsung Electronics Co., Ltd. Liquid crystal display device including airflow channel
8241573, Mar 31 2006 ILLUMINA, INC Systems and devices for sequence by synthesis analysis
8248784, Sep 30 2009 SANYO ELECTRIC CO , LTD Display apparatus
8254121, Jan 12 2010 Samsung Electronics Co., Ltd Cooler and display device having the same
8269916, Jul 24 2008 Saturn Licensing LLC Light emitting device assembly, surface light source device, liquid crystal display device assembly, and light output member
8270163, Aug 31 2009 SANYO ELECTRIC CO , LTD Display apparatus
8274622, Mar 03 2008 MANUFACTURING RESOURCES INTERNATIONAL, INC System for using constricted convection with closed loop plenum as the convection plate
8274789, Sep 30 2008 Sanyo Electric Co., Ltd. Display device
8300203, Aug 31 2009 SANYO ELECTRIC CO , LTD Display apparatus
8320119, Jan 08 2009 MAXELL HOLDINGS, LTD ; MAXELL, LTD Image display
8351014, Mar 03 2008 MANUFACTURING RESOURCES INTERNATIONAL, INC Heat exchanger for back to back electronic displays
8358397, Mar 03 2008 MANUFACTURING RESOURCES INTERNATIONAL INC System for cooling an electronic display
8369083, Feb 16 2010 MANUFACTURING RESOURCES INTERNATIONAL, INC System and method for selectively engaging cooling fans within an electronic display
8373841, Nov 16 2007 MANUFACTURING RESOURCES INTERNATIONAL, INC Shared isolated gas cooling system for oppositely facing electronic displays
8379182, Nov 16 2007 MANUFACTURING RESOURCES INTERNATIONAL, INC Cooling system for outdoor electronic displays
8400608, Jul 16 2009 Sanyo Electric Co., Ltd. Display apparatus
8472174, May 07 2008 Comark, LLC Video display system
8472191, Jun 17 2010 Canon Kabushiki Kaisha Image displaying apparatus, holding member thereof, and image displaying system
8482695, Mar 03 2008 Manufacturing Resources International, Inc. System for using constricted convection with closed loop cooling system as the convection plate
8497972, Nov 13 2009 MANUFACTURING RESOURCES INTERNATIONAL, INC Thermal plate with optional cooling loop in electronic display
8649170, Feb 16 2010 MANUFACTURING RESOURCES INTERNATIONAL, INC System and method for selectively engaging cooling fans within an electronic display
8649176, Aug 19 2010 Sharp Kabushiki Kaisha Display apparatus including cooling section
8654302, Mar 03 2008 MANUFACTURING RESOURCES INTERNATIONAL, INC Heat exchanger for an electronic display
8678603, Mar 29 2011 SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO , LTD Backlight module having elastic holder and liquid crystal display employing same
8693185, Mar 26 2008 MANUFACTURING RESOURCES INTERNATIONAL, INC System and method for maintaining a consistent temperature gradient across an electronic display
8700226, Feb 24 2009 MANUFACTURING RESOURCES INTERNATIONAL, INC Method for driving a cooling fan within an electronic display
8711321, Nov 16 2007 MANUFACTURING RESOURCES INTERNATIONAL, INC System for thermally controlling displays
8749749, Dec 18 2008 MANUFACTURING RESOURCES INTERNATIONAL, INC System for cooling an electronic image assembly with manifolds and ambient gas
8755021, May 04 2011 MANUFACTURING RESOURCES INTERNATIONAL, INC System for cooling an electronic image assembly with manifolds and ambient gas
8758144, Oct 23 2007 IGT Separable backlighting system
8760613, Dec 18 2008 MANUFACTURING RESOURCES INTERNATIONAL, INC Modular distributed components for LED backlight
8767165, Nov 16 2007 Manufacturing Resources International, Inc. Isolated gas cooling system for an electronic display
8773633, Mar 03 2008 MANUFACTURING RESOURCES INTERNATIONAL, INC Expanded heat sink for electronic displays
8804091, Aug 20 2010 MANUFACTURING RESOURCES INTERNATIONAL, INC System and method for thermally controlling an electronic display with reduced noise emissions
8823916, Mar 03 2008 MANUFACTURING RESOURCES INTERNATIONAL, INC System for cooling an electronic image assembly with a heat exchanger having internal fans
8854572, Mar 03 2008 MANUFACTURING RESOURCES INTERNATIONAL, INC System for using constricted convection with closed loop cooling system as the convection plate
8854595, Mar 03 2008 Manufacturing Resources International, Inc. Constricted convection cooling system for an electronic display
8879042, Nov 16 2007 Manufacturing Resources International, Inc. Isolated cooling system having an insulator gap and front polarizer
8988647, Dec 18 2008 MANUFACTURING RESOURCES INTERNATIONAL, INC System for cooling an electronic image assembly with manifolds and ambient gas
9030641, Mar 03 2008 MANUFACTURING RESOURCES INTERNATIONAL, INC Heat exchanger for back to back electronic displays
9089079, Mar 03 2008 Manufacturing Resources International, Inc. System for using constricted convection with closed loop cooling system as the convection plate
9119325, Mar 03 2008 MANUFACTURING RESOURCES INTERNATIONAL, INC Heat exchanger for an electronic display
9119330, Mar 03 2008 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with a heat exchanger having internal fans
9173322, Feb 16 2008 Manufacturing Resources International, Inc. Constricted convection cooling system for an electronic display
9173325, Mar 03 2008 Manufacturing Resources International, Inc. Heat exchanger for back to back electronic displays
9282676, Nov 25 2014 MANUFACTURING RESOURCES INTERNATIONAL, INC Suspended electronic display and cooling assembly
9285108, Mar 03 2008 MANUFACTURING RESOURCES INTERNATIONAL, INC Expanded heat sink for electronic displays
9313917, Nov 13 2009 MANUFACTURING RESOURCES INTERNATIONAL, INC Thermal plate with optional cooling loop in electronic display
9370127, Mar 03 2008 MANUFACTURING RESOURCES INTERNATIONAL, INC System for using constricted convection with closed loop cooling system as the convection plate
9448569, Feb 24 2009 MANUFACTURING RESOURCES INTERNATIONAL, INC System for reducing the thermal inertia of an electronic display
9451060, Oct 15 2015 CITYBRIDGE, LLC Techniques and apparatus for controlling access to components of a personal communication structure (PCS)
9451733, Aug 20 2010 Manufacturing Resources International, Inc. System for thermally controlling an electronic display with reduced noise emissions
9456525, May 09 2013 LG Electronics Inc. Digital signage
9470924, Jul 08 2013 MANUFACTURING RESOURCES INTERNATIONAL, INC Figure eight closed loop cooling system for electronic display
9500896, Jun 16 2014 MANUFACTURING RESOURCES INTERNATIONAL, INC Cooling system for liquid crystal display
9516485, Nov 13 2015 CITYBRIDGE, LLC Systems and methods for making emergency phone calls
9549490, Dec 18 2008 Manufacturing Resources International, Inc. System for cooling an electronic image assembly with circulating gas and ambient gas
9594271, Mar 26 2008 Manufacturing Resources International, Inc. System and method for maintaining a consistent temperature gradient across an electronic display
9613548, Jan 06 2015 MANUFACTURING RESOURCES INTERNATIONAL, INC Advanced cooling system for electronic display
9622392, Sep 17 2015 CITYBRIDGE, LLC Techniques and apparatus for controlling the temperature of a personal communication structure (PCS)
9629287, Mar 03 2008 Manufacturing Resources International, Inc. System for using constricted convection with closed loop cooling system as the convection plate
9648790, Mar 15 2013 MANUFACTURING RESOURCES INTERNATIONAL, INC Heat exchanger assembly for an electronic display
9655289, Mar 11 2014 MANUFACTURING RESOURCES INTERNATIONAL, INC Hybrid rear cover and mounting bracket for electronic display
9723765, Feb 17 2015 MANUFACTURING RESOURCES INTERNATIONAL, INC Perimeter ventilation system for electronic display
9894800, Mar 03 2008 Manufacturing Resources International, Inc. Constricted convection cooling system for an electronic display
20010001459,
20010019454,
20020009978,
20020033919,
20020065046,
20020084891,
20020101553,
20020126248,
20020148600,
20020149714,
20020154255,
20020164944,
20020164962,
20020167637,
20030007109,
20030020884,
20030043091,
20030104210,
20030128511,
20030214785,
20040012722,
20040035558,
20040036834,
20040103570,
20040105159,
20040165139,
20040223299,
20050012039,
20050012722,
20050062373,
20050073632,
20050073639,
20050134525,
20050134526,
20050213950,
20050229630,
20050237714,
20050276053,
20050286131,
20060012958,
20060018093,
20060034051,
20060056994,
20060082271,
20060092348,
20060125998,
20060132699,
20060177587,
20060199514,
20060209266,
20060260790,
20060262079,
20060266499,
20060283579,
20070019419,
20070030879,
20070047239,
20070065091,
20070076431,
20070103863,
20070103866,
20070115686,
20070139929,
20070140671,
20070151274,
20070151664,
20070171353,
20070206158,
20070211205,
20070212211,
20070217221,
20070237636,
20070267174,
20080055534,
20080076342,
20080099193,
20080148609,
20080209934,
20080218446,
20080236005,
20080267790,
20080283234,
20080285290,
20090009729,
20090059518,
20090086430,
20090120629,
20090126906,
20090126907,
20090126914,
20090135365,
20090147170,
20090154096,
20090174626,
20090244472,
20090279240,
20110122162,
CN2702363,
D608775, Mar 23 2009 Lighthouse Technologies Limited LED information display device
EP1408476,
EP1647766,
EP1762892,
EP1951020,
GB2402205,
JP11160727,
JP11296094,
JP2000131682,
JP2001209126,
JP2002158475,
JP2004053749,
JP2005017556,
JP2005134849,
JP2005265922,
JP2006148047,
JP2006163217,
JP2006513577,
JP2007003638,
JP2007293105,
JP2007322718,
JP2008010361,
JP2008292743,
JP3153212,
JP402062015,
JP402307080,
JP6082745,
JP62337,
JP8115788,
JP8194437,
JP8305301,
JP8339034,
JP9246766,
JP9307257,
KR100666961,
KR1020070048294,
KR1020070070675,
KR200366674,
KR200401354,
KR20050033986,
KR20060016469,
WO2005079129,
WO2007116116,
WO2008050660,
WO2009065125,
WO2009135308,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 02 2013DUNN, WILLIAMMANUFACTURING RESOURCES INTERNATIONAL, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0395280502 pdf
Dec 02 2013LE, DONMANUFACTURING RESOURCES INTERNATIONAL, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0395280502 pdf
Dec 04 2013BEDELL, WAREMANUFACTURING RESOURCES INTERNATIONAL, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0395280502 pdf
Apr 11 2016Manufacturing Resources International, Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Feb 03 2022M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Sep 18 20214 years fee payment window open
Mar 18 20226 months grace period start (w surcharge)
Sep 18 2022patent expiry (for year 4)
Sep 18 20242 years to revive unintentionally abandoned end. (for year 4)
Sep 18 20258 years fee payment window open
Mar 18 20266 months grace period start (w surcharge)
Sep 18 2026patent expiry (for year 8)
Sep 18 20282 years to revive unintentionally abandoned end. (for year 8)
Sep 18 202912 years fee payment window open
Mar 18 20306 months grace period start (w surcharge)
Sep 18 2030patent expiry (for year 12)
Sep 18 20322 years to revive unintentionally abandoned end. (for year 12)