An electronic cigarette (“e-Cig”) may include flavor enhancements to improve or add to the flavor of an e-Cig. The e-Cig cartomizer may include a flavor sticker, shell, booster, or mouthpiece that provides additional flavor to the user. In addition, the flavor enhancements may also provide or further enhance the smell of the e-Cig.
|
1. An electronic vaping device comprising:
a battery portion,
the battery portion including a battery configured to provide power to the electronic vaping device,
the battery portion including an air-flow sensor,
the battery portion including circuitry linked to the air-flow sensor,
the battery portion including one or more electronic chips;
a cartridge configured to be coupled with the battery portion,
the cartridge configured to generate a dispersion that is added to air flow through the cartridge,
the cartridge including a heating coil wrapped around a wick,
the cartridge including an airflow tube and an outer housing,
the cartridge being filled with liquid; and
a mouthpiece connected to the cartridge,
the mouthpiece being attached to an outer surface of the cartridge, and
an end region of the cartridge extending into the mouthpiece such that the mouthpiece surrounds at least a portion of the end region of the cartridge.
4. The electronic vaping device of
7. The electronic vaping device of
9. The electronic vaping device of
a portion of the cartridge fits in an open end of the battery portion.
|
This application is a continuation of U.S. application Ser. No. 14/109,393, filed on Dec. 17, 2013, which claims priority to U.S. Provisional Application No. 61/737,847, filed on Dec. 17, 2012, entitled “Cartomizer Flavor Enhancement,” the entire disclosure of each of which are hereby incorporated by reference.
This disclosure generally relates to improvements to an electronic cigarette (“e-cigarette,” “e-Cig,” or “eCig”). In particular, this disclosure relates to enhancing the flavor and smell as part of the e-Cig experience.
An electronic cigarette (“e-cigarette,” “e-Cig,” or “eCig”) is a device that emulates tobacco cigarette smoking, by producing smoke replacement that may be similar in its physical sensation, general appearance, and sometimes flavor (i.e., with tobacco fragrance, menthol taste, added nicotine etc.). A battery portion of the e-Cig includes a controller and rechargeable battery for powering the device (e.g. providing electrical power) and a cartomizer portion generates an aerosol mist (i.e. e-smoke or vapor) that is a replacement for cigarette smoke. In particular, the cartomizer may use heat, ultrasonic energy, or other means to atomize/vaporize a material, such as a liquid solution (i.e. an “e-Liquid”), which may be based on propylene glycol, or glycerin, and may include taste and fragrance ingredients. The result is an aerosol mist. The atomization may be similar to nebulizer or humidifier vaporizing solutions for inhalation.
Thee-Liquid may be kept in a container (sometimes called “cartomizer”, which may be the approximate size of a regular cigarette's filter), and during the puff some of it is heated while being close to and around a heating coil (for example operated by a battery, and controlled via a control chip and a puff sensor). The heated e-Liquid loses its high viscosity, and then is prone to atomization and some evaporation, generating the “smoke” to be inhaled by the user. The atomization may be enhanced by the usage of an e-Liquid-soaked wick inside a heating coil, where the small spaces between the wick fibers and inside them enhance the breaking of the heated e-Liquid to small droplets generating the fog-like smoke. Some of the vaporized e-liquid may re-condensate to droplets, creating more fog-like smoke, due to the mix of the inhaled room-temperature air with the heated air and vapor inside the cartomizer. This effect is enhanced by the higher temperature generated by the electrically-energized heated coil, combined with the air flow (that reduces pressure around the wick due to the Bernoulli's principle, thus enhancing evaporation rate) both enhance evaporation rate, loading the air around the heating coil and wick combination withe-Liquid vapors. When this air, saturated withe-Liquid vapors, is hit by the room-temperature air flow sucked in by the user, some of its vapor may condensate into small air-borne droplets (similar to water fog in air) and add to the “smoke” generated by the e-Cig.
The system and method may be better understood with reference to the following drawings and description. Non-limiting and non-exhaustive embodiments are described with reference to the following drawings. The components in the drawings are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the invention. In the drawings, like referenced numerals designate corresponding parts throughout the different views.
The e-Cig may include a battery portion that includes the battery and controller and a cartridge which includes the cartomizer and where atomization occurs. The cartridge may need to receive power from the battery portion for the atomization process. The atomization process generates a vapor or mist from a material (e.g. e-liquid) in the cartomizer that is heated to generate the vapor or mist. The material/liquid may be flavored so that the user can “taste” the flavor. In addition, various flavor enhancements may be made as described below. A sticker or flavor shell may be attached to or adjacent the cartomizer to add flavor for the user. In addition, the sticker or shell may also provide a pleasing smell than enhances the e-Cig experience. In other embodiments, a booster or mouthpiece may be attached to an end of the e-Cig (e.g. adjacent to the cartomizer) for providing additional flavor or a pleasant scent for the user. The flavor and smell enhancement embodiments are described below.
In the following description, numerous specific details are set forth in order to provide a thorough understanding of the various principles of the present invention. It will be apparent to one skilled in the art, however, that not all these details are necessarily always needed for practicing the present invention. Other systems, methods, features and advantages will be, or will become, apparent to one with skill in the art upon examination of the following figures and detailed description. It is intended that all such additional systems, methods, features and advantages be included within this description, be within the scope of the invention, and be protected by the following claims. Nothing in this section should be taken as a limitation on those claims. Further aspects and advantages are discussed below.
Subject matter will now be described more fully hereinafter with reference to the accompanying drawings, which form a part hereof, and which show, by way of illustration, specific example embodiments. Subject matter may, however, be embodied in a variety of different forms and, therefore, covered or claimed subject matter is intended to be construed as not being limited to any example embodiments set forth herein; example embodiments are provided merely to be illustrative. Likewise, a reasonably broad scope for claimed or covered subject matter is intended. Among other things, for example, subject matter may be embodied as methods, devices, components, or systems. Accordingly, embodiments may, for example, take the form of hardware, software, firmware or any combination thereof (other than software per se). The following detailed description is, therefore, not intended to be taken in a limiting sense. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the various principles of the embodiments. It will be apparent to one skilled in the art, however, that not all these details are necessarily always needed for practicing the embodiments.
Throughout the specification and claims, terms may have nuanced meanings suggested or implied in context beyond an explicitly stated meaning. Likewise, the phrase “in one embodiment” as used herein does not necessarily refer to the same embodiment and the phrase “in another embodiment” as used herein does not necessarily refer to a different embodiment. It is intended, for example, that claimed subject matter include combinations of example embodiments in whole or in part.
In general, terminology may be understood at least in part from usage in context. For example, terms, such as “and”, “or”, or “and/or,” as used herein may include a variety of meanings that may depend at least in part upon the context in which such terms are used. Typically, “or” if used to associate a list, such as A, B or C, is intended to mean A, B, and C, here used in the inclusive sense, as well as A, B or C, here used in the exclusive sense. In addition, the term “one or more” as used herein, depending at least in part upon context, may be used to describe any feature, structure, or characteristic in a singular sense or may be used to describe combinations of features, structures or characteristics in a plural sense. Similarly, terms, such as “a,” “an,” or “the,” again, may be understood to convey a singular usage or to convey a plural usage, depending at least in part upon context. In addition, the term “based on” may be understood as not necessarily intended to convey an exclusive set of factors and may, instead, allow for existence of additional factors not necessarily expressly described, again, depending at least in part on context.
The “smoke” produced by an e-Cig is a created by turning a liquid (e-Liquid 110) into mist and some vapor with an atomizer 112. The cartomizer 113 may include the atomizer 112 and the e-liquid 110. The cartomizer 113 may also be referred to as a cartridge throughout this disclosure and may be disposable. The e-liquid 110 may have a high viscosity at room temperature to enable longer shelf life and reduce leakages; however, this high viscosity may reduce the atomization rate. The e-Liquid 110 is atomized via air flow 108, generated by the inhalation of the user (i.e. the smoker or consumer or vapor), which produces a pressure difference that removes e-Liquid droplets from thee-Liquid 110. In one embodiment, thee-Liquid 110 may be soaked in a wick (not shown), which may be connected to a heating element 111. In order to reduce thee-Liquid viscosity, to a level enabling atomization, external heat may be applied through the heating element 111. The heating element 111 may be a coil in one embodiment that wraps around the wick in order to heat the liquid on the wick. In this embodiment, local viscosity reduction via heating, while inhalation occurs, enables e-Liquid atomization in the inhalation-generated flow of air 108. An airflow tube of the battery enclosure and an airflow tube of the cartridge may enable the smoker to puff through the electronic cigarette and activate the airflow sensor inside the battery portion. This may trigger the controller and cause the coil inside the cartridge to get hot, evaporate the liquid that is in the cartridge and causes smoke (i.e. vapor).
Thee-Liquid 110 may be heated via an electric current flowing through the heating element 111 and may then be atomized and evaporated through the e-Cig and may contain tastes and aromas that create a smoking sensation. The controller 102 may be activated due to air flow 108 (from the inhaled air) passing a flow sensor 104. The sensor 104 may be activated by the pressure drop across the sensor and may directly switch the battery 106 power on, or be used as an input for the controller 102 that then switches the battery 106 current on. There may be a pressure differential sensor which may be enclosed in a plastic holder and may be part of or separate from the flow sensor 104. Although illustrated as separate from the e-Cig, the controller 102 may be a part of the e-Cig (e.g. along with the battery 106). The battery portion may include one or more electronic chips controlling and communicating from it. It may connect with the cartomizer 113, which can be replaced or changed (e.g. when a new/different e-Liquid 110 is desired). The e-Cig may include two parts. The first part may just be referred to as the battery or battery portion (i.e. battery enclosure) and it includes the power source (e.g. battery), the air flow sensor and the controller. The second part is the cartridge (i.e. cartomizer 113) that is filled up with liquid and flavors that is required for smoke and flavor generation. The configuration of the e-Cig in
Although not explicitly shown in
In any of the embodiments described below, a flavoring agent or material is added to the e-Cig that provides both flavor/taste and scent/smell. In some embodiments, the flavoring mechanism is added directly to or around the cartomizer or to other parts of the e-Cig. In other embodiments, the flavoring mechanism is provided in a separate component. In one embodiment, the flavoring mechanism may be incorporated in a sticker that wraps around the cartomizer. In another embodiment, the flavoring mechanism may be added to the cartomizer itself. The flavor may be noticeable on the user's lips after using the e-Cig, and via olfactory experience. This provides an enhanced flavor and scent experience for the user.
The flavoring mechanism may be a layer of flavoring that is added to the e-Cig. The layer of flavoring in one embodiment may have a slow release formula and antibacterial preservative properties so that it can be used continuously. The medium holding the flavor and scent may be plastic films with pores or micro-holes, paper, sponge-like films, films with encapsulated taste and scent agents, treated plastic films or any material that can absorb and slow release the scent. The material holding the flavor and scent may be treated to withstand storage and typical use conditions, while preserving its sensory properties and its safety for use. The flavoring/scent agent may include flavors/scents and antimicrobial agents that include carboxymethyl cellulose, pullulan, hydroxypropylmethyl cellulose, hydroxyethyl cellulose, hydroxypropyl cellulose, polyvinyl pyrrolidone, polyvinyl alcohol, sodium alginate, polyethylene glycol, xanthum gum, tragacanth gum, guar gum, acacia gum, arabic gum, polyacrylic acid, methylmethacrylate copolymer, carboxyvinyl polymer, amylose, high amylose starch, hydroxypropylated high amylose starch, dextrine, pectin, chitin, chitosan, levan, elsinan, collagen, gelatin, zein, gluten, soy protein isolate, whey protein isolate, casein, and/or mixtures thereof. The flavor may be released from moisture from the lips or air exposure after being unwrapped or removed from packaging, or may be a scratch and sniff material.
The flavoring agent may include multiple flavors or scents, e.g., as multiple layers. The sticker 202 may include a binding agent, such as carboxymethylcellulose, which can hold flavoring agents. These agents may release a hint of taste or smell that augments, strengthens, and varies the sensation of the maine-liquid. The size of the sticker 202 may vary according to the desired intensity of the flavoring experience, and the concentration of the flavoring agent. Thus, the sticker 202 may cover a selected portion or all of the interior wall 204 of the cartomizer 113. The sticker 202 may be adhered to the inner wall 204 of the cartomizer during manufacture, using conventional materials, such as polyvinyl acetate emulsion. Additionally or alternatively, impregnation by microencapsulated flavoring agents provides a measure of control of the release rate. In one embodiment, the gentle warming of the impregnated material may facilitate release of the flavoring agent into the cartomizer, and to the heating coil where vapor/mist is produced, having an enhanced flavor as a result of the addition of the flavoring agent.
In one embodiment, the cartomizer may be wrapped with one or more soft matte polyethylene terephthalate (“PET”) multilayered stickers. In another embodiment, the flavored layer may be applied to the outside of a sticker. In another embodiment, only part of the sticker (e.g., the part that is actually touches the lips of the user is covered with flavoring/scent agent). In one embodiment, the sticker may be a paper material that is coated with a flavoring and/or scent agent.
Selected ones of the shells 304, 306 may be inserted to the end of the cartomizer 113 during manufacture, and a locking mechanism may be provided to retain the inserted shell. In one example, the locking mechanism may be an adhesive or a glue. Alternatively, the lock may be mechanical, such as a retaining ring or flange, screw. In some embodiments, the mechanism may be unlocked in order to permit replacement of the shells 304, 306. Providing a selection of different shells and flavoring agents facilitates tailoring the cartomizer 113 according to the needs of different consumers. In one embodiment, the shells 304, 306 may be a porous plastic material, such as food graded plastics. The material may have a controlled release material with known permeability. Exemplary materials may include polyurethane, polyethylene, vinyl acetate, or polycarbonate. The materials described above for the shells may also apply to any of the other embodiments, including the sticker, booster, mouthpiece, etc.
There may be a special external (removable) wrap or container or packaging for the flavor booster 602 or for the cartridge that will seal in and preserve the flavor during storage or between uses. It may insulate against heat, light, moisture, or oxygen, etc. The booster 602 may be filled with powder or liquid or solid crystal or gum that will be released into the mouth before, during, or after e-Cig usage. The release of the booster 602 contents may be activated by licking away the external layer, squeezing with the teeth or biting the booster to rupture it, or biting into the booster itself and chewing it.
The mouthpiece 802 may be made of plastic with a recess 906 formed therein such that its inner diameter fits over the cartomizer 113 and enables fast mounting and dismounting from the cartomizer 113. It should be flexible enough to create a firm hold on the cartomizer 113 to enable use of the e-Cig without being dislodged. In the mouthpiece 802 there may be an internal bore 908 for passage of vapor/mist from the cartomizer 113 to enable vaping through the mouthpiece with minimal drag to air flow (e.g. a hole with a diameter of 2-3 mm may be suitable).
In an alternate embodiment, the wick and/or the heating element may also include a flavoring agent. The flavoring agent may also include a scent component. The flavoring agent may be activated by heat and result in improved flavor and/or scent for the user. In particular, the first few puffs of the e-Cig may be improved by the flavor agent or scent agent from the heating element and/or wick being activated which may overcome any initial burning smell. In addition, other components of the e-Cig may also include or be coated with a flavoring agent or scent agent as described in the embodiments above. The additional flavoring/scent agent may provide a pleasant flavor/scent to the user to improve the e-Cig experience. In another embodiment, a package of the e-Cig or a package of cartridges or cartomizers may also include a scent agent that reveals the scent or suggests the flavor of the particular product. For example, a box of cartomizers with mint flavored e-liquid may have a mint scent agent so that the box smells like mint. Likewise, the enhanced flavoring embodiments described above may also be previewed from the box.
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described hereinabove. Rather, the scope of the present invention includes both combinations and sub-combinations of the various features described hereinabove, as well as variations and modifications thereof that are not in the prior art, which would occur to persons skilled in the art upon reading the foregoing description.
Peleg, Eyal, Weigensberg, Aaron Arye, Capuano, Samuel, Stern, Yechezkel, Juster, Bernard
Patent | Priority | Assignee | Title |
10779576, | May 24 2017 | VMR PRODUCTS, LLC | Flavor disk |
Patent | Priority | Assignee | Title |
5388594, | Sep 11 1992 | PHILIP MORRIS USA INC | Electrical smoking system for delivering flavors and method for making same |
5750964, | Mar 11 1991 | Philip Morris Incorporated | Electrical heater of an electrical smoking system |
6155268, | Jul 23 1997 | Japan Tobacco Inc. | Flavor-generating device |
7381277, | Jul 29 2004 | R J REYNOLDS TOBACCO COMPANY | Flavoring a cigarette by using a flavored filter plug wrap |
7726320, | Oct 18 2006 | RAI STRATEGIC HOLDINGS, INC | Tobacco-containing smoking article |
20070074734, | |||
20080092912, | |||
20100200006, | |||
20120006346, | |||
20120048266, | |||
20120060853, | |||
20120227752, | |||
20130192617, | |||
20130298905, | |||
20130319440, | |||
CN101043827, | |||
CN101557728, | |||
CN102014677, | |||
CN200983833, | |||
CN201127285, | |||
CN86203578, | |||
EP1736065, | |||
WO2012142293, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 12 2018 | Nu Mark Innovations Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 12 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Jun 06 2022 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 04 2021 | 4 years fee payment window open |
Jun 04 2022 | 6 months grace period start (w surcharge) |
Dec 04 2022 | patent expiry (for year 4) |
Dec 04 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 04 2025 | 8 years fee payment window open |
Jun 04 2026 | 6 months grace period start (w surcharge) |
Dec 04 2026 | patent expiry (for year 8) |
Dec 04 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 04 2029 | 12 years fee payment window open |
Jun 04 2030 | 6 months grace period start (w surcharge) |
Dec 04 2030 | patent expiry (for year 12) |
Dec 04 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |