A method of delivering a prosthetic mitral valve includes delivering a distal anchor from a delivery sheath such that the distal anchor self-expands inside a first heart chamber on a first side of the mitral valve annulus, pulling proximally on the distal anchor such that the distal anchor self-aligns within the mitral valve annulus and the distal anchor rests against tissue of the ventricular heart chamber, and delivering a proximal anchor from the delivery sheath to a second heart chamber on a second side of the mitral valve annulus such that the proximal anchor self-expands and moves towards the distal anchor to rest against tissue of the second heart chamber. The self-expansion of the proximal anchor captures tissue of the mitral valve annulus therebetween.

Patent
   10149761
Priority
Jul 17 2013
Filed
Aug 28 2017
Issued
Dec 11 2018
Expiry
Jan 31 2034
Assg.orig
Entity
Large
95
696
currently ok
10. A prosthetic mitral valve comprising:
an anchor assembly comprising a ventricular anchor, a central portion, and an atrial anchor, the anchor assembly configured to expand from a collapsed configuration to an expanded configuration;
a plurality of replacement leaflets secured to the anchor assembly; and
a plurality of retention hooks attached only to the ventricular anchor, wherein each of the retention hooks curves radially outwards when the anchor assembly is in the expanded configuration and flattens when the anchor assembly is in the collapsed configuration, and wherein the plurality of leaflets extend distally past the retention hooks when the anchor assembly is in the expanded configuration.
1. A prosthetic mitral valve comprising:
an anchor assembly comprising a ventricular anchor, a central portion, and an atrial anchor, the anchor assembly configured to self-expand from a collapsed configuration to an expanded configuration;
a plurality of struts attached to the anchor assembly;
a plurality of leaflets secured to the plurality of struts; and
a plurality of retention hooks attached to the ventricular anchor, wherein each of the retention hooks curves radially outwards when the anchor assembly is in the expanded configuration and flattens when the anchor assembly is in the collapsed configuration, and wherein the plurality of struts and plurality of leaflets extend distally past the retention hooks when the anchor assembly is in the expanded configuration.
2. The prosthetic mitral valve of claim 1, wherein the plurality of retention hooks are attached only to the ventricular anchor.
3. The prosthetic mitral valve of claim 1, wherein the plurality of retention hooks are made of nitinol.
4. The prosthetic mitral valve of claim 1, wherein the plurality of retention hooks are integral with the anchor assembly.
5. The prosthetic mitral valve of claim 1, wherein at least a portion of the anchor assembly is covered with a skirt configured to seal the prosthetic mitral valve during use.
6. The prosthetic mitral valve of claim 1, wherein the plurality of leaflets comprise a biomaterial.
7. The prosthetic mitral valve of claim 1, wherein the plurality of leaflets are arranged to fill an inner diameter of the prosthetic mitral valve.
8. The prosthetic mitral valve of claim 1, wherein the ventricular anchor and the atrial anchor are configured to flare outward relative to the central portion when self-expanding from the collapsed configuration to the expanded configuration.
9. The prosthetic mitral valve of claim 1, wherein the ventricular anchor and the atrial anchor are both formed of a plurality of arcuate portions.
11. The prosthetic mitral valve of claim 10, wherein the anchor assembly is configured to self-expand from the collapsed configuration to the expanded configuration.
12. The prosthetic mitral valve of claim 10, wherein the plurality of retention hooks are made of nitinol.
13. The prosthetic mitral valve of claim 10, wherein the plurality of retention hooks are integral with the anchor assembly.
14. The prosthetic mitral valve of claim 10, wherein at least a portion of the anchor assembly is covered with a skirt configured to seal the prosthetic mitral valve during use.
15. The prosthetic mitral valve of claim 10, further comprising a plurality of struts attached to the anchor assembly, the plurality of leaflets secured to the anchor assembly with the plurality of struts.
16. The prosthetic mitral valve of claim 10, wherein the plurality of leaflets comprise a biomaterial.
17. The prosthetic mitral valve of claim 10, wherein the plurality of leaflets are arranged to fill an inner diameter of the prosthetic mitral valve.
18. The prosthetic mitral valve of claim 10, wherein the ventricular anchor and the atrial anchor are configured to flare outward relative to the central portion when expanding from the collapsed configuration to the expanded configuration.
19. The prosthetic mitral valve of claim 10, wherein the ventricular anchor and the atrial anchor are both formed of a plurality of arcuate portions.

This application is a continuation of U.S. patent application Ser. No. 15/424,742, filed on Feb. 3, 2017, and titled “SYSTEM AND METHOD FOR CARDIAC VALVE REPAIR AND REPLACEMENT,” which is a continuation of U.S. patent application Ser. No. 14/170,407, filed on Jan. 31, 2014, titled “SYSTEM AND METHOD FOR CARDIAC VALVE REPAIR AND REPLACEMENT,” U.S. Pat. No. 9,561,103, which claims priority to U.S. Provisional Patent Application No. 61/847,515, filed on Jul. 17, 2013, titled “SYSTEM AND METHOD FOR CARDIAC VALVE REPAIR AND REPLACEMENT,” each of which is herein incorporated by reference in its entirety.

All publications and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

The present invention relates generally to the treatment of cardiac valve disorders, such as mitral valve replacement, using minimally invasive techniques.

The mitral valve lies between the left atrium and the left ventricle of the heart. Various diseases can affect the function of the mitral valve, including degenerative mitral valve disease and mitral valve prolapse. These diseases can cause mitral stenosis, in which the valve fails to open fully and thereby obstructs blood flow, and/or mitral insufficiency, in which the mitral valve is incompetent and blood flows passively in the wrong direction.

Many patients with heart disease, such as problems with the mitral valve, are intolerant of the trauma associated with open-heart surgery. Age or advanced illness may have impaired the patient's ability to recover from the injury of an open-heart procedure. Additionally, the high costs are associated with open-heart surgery and extra-corporeal perfusion can make such procedures prohibitive.

Patients in need of cardiac valve repair or cardiac valve replacement can be served by minimally invasive surgical techniques. In many minimally invasive procedures, small devices are manipulated within the patient's body under visualization from a live imaging source like ultrasound, fluoroscopy, or endoscopy. Minimally invasive cardiac procedures are inherently less traumatic than open procedures and may be performed without extra-corporeal perfusion, which carries a significant risk of procedural complications.

Minimally invasive aortic valve replacement devices, such as the Medtronic Corevalve or the Edwards Sapien, deliver aortic valve prostheses through small tubes which may be positioned within the heart through the aorta via the femoral artery or through the apex of the heart. However, current cardiac valve prostheses are not designed to function effectively within the mitral valve. Further, current cardiac valve prostheses delivered via a minimally invasive device are often difficult to place correctly within the native valve, difficult to match in size to the native valve, and difficult to retrieve and replace if initially placed incorrectly.

Accordingly, it is desirable to have a mitral valve replacement that solves some or all of these problems.

In general, in one embodiment, a prosthetic mitral valve includes a proximal anchor, a distal anchor, and a central portion therebetween. The proximal and distal anchors each include a first outer frame and a second outer frame. The first outer frame includes a plurality of first arcs joined together, and the second outer frame includes a plurality of second arcs joined together. The plurality of first arcs are out of phase relative to the plurality of second arcs.

This and other embodiments can include one or more of the following features. The first plurality of arcs can be movable relative to the second plurality of arcs. The first and second outer frames can be substantially circular. The plurality of first arcs can be disposed around substantially the entire first outer frame, and the plurality of second arcs can be disposed around substantially the entire second outer frame. The plurality of first arcs can lie substantially in a first plane, and the plurality of second arcs can lie substantially in an adjacent second plane. The first and second arcs can be approximately 90 degrees out of phase. The first and second outer frames can be made of wire rope. The wire rope of the first outer frame can have an opposite lay than a lay of the wire rope of the second outer frame. The proximal anchor and distal anchor can be substantially parallel to one another. The central portion can include substructures connecting the proximal and distal anchors. The substructures can be hexagonal. The proximal anchor, distal anchor, and central portion can be configured to expand from a constrained configuration to an expanded configuration. The device can be configured to foreshorten upon expansion of the proximal anchor, distal anchor, and central portion from the constrained configuration to the expanded configuration. The proximal anchor and the distal anchor can each have a diameter in the expanded configuration that is greater than a diameter of the central portion in the expanded configuration.

In general, in one embodiment, a prosthetic mitral valve includes a valve frame comprising a proximal anchor, a distal anchor, and a central portion therebetween. The valve frame is configured to expand from a constrained configuration to an expanded configuration. A plurality of struts is attached to the central portion and extends distally past the distal anchor. A plurality of leaflets are secured to the plurality of struts such that at least a portion of each leaflet extends distally past the distal anchor.

This and other embodiments can include one or more of the following features. The valve frame can be configured to self-expand. The plurality of leaflets can be attached to the central portion. The plurality of leaflets can include a biomaterial or a polymer. The proximal anchor can be covered with a skirt configured to seal the prosthetic valve. The skirt can include a biomaterial or polymer. The outer perimeter of the proximal anchor can be substantially circular when covered with the skirt. The plurality of leaflets can be arranged to fill an inner diameter of the mitral valve prosthetic. The ratio of the inner diameter to a height of the plurality of struts can be approximately 2:1. The valve frame can be configured to foreshorten upon expansion of the valve frame from the constrained configuration to the expanded configuration. The proximal anchor and the distal anchor can each have a diameter in the expanded configuration that can be greater than a diameter of the central portion in the expanded configuration.

In general, in one embodiment, a prosthetic mitral valve includes a valve frame having a proximal anchor, a distal anchor, and a central portion therebetween. The valve frame is configured to expand from a constrained configuration to an expanded configuration. The ratio of an outer diameter of the central portion to a length of the valve frame in the expanded configuration is at least 1.1.

This and other embodiments can include one or more of the following features. The valve frame can be configured to self-expand. The ratio can be less than or equal to 2. The ratio of the outer diameter of the proximal anchor or the distal anchor to the length of the device can be greater than or equal to 2. The outer diameter of the central portion can be between 25 and 40 mm. The length can be less than or equal to 22 mm. The proximal and distal anchors can extend radially outward from the central portion. The outer diameter of the proximal and distal anchors can be at least 38 mm.

In general, in one embodiment a method of delivering a prosthetic mitral valve includes delivering a distal anchor from a delivery sheath such that the distal anchor self-expands inside a first heart chamber on a first side of the mitral valve annulus, pulling proximally on the distal anchor such that the distal anchor self-aligns within the mitral valve annulus and the distal anchor rests against tissue of the ventricular heart chamber, and delivering a proximal anchor from the delivery sheath to a second heart chamber on a second side of the mitral valve annulus such that the proximal anchor self-expands and moves towards the distal anchor to rest against tissue of the second heart chamber. The self-expansion of the proximal anchor captures tissue of the mitral valve annulus therebetween.

This and other embodiments can include one or more of the following features. The first heart chamber can be a ventricular heart chamber, and the second heart chamber can be an atrial heart chamber.

In general, in one embodiment, a method of delivering a prosthetic mitral valve includes securing a prosthetic valve within a delivery device by extending a plurality of wires of the delivery device through a proximal anchor so as to collapse the proximal anchor, extending the prosthetic delivery device into a heart with the prosthetic valve covered by a sheath of the delivery device, pulling the sheath proximally to expose a distal anchor of the prosthetic valve, thereby allowing the distal anchor to self-expand into place on a first side of the mitral valve annulus, pulling the sheath proximally to expose the proximal anchor, loosening the wires of the delivery device so as to allow the proximal anchor to self-expand into place on a second side of the mitral valve annulus, and removing the delivery device from the heart.

This and other embodiments can include one or more of the following features. The method can further include tightening the wires after loosening the wires so as to collapse the proximal anchor again, repositioning the proximal anchor to a second location on the second side of the mitral valve annulus and loosening the wires of the delivery device so as to allow the proximal anchor to self-expand into place at the second location on the second side of the mitral valve annulus. Extending a plurality of wires of the delivery device through a proximal anchor so as to collapse the proximal anchor and can include extending a plurality of wires through arcs of the proximal anchor. Neighboring retention wires can extend through neighboring arcs. The method can further include extending a guidewire down a central lumen of the delivery device before extending the prosthetic delivery device into the heart. Tightening and loosening the wires of the delivery device can be performed with a control on a handle of the delivery device.

In general, in one embodiment, a delivery device includes a central longitudinal structure having a plurality of tubes extending therethrough, a retention wire extending within each tube, a sheath, a handle, and a control on the handle. Each tube has a tubular wall and an aperture in the tubular wall. Each retention wire configured to extend through a portion of a medical device at the aperture. The sheath is configured to fit over and slide relative to the central longitudinal structure and the medical device. The handle is connected to the central longitudinal structure. The control on the handle is configured to tighten the wires to collapse at least a portion of the medical device and to loosen the wires to expand the portion of the medical device.

This and other embodiments can include one or more of the following features. The delivery device can further include a central lumen extending through the central longitudinal structure. The central lumen can be configured to house a guidewire. The retention wires can be made of nitinol or liquid crystal polymer fiber. There can be between 4 and 20 retention wires and tubes. The delivery device can further include a tapered distal tip connected to the central longitudinal structure. The control can be further configured to retighten the wires after loosening to collapse the portion of the medical device again.

The novel features of the invention are set forth with particularity in the claims. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:

FIGS. 1A-1E are various view of a compliant, self-centering valve prosthesis structure suitable for delivery via minimally invasive surgical techniques. FIGS. 1A and 1B are isometric views of the prosthesis. FIG. 1C is a proximal view of a proximal anchor of the prosthesis. FIG. 1D is a proximal view of the prosthesis. FIG. 1E is a side view of the prosthesis.

FIGS. 2A-2C show an exemplary prosthesis with leaflets attached thereto. FIG. 2A is an isometric view of the prosthesis. FIG. 2B is a distal view of the prosthesis. FIG. 2C is a section view of the prosthesis.

FIGS. 3A-3B show the prosthesis of FIGS. 1A-1E with various dimensions marked thereon. FIG. 3A is a proximal view of the prosthesis. FIG. 3B is a side view of the prosthesis.

FIG. 4A shows a delivery device with a prosthesis fully loaded therein.

FIG. 4B shows the delivery device with the prosthesis deployed.

FIGS. 5A-5D shows exemplary steps for delivery a valve prosthesis. FIG. 5A shows a delivery device housing the prosthesis. FIG. 5B shows the distal anchor of the prosthesis deployed with the proximal anchor folded up therearound. FIG. 5C shows the sheath of the delivery device pulled back to expose the retention wires of the delivery device. FIG. 5D shows the valve prosthesis fully deployed around the delivery device.

FIGS. 6A-6D show placement of a prosthesis within the mitral valve using a delivery device.

FIG. 7 shows a valve prosthesis structure with integral folding hooks for gripping cardiac tissue.

FIGS. 8A-8B and 9A-9B show various wire rope configurations.

FIGS. 10A-10B show a mechanism for releasing the retention wires of a delivery device by pulling proximally on the retention wires.

FIGS. 11A-11B show a mechanism for loosening the retention wires of a delivery device by pushing distally on the retention wires.

FIGS. 12A-12B show an exemplary mechanism for looping the proximal anchor with the retention wires of a delivery device. FIG. 12A shows the use of twelve retention wires. FIG. 12B shows the use of six retention wires.

FIG. 13 shows an alternative mechanism for looping the proximal anchor over a delivery device.

Described herein is a flexible, self-orienting cardiac valve prosthesis configured to be delivered through minimally invasive techniques. The prosthesis can include a proximal anchor (e.g., configured to be placed in the ventricle), a distal anchor (e.g., configured to be placed in the atrium), a central portion or column between the anchors, a plurality of struts extending distally (e.g., into the ventricle), and a plurality of leaflets attached to the struts. The prosthesis can be self-expanding, such as be made of super elastic nickel titanium (nitinol). In some embodiments, the prosthesis can be made of woven stranded nitinol.

The prosthesis described herein can be delivered to a cardiac valve orifice, such as the mitral valve, by using minimally invasive techniques to access cardiac valves through small incisions in the patient's body, passing the prosthesis through the apex of the heart, through the aorta via femoral artery access, through the aorta via an intercostal puncture, through the vena cava via femoral vein access, through the vena cava via jugular access, and through the venous system into the left heart via a transseptal puncture. The flexible prosthesis can be folded and compressed to fit within a delivery tube. The delivery tube can used to position the prosthesis at the treatment site, and if necessary, re-sheath, reposition, and re-deploy the device.

During deployment, the distal anchor can be deployed first in a cardiac chamber, such as the ventricle, and retracted to a seated position against the valve orifice, such as the mitral valve orifice. Then the center column and proximal anchor may then be deployed in another cardiac chamber, such as the atrium, sandwiching the valve orifice securely between the anchors in opposing cardiac chambers.

Embodiments of the invention are designed to secure the valve prosthesis in the orifice by applying a radial force from the center column structure of the prosthesis outward against the cardiac orifice and by sandwiching the cardiac orifice between distal and proximal anchors that are larger in diameter than the orifice. Further engagement between the prosthesis and tissue may be added by securing small, curved wire hooks into the sub-structures of the valve prosthesis.

FIGS. 1A-1E show an exemplary embodiment of a valve prosthesis 100. The valve prosthesis includes a proximal anchor 2, a distal anchor 3, and a central portion 4 therebetween. A central opening 15 extends through the center of the prosthesis 100. The central portion 4 can substantially trace the perimeter of the central opening 15 while each anchor 2, 3 can extend outwardly therefrom in an annular shape. The proximal anchor 2, distal anchor 3, and central portion 4 can be formed of wire, such as nitinol wire rope. Each anchor 2,3 can include a first outer frame 122, 133 and a second outer frame 222, 233, respectively. In one embodiment, the proximal anchor 2 and distal anchor 3 can be substantially parallel to one another.

An exemplary proximal anchor 2 is shown in FIG. 1C. The first outer frame 122 can sit proximal to the second outer frame 222, and the first outer frame 122 can sit in a plane substantially parallel to the plane of the second outer frame 222. Further, each frame 122, 222 can include a plurality of arcs 111, 211 (which can also be referred to as arcuate portions, curved portions, or petals), such as between 4 and 10 or between 5 and 8 arcs, joined together at joints 16, 26, respectively. For example, outer frame 122 can include six arcs 111a,b,c,d,e,f while outer frame 222 can also include six arcs 211a,b,c,d,e,f. The arcs 111 of the outer frame 122 can be connected together, and the arcs 211 of the outer frame 222 can be connected together, so as to form a substantially circular outer perimeter for each of the frames 122, 222.

Each joint 16, 26 between neighboring arcs 111 or 211 can be, for example, a crimp that crimps adjacent arcs (e.g., 111a and 111b) to one another. As shown in FIG. 1C, the outer frames 122, 222 can be positioned relative to one another such that the arcs 111, 211 are out of phase relative to one another. For example, the arcs 111 can be approximately 90 degrees out of phase relative to the arcs 211. That is, the arcs 111 of the first outer frame 122 can overlap with the arcs 211 of the second outer frame 222 such that, for example, a single arc 111a of the first outer frame 122 overlaps with half of two underlying arcs 211f, 211a of the second outer frame 222. In some embodiments, only some arcs are out of phase with one another while other arcs are in-phase with one another. The second outer frames 133, 233 can likewise include arcs as described with respect to the first outer frame 122, 222.

As shown in FIGS. 1A and 1E, the first outer frame 122, 133 and the second outer frame 222, 233 of each anchor 2, 3 can be connected to one another through the central portion 4. The central portion 4 can extend from the crimps 16, 26 of the proximal anchor 2 to the corresponding crimps of the distal anchor 3. The central portion 4 can include substructures or wire segments 44 that form a pattern, such as a hexagonal pattern (see FIG. 1E). For example, two wire segments 44a,b of the central portion 4 can extend at an angle from the crimp 16a (see FIGS. 1D, 1E), such as to form an angle of approximately 120 degrees relative to one another. Each of the wire segments 44a,b can then meet adjacent wire segments within the central portion 4 (e.g., segment 44b meets segment 44c). The adjacent wire segments (e.g., 44b and 44c) can then be joined together at a joint 46 (e.g., joint 46a). The joint 46a can form a column substantially parallel to a central axis 110 of the prosthesis 100. This pattern can extend throughout the entire prosthesis to form a number of joints 46, such as twelve joints 46. The joints 46 can not only fix the position of the outer frames of a single anchor together, but also fix the proximal and distal anchors 2, 3 together. The hexagonal structure of the segments 44 and joints 46 can advantageously provide radial and vertical strength as well as stability to the prosthesis 100.

In some embodiments (as shown in FIG. 1D), parts of the central portion 4 can be formed of the same wire or wire rope as the outer frames of the anchors 2,3 and/or the outer frames of the anchors 2,3 can be formed of the same wire or wire rope as one another. For example, two single strands of wire, such as two 22-inch long strands of wire, can be used to form the anchors 2, 3 and the central portion 4. As shown in FIGS. 1D and 1E, a single strand 191 (darkened in the picture relative to the opposite strand 193 for clarity) can form an arc 111a (see FIG. 1D) of the first outer frame 122 of proximal anchor 2, extend through a joint 16a to form wire segment 44b of the central portion 4, extend through joint 46a to form wire segment 44d (see FIG. 1D), then form an arch of the second outer frame 233, extend through another joint to form wire segment 44e (see FIG. 1D), extend around in a similar fashion to form wire segment 44f (see FIG. 1D), and continue winding in a similar fashion until all of the outer frames 122, 233 have been formed from the single strand 191. The ends of the strand 191 can then be attached to one another, such as through splicing crimps, butt joint crimps, welding, riveting, or weaving. The second strand 193 can be wound similarly to form the second outer frame 222 of the proximal anchor 2 and the first outer frame 133 of the distal anchor 3.

By joining the first outer frame 122, 133 to the second outer frame 222, 233 of each anchor 2, 3, as described above, the arcs of each outer frame can be movable relative to one another. For example, the arc 111a can be movable relative to the arcs 211f, 211a that it overlaps (see FIG. 1C). That is, the outer perimeter of the arc 111a can flex along the central axis and/or translate relative to the arcs 211f, 211a (while the inner perimeter is fixed at the joints 46).

Advantageously, the large arc structure of the anchors can provide flexibility and compliance for the portions of the prosthesis intended to be placed in the chambers of the heart. In contrast, in the stiffer tissue of the valve orifice, the hexagonal sub-structures of the central portion can provide higher radial stiffness and strength.

Further, by using wire rope, the prosthesis can advantageously be foldable and strong while the individual fibers, because they are small in diameter, can maintain resistance to fatigue and fracture. In some embodiments, the two frames of a single anchor can be formed of wire rope of opposite lays. For example, the wire of one frame (e.g. strand 193) can be made of a rope twisted to the left while the wire of another frame (e.g. strand 191) can be made of a rope twisted to the right. Using wires of opposite lays can allow the wires to compensate for one another as they compress, thereby maintaining relative positioning during expansion or contraction/folding of the device (as opposed to twisting of the entire device). Various possibilities for winding the wire rope are shown in FIGS. 8A-9B.

As shown in FIGS. 1A and 1E, struts 5 can extend distally from the distal anchor 3 and/or the central portion 4 and be configured to hold leaflets (shown in FIGS. 2A-2C). The struts 5 can be formed, for example, of wire rope. Further, in one example, each strut 5 can include a plurality of wire components 55, such as three wire components 55. Each of the three wire components 55 of a single strut 5 can extend from neighboring joints 46 and come together at a joint 56, thereby forming triangular struts 5. In some embodiments, additional supporting structures, such as tubes, can be placed over or around the struts to increase the stiffness. The triangular struts 5 can provide vertical strength and lateral flexibility.

In one embodiment, there can be three struts 5 located approximately 120 degrees away from one another around the circumference of the prosthesis 100. The joints 56 can be, for example, crimps. As shown in FIGS. 1A and 1E, in one embodiment, the center strut member 55a of a three-strut support can be substantially straight and connected to two outside, curved strut members 55b, 55c to form a structure comprised of two substantially triangular sub-structures, each with the center member as a common triangle leg. This center member may be made of a thin element of material which provides strength in tension as the pressurized leaflets are pushed toward the center of the valve, while providing flexion in compression to allow the valve prosthesis to be folded for delivery and to allow the prosthesis to conform to tissue when placed within the heart.

The various crimps used for the joints of the prosthesis 100 may be made of a suitable implantable material, such as platinum, tantalum, or titanium. Further, in place of crimps, braids, weaves, or welding can be used.

Referring to FIGS. 2A-2C, the valve prosthesis 100 can include integral valve leaflets 511 attached, such as sewn, to the struts 5. There can be three integral valve leaflets 511, and the leaflets 511 can form a pressure actuated valve that provides uni-directional flow occlusion when the prosthesis 100 is implanted in a valve orifice. The leaflets can be constructed of bio-materials, such as bovine or porcine pericardium, or polymer materials.

In one embodiment (shown in FIGS. 2B-2C), the proximal anchor 2 can include a cover or skirt 12 thereon or therearound formed of a biomaterial or thin polymer material. The skirt 12 can advantageously help seal the prosthesis 100 against the cardiac tissue when implanted.

The prosthesis 100 can be configured to be placed in a cardiac valve orifice such that the central portion 4 lines the orifice while the proximal and distal anchors 2, 3 sit within the chambers of the heart and pinch tissue of the orifice therebetween.

In some embodiments, the prosthesis 100 can be sized and configured for use in the mitral valve orifice (shown in FIG. 6D). Referring to FIGS. 3A-3B, to ensure that the prosthesis 100 fits properly within the valve, the diameter do of the central opening 15 can be greater than a length l of the device when fully expanded. For example, the ratio do/l can be greater than or equal to 1.1, such as greater than or equal to 1.2 or greater than or equal to 1.3. Further, the ratio do/l can be less than 2.0. In one embodiment, the diameter do is between 25 mm and 40 mm, such as approximately 28 mm. Further, in one embodiment, the length l is less than or equal to 22 mm, or less than or equal to 20 mm, such as approximately 14 mm. Further, to ensure that the proximal and distal anchors have enough tissue to grab onto, a ratio of the outer diameter of the anchors, dT, to the length l can be greater than or equal to 2.0. In one embodiment, an outer diameter of anchors, dT, can be at least 38 mm, such as greater than or equal to 40 mm. Further, in one embodiment, the anchors can extend out at a radius ra of greater than 10 mm, such as approximately 12 mm. Finally, a ratio do to a length of the struts ls can be approximately 1.5 to 3.0, such as 2.1. A radio of do/ls within this range can advantageously ensure that there is enough leaflet material to allow the leaflets to oppose and seal under stress while maintaining a small enough length to fit properly within the valve. In one embodiment, the struts have a length ls of between 8 and 16 mm, such as approximately 14 mm. Further, lc can be approximately 4-10 mm, such as 6 mm.

In one exemplary embodiment, do is 28 mm, ra is 12 mm, lc is 6 mm, ls is 14 mm, dT is 40 mm, and l1 is 14 mm.

FIGS. 4A-4B show a closed delivery device 200 for delivery of a valve prosthesis 100. The delivery device 200 can include an outer sheath 13 and a multi-lumen central longitudinal structure 17 extending therethrough. The valve prosthesis 100 is configured to fit over the central longitudinal structure 17 and within the sheath 13 so as to be fully encapsulated within the delivery device 200. The lumens in the longitudinal structure 17 can be tubular structures 357 (see FIGS. 4B and 5C). Each tubular structure 357 can include a side lumen 355 (see FIGS. 4B and 10A) therein, i.e, an aperture disposed on a radial outer portion of the tubular wall. The tubular structures 357 can contain retention members 19 that bind the proximal anchor 2 of the valve prosthesis tightly to the longitudinal structure 17. The retention members 19 can be made, for example, of a strong, flexible material such as nitinol, nitinol wire rope, or liquid crystal polymer fiber, such as Vectran®. There can be various numbers of retention wires and corresponding tubes 357 and lumens, such as between 4 and 20 or between 6 and 12 retention wires and corresponding tubes/lumens. In one embodiment, there are six retention wires and lumens. In another, there are twelve retention wires and lumens. The delivery device 200 includes a central lumen 15 running therethrough (i.e., through the central longitudinal structure 17) configured to pass a standard cardiac guidewire 16. The guidewire 16 may be used to provide a safe pathway for getting the device 100 to the anatomical target. The delivery device 200 further includes a tapered tip 14 to provide a gradual, atraumatic transition from the guidewire to the outer sheath 13 of the delivery device 200.

In some embodiments, the delivery device 200 can be adapted to specific delivery paths and cardiac structures by being provided with pre-shaped bends in the outer sheath 13. In some embodiments, the delivery device 200 may contain pull-wires integral with the outer wall that may be tensioned to articulate and bend the outer sheath 13. The pull wires may terminate at the tip of the device to provide a bend starting at the distal tip or may terminate along the longitudinal shaft of the device to provide a more proximal bend location.

FIGS. 5A-5D show a multi-stage delivery system for a cardiac valve prosthesis (with the valve leaflets omitted from the drawings for clarity). FIG. 5A shows the delivery device 200 having a handle 300 connected thereto to control the delivery of a prosthesis loaded within the device.

FIGS. 5B and 5C shows the prosthesis 100 partially deployed. That is, as the sheath 13 is pulled back with a lever 301 on the handle 300, the distal anchor 3 (previously collapsed into the sheath 11 with the peaks of the arcs extending distally) pops open. The proximal anchor 2, in turn, can remain connected to the delivery device 100 via the retention wires 19. That is, the retention wires 19 can pass through the multi-lumen central structure 17, through the arcs of the outer frame 122, 222 at apertures 355, and back into lumens of the structure 17. Referring to FIGS. 10A and 12A, in one embodiment, the proximal anchor 2 can be connected to the retention wires 19 such that neighboring arcs 111a, 211a of the proximal anchor 2 extend over neighboring retention wires 19a, 19b. In other embodiments (as shown in FIG. 12B), two neighboring arcs 111a, 211a can extend over a single retention wire 19a. Referring back to FIGS. 5B and 5C, as the retention wires 19 are pulled tight, the peaks of the arcs of the proximal anchor 2 will be pulled proximally, thereby causing the proximal anchor 2 to fold or cinch up to form a funnel shape at the proximal end of the distal anchor 3 (crimps 16, 26 of the proximal anchor 2 can be seen).

To expand the proximal anchor 2, the wires 19 can either be withdrawn or loosened (such as with a lever 303 on the handle), thereby allowing the proximal anchor 2 to self-expand into place, as shown in FIG. 5D. Referring to FIGS. 10A-10B, in some embodiments, the wires 19a can be withdrawn completely, thereby allowing the proximal anchor 2 to expand. In another embodiment, shown in FIGS. 11A-11B, the retention wires 19 can be formed of loops that, when loosened, i.e. pushed distally, allow the distal anchor 2 to expand without releasing the anchor 2. By using such a mechanism, the proximal anchor can be resheathed and moved (by retightening the retention members 19) if necessary. A mechanism on the handle can then be used to release the retention members 19 entirely.

Referring to FIG. 6A, to deploy the valve prosthesis 100 in a valve (such as the mitral valve), the guidewire 16 and delivery device 200 can be inserted through the native valve. Referring to FIG. 6B, as the outer sheath 13 of the device 200 is retracted relative to the central longitudinal structure 17, the distal anchor 3 of the valve prosthesis is exposed and self-expands (such as into the left ventricle). Once expanded, the distal anchor 3 may be retracted proximally against the distal-facing tissue of the cardiac chamber around the orifice, providing positive tactile feedback that the distal anchor 3 is oriented and positioned properly against the distal wall of the cardiac orifice. Further retraction of the sheath 13 exposes the central portion 4 of the valve prosthesis, allowing the central portion 4 to radially expand against the inner wall of the cardiac orifice.

Referring to FIG. 6C, to expand the prosthesis 100 on the other side of the cardiac orifice (i.e., in the left atrium), the central retention members 19 of the delivery device can be withdrawn or loosened as described above, thereby expanding the proximal anchor 2. The expanded proximal anchor 2 provides a second backstop to the valve prosthesis 100, allowing the prosthesis 100 to sandwich the valve orifice, such as the mitral valve orifice between the proximal and distal anchors 2, 3. As the device 100 expands, it foreshortens, moving the proximal anchor 2 and distal anchor 3 toward each other to provide a compressive force on tissue surrounding the cardiac orifice, such as the valve annulus.

Thus, in one example, as shown in FIG. 6D, the prosthesis can be delivered into the mitral valve orifice such that the distal anchor 3 sits within the left ventricle while the proximal anchor 2 sits within the left atrium. The struts 5 and leaflets 511 can extend distally into the left ventricle. Tissue of the mitral valve annulus can be captured between the anchors 2, 3. Further, the size of the prosthesis 100 can be such that the anchors 2, 3 extend within the chambers of the heart and much wider than the diameter of the orifice itself, thereby allowing for strong tissue capture and anchoring. In some embodiments, placement of the prosthesis can move the existing leaflets valves out of the way.

In some embodiments, as described above, the valve prosthesis 100 can be repositioned using the delivery device 200. That is, by pulling on the retention wires 19, the proximal anchor 2 can be cinched back down with the proximal arcs extending proximally. The distal anchor 3 can be collapsed into the sheath (with the arcs extending distally) either by pulling proximally on the prosthesis 100 or pushing the sheath 13 distally.

Use of an alternative delivery device is shown in FIG. 13. As shown in FIG. 13, rather than including multiple retention wires, the delivery device can include a single elongate member 96 over which all of the arcs 111, 211 of the proximal anchor 2 are placed.

FIG. 7 shows an embodiment of the valve prosthesis 199 where retention hooks 21 are built into the device. The hooks 21 extend from toward the center of the device from the joints (e.g., crimps) of the distal anchor 3. The hooks may be made of nitinol and are curved so that as the distal anchor 3 is drawn toward the center longitudinal member 17 of the delivery device 200, the hooks flatten and collapse, allowing the outer sheath 13 of the delivery device 200 to slide smoothly over the hooks 21. As the outer sheath 13 is removed from the valve prosthesis 100 during delivery and the distal anchor 3 of the valve prosthesis opens, the hooks 21 expand into the tissue of the cardiac orifice. In embodiment, the hooks 21 are only located on the distal anchor 3, as the distal anchor 3, when located on the ventricular side of the aorta, undergoes the highest pressure. In other embodiments, the hooks 21 are located on the proximal anchor 2 and/or the central portion 4.

In one embodiment, small hooks in the distal anchor 3 may be used to grip the valve leaflets. As the distal anchor 3 is retracted from the ventricle toward the mitral valve annulus, the hooks can pull the leaflets into a folded position just under the ventricular side of the mitral annulus.

While preferred embodiments of the present invention have been shown and described herein, it will be obvious to those skilled in the art that such embodiments are provided by way of example only. Numerous variations, changes, and substitutions will now occur to those skilled in the art without departing from the invention. It should be understood that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention. It is intended that the following claims define the scope of the invention and that methods and structures within the scope of these claims and their equivalents be covered thereby.

Wallace, Dan, Erzberger, Gary, Corcoran, Michael P., Montorfano, Matteo, Chieffo, Alaide, Granada, Juan F.

Patent Priority Assignee Title
10449047, Feb 05 2015 CARDIOVALVE LTD Prosthetic heart valve with compressible frames
10492908, Jul 30 2014 CARDIOVALVE LTD Anchoring of a prosthetic valve
10500040, Nov 13 2012 CARDIOVALVE LTD. Percutaneously-deliverable dual-frame valve
10507105, Feb 05 2015 CARDIOVALVE LTD Prosthetic valve with tissue anchors free from lateral interconnections
10512456, Jul 21 2010 CARDIOVALVE LTD Techniques for percutaneous mitral valve replacement and sealing
10524903, Feb 05 2015 CARDIOVALVE LTD. Prosthetic valve with aligned inner and outer frames
10531866, Feb 16 2016 CARDIOVALVE LTD Techniques for providing a replacement valve and transseptal communication
10537426, Aug 03 2017 CARDIOVALVE LTD Prosthetic heart valve
10548721, Dec 09 2014 Cephea Valve Technologies, Inc. Replacement cardiac valves and methods of use and manufacture
10548726, Dec 08 2009 CARDIOVALVE LTD. Rotation-based anchoring of an implant
10575948, Aug 03 2017 CARDIOVALVE LTD Prosthetic heart valve
10610359, Dec 08 2009 CARDIOVALVE LTD. Folding ring prosthetic heart valve
10624742, Jul 17 2013 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
10631982, Jan 24 2013 CARDIOVALVE LTD Prosthetic valve and upstream support therefor
10667908, Feb 05 2015 CARDIOVALVE LTD Prosthetic valve with S-shaped tissue anchors
10682227, Feb 05 2015 CARDIOVALVE LTD Prosthetic valve with pivoting tissue anchor portions
10695177, Feb 05 2015 CARDIOVALVE LTD Prosthetic valve with aligned inner and outer frames
10702385, Aug 05 2011 CARDIOVALVE LTD Implant for heart valve
10722360, Feb 05 2015 CARDIOVALVE LTD. Prosthetic valve with radially-deflectable tissue anchors
10736742, Feb 05 2015 CARDIOVALVE LTD Prosthetic valve with atrial arms
10758344, Feb 05 2015 CARDIOVALVE LTD Prosthetic valve with angularly offset frames
10779946, Sep 17 2018 CARDIOVALVE LTD Leaflet-testing apparatus
10799345, Sep 19 2017 CARDIOVALVE, LTD ; CARDIOVALVE LTD Prosthetic valve with protective fabric covering around tissue anchor bases
10835377, Jan 24 2013 CARDIOVALVE LTD Rolled prosthetic valve support
10849748, Feb 05 2015 CARDIOVALVE LTD. Prosthetic valve delivery system with independently-movable capsule portions
10856972, Sep 19 2017 CARDIOVALVE LTD Prosthetic valve with angularly offset atrial anchoring arms and ventricular anchoring legs
10856975, Aug 10 2016 CARDIOVALVE LTD Prosthetic valve with concentric frames
10864078, Feb 05 2015 CARDIOVALVE LTD. Prosthetic valve with separably-deployable valve body and tissue anchors
10881511, Sep 19 2017 CARDIOVALVE LTD Prosthetic valve with tissue anchors configured to exert opposing clamping forces on native valve tissue
10888422, Feb 05 2015 CARDIOVALVE LTD. Prosthetic valve with flexible tissue anchor portions
10905548, Sep 19 2017 CARDIOVALVE, LTD ; CARDIOVALVE LTD Prosthetic valve with protective sleeve around an outlet rim
10905549, Sep 19 2017 CARDIOVALVE LTD Prosthetic valve with overlapping atrial tissue anchors and ventricular tissue anchors
10918481, Feb 05 2015 CARDIOVALVE LTD Techniques for deployment of a prosthetic valve
10925595, Jul 21 2010 CARDIOVALVE LTD. Valve prosthesis configured for deployment in annular spacer
10973636, Feb 05 2015 CARDIOVALVE LTD. Prosthetic valve with tissue anchors free from lateral interconnections
11026792, Sep 17 2018 CARDIOVALVE LTD Leaflet-grouping system
11065122, Oct 19 2017 CARDIOVALVE LTD Techniques for use with prosthetic valve leaflets
11109964, Mar 10 2010 CARDIOVALVE LTD. Axially-shortening prosthetic valve
11141268, Dec 08 2009 CARDIOVALVE LTD Prosthetic heart valve with upper and lower skirts
11246704, Aug 03 2017 CARDIOVALVE LTD Prosthetic heart valve
11291545, Aug 05 2011 CARDIOVALVE LTD Implant for heart valve
11291546, Aug 05 2011 CARDIOVALVE LTD Leaflet clip with collars
11291547, Aug 05 2011 CARDIOVALVE LTD Leaflet clip with collars
11298117, Feb 16 2016 CARDIOVALVE LTD. Techniques for providing a replacement valve and transseptal communication
11304804, Sep 19 2017 CARDIOVALVE, LTD Prosthetic valve with connecting struts of variable size and tissue anchoring legs of variable size that extend from junctions
11304805, Sep 19 2017 CARDIOVALVE LTD Prosthetic valve with inflatable cuff configured to fill a volume between atrial and ventricular tissue anchors
11304806, Sep 19 2017 CARDIOVALVE LTD Prosthetic valve with atrial tissue anchors having variable flexibility and ventricular tissue anchors having constant flexibility
11318014, Sep 19 2017 CARDIOVALVE LTD Prosthetic valve delivery system with multi-planar steering
11318015, Sep 19 2017 CARDIOVALVE LTD Prosthetic valve configured to fill a volume between tissue anchors with native valve tissue
11331187, Jun 17 2016 CEPHEA VALVE TECHNOLOGIES, INC Cardiac valve delivery devices and systems
11337802, Sep 19 2017 CARDIOVALVE LTD Heart valve delivery systems and methods
11337803, Sep 19 2017 CARDIOVALVE LTD Prosthetic valve with inner and outer frames connected at a location of tissue anchor portion
11337804, Sep 19 2017 CARDIOVALVE LTD Prosthetic valve with radially-deformable tissue anchors configured to restrict axial valve migration
11344410, Aug 05 2011 CARDIOVALVE LTD Implant for heart valve
11351026, Dec 08 2009 CARDIOVALVE LTD Rotation-based anchoring of an implant
11369469, Aug 05 2011 CARDIOVALVE LTD Method for use at a heart valve
11382746, Dec 13 2017 CARDIOVALVE LTD Prosthetic valve and delivery tool therefor
11426155, Jul 21 2010 CARDIOVALVE LTD Helical anchor implantation
11491011, Sep 17 2018 CARDIOVALVE LTD Leaflet-grouping system
11510780, Jul 17 2013 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
11517429, Aug 05 2011 CARDIOVALVE LTD Apparatus for use at a heart valve
11517436, Aug 05 2011 CARDIOVALVE LTD Implant for heart valve
11534298, Feb 05 2015 CARDIOVALVE LTD. Prosthetic valve with s-shaped tissue anchors
11571298, Aug 03 2017 CARDIOVALVE LTD Prosthetic valve with appendages
11633277, Jan 10 2018 CARDIOVALVE LTD Temperature-control during crimping of an implant
11648122, Oct 19 2017 CARDIOVALVE LTD Techniques for use with prosthetic valve leaflets
11653910, Jul 21 2010 CARDIOVALVE LTD. Helical anchor implantation
11672658, Feb 05 2015 CARDIOVALVE LTD Prosthetic valve with aligned inner and outer frames
11690712, Aug 05 2011 CARDIOVALVE LTD Clip-secured implant for heart valve
11701225, Jul 30 2014 CARDIOVALVE LTD Delivery of a prosthetic valve
11779458, Aug 10 2016 CARDIOVALVE LTD. Prosthetic valve with leaflet connectors
11793633, Aug 03 2017 CARDIOVALVE LTD Prosthetic heart valve
11793635, Feb 05 2015 CARDIOVALVE LTD.; CARDIOVALVE LTD Prosthetic valve with angularly offset frames
11793638, Feb 05 2015 CARDIOVALVE LTD. Prosthetic valve with pivoting tissue anchor portions
11801135, Feb 05 2015 CARDIOVALVE LTD Techniques for deployment of a prosthetic valve
11819405, Sep 19 2017 CARDIOVALVE LTD Prosthetic valve with inflatable cuff configured for radial extension
11839541, Dec 08 2009 CARDIOVALVE LTD Prosthetic heart valve with upper skirt
11844691, Jan 24 2013 CARDIOVALVE LTD Partially-covered prosthetic valves
11864995, Aug 05 2011 CARDIOVALVE LTD Implant for heart valve
11864996, Sep 19 2017 CARDIOVALVE LTD Prosthetic valve with protective sleeve around an outlet rim
11872124, Jan 10 2018 CARDIOVALVE LTD. Temperature-control during crimping of an implant
11872130, Jul 30 2014 CARDIOVALVE LTD. Prosthetic heart valve implant
11872131, Dec 13 2017 CARDIOVALVE LTD. Prosthetic valve and delivery tool therefor
11883293, Sep 17 2018 CARDIOVALVE LTD. Leaflet-grouping system
11937795, Feb 16 2016 CARDIOVALVE LTD Techniques for providing a replacement valve and transseptal communication
11951005, Aug 05 2011 CARDIOVALVE LTD. Implant for heart valve
11969163, Jul 21 2010 CARDIOVALVE LTD Valve prosthesis configured for deployment in annular spacer
11980547, Oct 19 2017 CARDIOVALVE LTD. Techniques for use with prosthetic valve leaflets
12053379, Aug 01 2016 CARDIOVALVE LTD Minimally-invasive delivery systems
12053380, Jul 30 2014 CARDIOVALVE LTD. Anchoring of a prosthetic valve
12064347, Aug 03 2017 CARDIOVALVE LTD. Prosthetic heart valve
12090048, Aug 03 2017 CARDIOVALVE LTD. Prosthetic heart valve
12127757, Feb 11 2019 CARDIOVALVE LTD Device for conditioning ex vivo pericardial tissue
ER4116,
ER906,
Patent Priority Assignee Title
10004601, Sep 19 2006 Medtronic Ventor Technologies Ltd. Valve prosthesis fixation techniques using sandwiching
3334629,
3409013,
3540431,
3628535,
3642004,
3657744,
3671979,
3714671,
3795246,
3839741,
3868956,
3874388,
4056854, Sep 28 1976 The United States of America as represented by the Department of Health, Aortic heart valve catheter
4106129, Jan 09 1976 Baxter International Inc Supported bioprosthetic heart valve with compliant orifice ring
4233690, May 19 1978 CarboMedics, Inc. Prosthetic device couplings
4291420, Nov 09 1973 Medac Gesellschaft fur Klinische Spezialpraparate mbH Artificial heart valve
4326306, Dec 16 1980 Lynell Medical Technology, Inc.; LYNELL MEDICAL TECHNOLOGY INC , A CORP OF DE Intraocular lens and manipulating tool therefor
4423809, Feb 05 1982 GREYHOUND FINANCIAL CAPITAL CORPORATION Packaging system for intraocular lens structures
4425908, Oct 22 1981 NITINOL MEDICAL TECHNOLGIES, INC , 7779 WILLOW GLEN ROAD, LOS ANGELES, CA 90046, A DE CORP Blood clot filter
4501030, Aug 17 1981 Edwards Lifesciences Corporation Method of leaflet attachment for prosthetic heart valves
4531943, Aug 08 1983 SCHNEIDER U S A INC , A PFIZER COMPANY Catheter with soft deformable tip
4580568, Oct 01 1984 Cook, Incorporated Percutaneous endovascular stent and method for insertion thereof
4602911, Feb 23 1984 General Resorts S.A. Adjustable ringprosthesis
4610688, Apr 04 1983 Stryker Technologies Corporation Triaxially-braided fabric prosthesis
4617932, Apr 25 1984 Device and method for performing an intraluminal abdominal aortic aneurysm repair
4648881, Mar 23 1982 Edwards Lifesciences Corporation Implantable biological tissue and process for preparation thereof
4655218, Oct 10 1985 BLAGOVESCHENSKY GOSUDARSTVENNY MEDITSINSKY INSTITUT, USSR, BLAGOVESCHENSK Prosthetic valve holder
4655771, Apr 30 1982 AMS MEDINVENT S A Prosthesis comprising an expansible or contractile tubular body
4662885, Sep 03 1985 Becton, Dickinson and Company Percutaneously deliverable intravascular filter prosthesis
4665906, Oct 14 1983 Medtronic, Inc Medical devices incorporating sim alloy elements
4710192, Dec 30 1985 Diaphragm and method for occlusion of the descending thoracic aorta
4733665, Nov 07 1985 Cordis Corporation Expandable intraluminal graft, and method and apparatus for implanting an expandable intraluminal graft
4755181, Oct 08 1987 Matrix Medica, Inc. Anti-suture looping device for prosthetic heart valves
4796629, Jun 03 1987 Stiffened dilation balloon catheter device
4819751, Oct 16 1987 Baxter Travenol Laboratories, Inc. Valvuloplasty catheter and method
4834755, Apr 04 1983 Stryker Technologies Corporation Triaxially-braided fabric prosthesis
4856516, Jan 09 1989 Cordis Corporation Endovascular stent apparatus and method
4865600, Aug 25 1981 Edwards Lifesciences Corporation Mitral valve holder
4872874, May 29 1987 WORLD MEDICAL MANUFACTURING CORP Method and apparatus for transarterial aortic graft insertion and implantation
4873978, Dec 04 1987 MICROVENTION, INC Device and method for emboli retrieval
4909252, May 26 1988 REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE, A CORP OF CA Perfusion balloon catheter
4917102, Sep 14 1988 ADVANCED CARDIOVASCULAR SYSTEMS, INC , P O BOX 58167, SANTA CLARA, CA 95052-8167, A CORP OF CA Guidewire assembly with steerable adjustable tip
4927426, Jan 03 1989 Catheter device
4986830, Sep 22 1989 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Valvuloplasty catheter with balloon which remains stable during inflation
4994077, Apr 21 1989 Artificial heart valve for implantation in a blood vessel
5002556, Nov 29 1986 Terumo Kabushiki Kaisha Balloon catheter assembly
5002559, Nov 30 1989 NuMed PTCA catheter
5064435, Jun 28 1990 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Self-expanding prosthesis having stable axial length
5161547, Nov 28 1990 Numed, Inc. Method of forming an intravascular radially expandable stent
5163953, Feb 10 1992 Toroidal artificial heart valve stent
5209741, Jul 08 1991 SPECTRUM MEDSYSTEMS CORP Surgical access device having variable post-insertion cross-sectional geometry
5258023, Feb 12 1992 REGER MEDICAL DEVELOPMENT, INC Prosthetic heart valve
5258042, Dec 16 1991 HENRY FORD HEALTH SYSTEM Intravascular hydrogel implant
5332402, May 12 1992 Percutaneously-inserted cardiac valve
5336258, Sep 07 1990 Edwards Lifesciences Corporation Stentless heart valve and holder
5350398, May 13 1991 Self-expanding filter for percutaneous insertion
5370685, Jul 16 1991 Heartport, Inc Endovascular aortic valve replacement
5389106, Oct 29 1993 Numed, Inc. Impermeable expandable intravascular stent
5397351, May 13 1991 Prosthetic valve for percutaneous insertion
5411552, May 18 1990 Edwards Lifesciences AG Valve prothesis for implantation in the body and a catheter for implanting such valve prothesis
5425762, Jun 01 1993 Prosthetic implants and process for obtaining the same
5431676, Mar 05 1993 Tyco Healthcare Group LP Trocar system having expandable port
5443495, Sep 17 1993 Boston Scientific Scimed, Inc Polymerization angioplasty balloon implant device
5443499, Jan 14 1993 LifeShield Sciences LLC Radially expandable tubular prosthesis
5476506, Feb 08 1994 Ethicon, Inc.; Ethicon, Inc Bi-directional crimped graft
5476510, Apr 21 1994 Medtronic, Inc Holder for heart valve
5480423, May 20 1993 Boston Scientific Scimed, Inc Prosthesis delivery
5507767, Jan 15 1992 Cook Medical Technologies LLC Spiral stent
5534007, May 18 1995 Boston Scientific Scimed, Inc Stent deployment catheter with collapsible sheath
5545133, Sep 16 1994 Boston Scientific Scimed, Inc Balloon catheter with improved pressure source
5545211, Sep 27 1993 Sooho Medi-Tech Co., Ltd. Stent for expanding a lumen
5549665, Jun 18 1993 London Health Sciences Centre Bioprostethic valve
5554183, Jan 19 1994 Vascular prosthesis for the substitution or internal lining of blood vessels of medium or large diameter and device for its application
5554185, Jul 18 1994 DIRECT FLOW MEDICAL, INC Inflatable prosthetic cardiovascular valve for percutaneous transluminal implantation of same
5571215, Feb 22 1993 Edwards Lifesciences, LLC Devices and methods for intracardiac procedures
5573520, Sep 05 1991 Mayo Foundation for Medical Education and Research Flexible tubular device for use in medical applications
5575818, Feb 14 1995 Corvita Corporation Endovascular stent with locking ring
5645559, May 08 1992 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Multiple layer stent
5662671, Jul 17 1996 Boston Scientific Scimed, Inc Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
5667523, Apr 28 1995 Bard Peripheral Vascular, Inc Dual supported intraluminal graft
5674277, Dec 23 1994 Merit Medical Systems, Inc Stent for placement in a body tube
5693083, Dec 10 1986 LIFEPORT SCIENCES LLC Thoracic graft and delivery catheter
5695498, Feb 28 1996 Numed, Inc. Stent implantation system
5713953, May 24 1991 Sorin Biomedica Cardio S.p.A. Cardiac valve prosthesis particularly for replacement of the aortic valve
5716370, Feb 23 1996 Medtronic, Inc Means for replacing a heart valve in a minimally invasive manner
5720391, Mar 29 1996 ST JUDE MEDICAL, INC Packaging and holder for heart valve prosthesis
5725552, Jul 08 1994 AGA Medical Corporation Percutaneous catheter directed intravascular occlusion devices
5733325, Nov 04 1993 C. R. Bard, Inc. Non-migrating vascular prosthesis and minimally invasive placement system
5735842, Sep 11 1995 ST JUDE MEDICAL, INC Low profile manipulators for heart valve prostheses
5769812, Jul 16 1991 Edwards Lifesciences, LLC System for cardiac procedures
5807405, Sep 11 1995 St. Jude Medical, Inc.; ST JUDE MEDICAL, INC Apparatus for attachment of heart valve holder to heart valve prosthesis
5817126, Mar 17 1997 NFOCUS NEUROMEDICAL, INC Compound stent
5824041, Jun 08 1994 Medtronic Ave, Inc Apparatus and methods for placement and repositioning of intraluminal prostheses
5824043, Mar 09 1994 Cordis Corporation Endoprosthesis having graft member and exposed welded end junctions, method and procedure
5824053, Mar 18 1997 Endotex Interventional Systems, Inc Helical mesh endoprosthesis and methods of use
5824055, Mar 25 1997 Endotex Interventional Systems, Inc Stent graft delivery system and methods of use
5824056, May 16 1994 Medtronic, Inc. Implantable medical device formed from a refractory metal having a thin coating disposed thereon
5824064, May 05 1995 TAHERI ENTERPRISES, LLC Technique for aortic valve replacement with simultaneous aortic arch graft insertion and apparatus therefor
5843158, Jan 05 1996 Medtronic Ave, Inc Limited expansion endoluminal prostheses and methods for their use
5855597, May 07 1997 Vascular Concepts Holdings Limited Stent valve and stent graft for percutaneous surgery
5855601, Jun 21 1996 The Trustees of Columbia University in the City of New York Artificial heart valve and method and device for implanting the same
5860966, Apr 16 1997 NUMED, INC Method of securing a stent on a balloon catheter
5861024, Jun 20 1997 ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC Electrophysiology catheter and remote actuator therefor
5861028, Sep 09 1996 GABBAY, SHLOMO Natural tissue heart valve and stent prosthesis and method for making the same
5868783, Apr 16 1997 NUMED, INC Intravascular stent with limited axial shrinkage
5876448, May 08 1992 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Esophageal stent
5885228, May 08 1996 Edwards Lifesciences, LLC Valve sizer and method of use
5888201, Feb 08 1996 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Titanium alloy self-expanding stent
5891191, Apr 30 1996 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Cobalt-chromium-molybdenum alloy stent and stent-graft
5895399, Jul 17 1996 Boston Scientific Scimed, Inc Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
5907893, Jan 30 1996 Medtronic Ave, Inc Methods for the manufacture of radially expansible stents
5911734, May 08 1997 Boston Scientific Scimed, Inc Percutaneous catheter and guidewire having filter and medical device deployment capabilities
5925063, Sep 26 1997 Endotex Interventional Systems, Inc Coiled sheet valve, filter or occlusive device and methods of use
5944738, Feb 06 1998 ST JUDE MEDICAL, CARDIOLOGY DIVISION, INC Percutaneous catheter directed constricting occlusion device
5954766, Sep 16 1997 Pulmonx Corporation Body fluid flow control device
5957949, May 01 1997 Medtronic Vascular, Inc Percutaneous placement valve stent
5968070, Feb 22 1995 CARDINAL HEALTH SWITZERLAND 515 GMBH Covered expanding mesh stent
5984957, Aug 12 1997 SciMed Life Systems, INC; Boston Scientific Scimed, Inc Radially expanded prostheses with axial diameter control
5984959, Sep 19 1997 United States Surgical Corporation Heart valve replacement tools and procedures
5984973, Jun 07 1995 St. Jude Medical, Inc. Integral supporting structure for bioprosthetic heart valve
5993469, Jul 17 1996 Boston Scientific Scimed, Inc Guiding catheter for positioning a medical device within an artery
5997557, May 27 1997 Boston Scientific Scimed, Inc Methods for aortic atherectomy
6010522, Jul 17 1996 Boston Scientific Scimed, Inc Atherectomy device having trapping and excising means for removal of plaque from the aorta and other arteries
6022370, Oct 01 1996 Numed, Inc. Expandable stent
6027525, May 23 1996 SAMSUNG ELECTRONICS CO , LTD Flexible self-expandable stent and method for making the same
6042598, May 08 1997 Edwards Lifesciences Corporation Method of protecting a patient from embolization during cardiac surgery
6042607, Feb 23 1996 Medtronic, Inc Means and method of replacing a heart valve in a minimally invasive manner
6093203, May 13 1998 Stent or graft support structure for treating bifurcated vessels having different diameter portions and methods of use and implantation
6113612, Nov 06 1998 ST JUDE MEDICAL ATG, INC Medical anastomosis apparatus
6123723, Feb 26 1998 Board of Regents, The University of Texas System Delivery system and method for depolyment and endovascular assembly of multi-stage stent graft
6142987, Aug 03 1999 Boston Scientific Scimed, Inc Guided filter with support wire and methods of use
6162245, May 07 1997 Vascular Concepts Holdings Limited Stent valve and stent graft
6165209, Dec 15 1997 PROLIFIX MEDICAL, INC Vascular stent for reduction of restenosis
6168579, Aug 04 1999 Boston Scientific Scimed, Inc Filter flush system and methods of use
6171327, Feb 24 1999 Boston Scientific Scimed, Inc Intravascular filter and method
6174322, Aug 08 1997 Cardia, Inc. Occlusion device for the closure of a physical anomaly such as a vascular aperture or an aperture in a septum
6179859, Jul 16 1999 Boston Scientific Scimed, Inc Emboli filtration system and methods of use
6187016, Sep 14 1999 Stent retrieval device
6197053, Sep 30 1996 Edwards Lifesciences Corporation Bioprosthetic heart valve implantation device
6200336, Jun 02 1998 Cook Medical Technologies LLC Multiple-sided intraluminal medical device
6206909, Mar 31 1997 Matsushita Electric Industrial Col Ltd. Portable warmer suitable for a body
6214036, Nov 09 1998 CARDINAL HEALTH SWITZERLAND 515 GMBH Stent which is easily recaptured and repositioned within the body
6221006, Feb 10 1998 Artemis Medical, Inc Entrapping apparatus and method for use
6221096, Jun 09 1997 Sumitomo Metal Industries, Ltd Intravascular stent
6231544, May 14 1996 Edwards Lifesciences Corporation Cardioplegia balloon cannula
6231551, Mar 01 1999 ZOLL CIRCULATION, INC Partial aortic occlusion devices and methods for cerebral perfusion augmentation
6241757, Apr 02 1997 STENTECH INC ; SOLCO SURGICAL INSTRUMENTS CO , LTD Stent for expanding body's lumen
6245102, May 07 1997 Vascular Concepts Holdings Limited Stent, stent graft and stent valve
6251135, Aug 01 1997 Schneider (USA) Inc Radiopaque marker system and method of use
6258114, Mar 07 1997 Micro Therapeutics, Inc. Hoop stent
6258115, Apr 23 1997 Ethicon Endo-Surgery, Inc Bifurcated stent and distal protection system
6258120, Dec 23 1997 Edwards Lifesciences Corporation Implantable cerebral protection device and methods of use
6277555, Jun 24 1998 The International Heart Institute of Montana Foundation Compliant dehydrated tissue for implantation and process of making the same
6309417, May 12 1999 Paul A., Spence Heart valve and apparatus for replacement thereof
6312465, Jul 23 1999 CORCYM S R L Heart valve prosthesis with a resiliently deformable retaining member
6319281, Mar 22 1999 Artificial venous valve and sizing catheter
6336934, Apr 08 1998 Salviac Limited Embolic protection device
6336937, Dec 09 1998 W L GORE & ASSOCIATES, INC Multi-stage expandable stent-graft
6338735, Jul 16 1991 Methods for removing embolic material in blood flowing through a patient's ascending aorta
6348063, Mar 11 1999 Surpass Medical Ltd Implantable stroke treating device
6352708, Oct 14 1999 The International Heart Institute of Montana Foundation Solution and method for treating autologous tissue for implant operation
6361545, Sep 26 1997 SURGERX MEDICAL, LLC Perfusion filter catheter
6371970, Jul 30 1999 Incept LLC Vascular filter having articulation region and methods of use in the ascending aorta
6371983, Oct 04 1999 Medtronic, Inc Bioprosthetic heart valve
6379368, May 13 1999 ENCORE MEDICAL INC Occlusion device with non-thrombogenic properties
6379383, Nov 19 1999 VACTRONIX SCIENTIFIC, LLC Endoluminal device exhibiting improved endothelialization and method of manufacture thereof
6398807, Jan 31 2000 LifeShield Sciences LLC Braided branching stent, method for treating a lumen therewith, and process for manufacture therefor
6409750, Feb 01 1999 Board of Regents, The University of Texas System Woven bifurcated and trifurcated stents and methods for making the same
6411552, Aug 04 1997 Tokyo Electron Device Limited Data processing system, block erasing type memory device and memory medium storing program for controlling memory device
6416510, Mar 13 1997 BIOCARDIA, INC Drug delivery catheters that attach to tissue and methods for their use
6419696, Jul 06 2000 MEDTENTIA INTERNATIONAL LTD OY Annuloplasty devices and related heart valve repair methods
6425916, Feb 10 1999 Heartport, Inc Methods and devices for implanting cardiac valves
6440152, Jul 28 2000 ev3 Endovascular, Inc Defect occluder release assembly and method
6440164, Oct 21 1999 Boston Scientific Scimed, Inc Implantable prosthetic valve
6454799, Apr 06 2000 Edwards Lifesciences Corporation Minimally-invasive heart valves and methods of use
6458153, Dec 31 1999 VACTRONIX SCIENTIFIC, LLC Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof
6468303, Mar 27 2000 ST JUDE MEDICAL, CARDIOLOGY DIVISION, INC Retrievable self expanding shunt
6475239, Oct 13 1998 CORCYM S R L Method for making polymer heart valves with leaflets having uncut free edges
6482228, Nov 14 2000 Percutaneous aortic valve replacement
6485502, Mar 10 2000 MEMORY METAL HOLLAND BV Vascular embolism prevention device employing filters
6494909, Dec 01 2000 Prodesco, Inc. Endovascular valve
6503272, Mar 21 2001 CARDINAL HEALTH SWITZERLAND 515 GMBH Stent-based venous valves
6527800, Jun 26 2000 REX MEDICAL, L P Vascular device and method for valve leaflet apposition
6540768, Feb 09 2000 CARDINAL HEALTH SWITZERLAND 515 GMBH Vascular filter system
6562058, Mar 02 2001 RUBICON MEDICAL, INC Intravascular filter system
6592546, May 14 1996 Edwards Lifesciences Corporation Aortic occluder with associated filter and methods of use during cardiac surgery
6592614, Jan 05 1996 Medtronic AVE, Inc. Cuffed endoluminal prosthesis
6610077, Jan 23 2001 ABBOTT CARDIOVASCULAR SYSTEMS INC; Abbott Laboratories Expandable emboli filter and thrombectomy device
6616675, Feb 02 1996 Medtronic Vascular, Inc Methods and apparatus for connecting openings formed in adjacent blood vessels or other anatomical structures
6616682, Sep 19 2001 Abbott Laboratories Vascular Enterprises Limited; Abbott Laboratories Vascular Entities Limited Methods and apparatus for distal protection during a medical procedure
6622604, Jan 31 2000 LifeShield Sciences LLC Process for manufacturing a braided bifurcated stent
6623518, Feb 26 2001 EV3 PERIPHERAL, INC Implant delivery system with interlock
6635068, Feb 10 1998 Ethicon Endo-Surgery, Inc Occlusion, anchoring, tensioning and flow direction apparatus and methods for use
6635079, Aug 21 1998 Shape memory tubular stent
6652571, Jan 31 2000 LifeShield Sciences LLC Braided, branched, implantable device and processes for manufacture thereof
6656206, May 13 1999 Cardia, Inc. Occlusion device with non-thrombogenic properties
6663588, Nov 29 2000 Boston Scientific Scimed, Inc Active counterforce handle for use in bidirectional deflectable tip instruments
6663663, May 14 2001 M I TECH CO , LTD Stent
6669724, Jun 05 2001 M.I. Tech Co. Ltd. Medical stent
6673089, Mar 11 1999 Stryker Corporation Implantable stroke treating device
6673109, Nov 01 1993 3f Therapeutics, Inc. Replacement atrioventricular heart valve
6676668, Dec 12 2001 C.R. Baed Articulating stone basket
6676692, Apr 27 2001 InTek Technology L.L.C. Apparatus for delivering, repositioning and/or retrieving self-expanding stents
6676698, Jun 26 2000 Rex Medicol, L.P. Vascular device with valve for approximating vessel wall
6682558, May 10 2001 3F THERAPEUTICS INC Delivery system for a stentless valve bioprosthesis
6682559, Jan 27 2000 MEDTRONIC 3F THERAPEUTICS, INC Prosthetic heart valve
6689144, Feb 08 2002 Boston Scientific Scimed, Inc Rapid exchange catheter and methods for delivery of vaso-occlusive devices
6689164, Oct 12 1999 Jacques, Seguin Annuloplasty device for use in minimally invasive procedure
6692512, Oct 13 1998 Edwards Lifesciences Corporation Percutaneous filtration catheter for valve repair surgery and methods of use
6695864, Dec 15 1997 SURGERX MEDICAL, LLC Method and apparatus for cerebral embolic protection
6695865, Mar 20 2000 VACTRONIX SCIENTIFIC, LLC Embolic protection device
6702851, Sep 06 1996 CORCYM S R L Prosthetic heart valve with surface modification
6712836, May 13 1999 ST JUDE MEDICAL ATG, INC Apparatus and methods for closing septal defects and occluding blood flow
6712842, Oct 12 1999 WILL ALLAN Methods and devices for lining a blood vessel and opening a narrowed region of a blood vessel
6712843, Nov 20 2001 Boston Scientific Scimed, Inc Stent with differential lengthening/shortening members
6714842, May 26 1999 Canon Kabushiki Kaisha Synchronous position control apparatus and method
6723122, Aug 30 2001 Edwards Lifesciences Corporation Container and method for storing and delivering minimally-invasive heart valves
6730118, Oct 11 2001 EDWARDS LIFESCIENCES PVT, INC Implantable prosthetic valve
6730377, Jan 23 2002 Boston Scientific Scimed, Inc Balloons made from liquid crystal polymer blends
6733525, Mar 23 2001 Edwards Lifesciences Corporation Rolled minimally-invasive heart valves and methods of use
6752828, Apr 03 2002 SciMed Life Systems, Inc. Artificial valve
6758855, Aug 19 1998 Artemis Medical, Inc. Target tissue localization device
6764503, Jul 10 1998 Shin, Ishimaru Stent (or stent graft) locating device
6764509, Sep 06 1996 CORCYM S R L Prosthetic heart valve with surface modification
6767345, Mar 01 1999 ZOLL CIRCULATION, INC Partial aortic occlusion devices and methods for renal and coronary perfusion augmentation
6773454, Aug 02 2000 Cook Medical Technologies LLC Tapered endovascular stent graft and method of treating abdominal aortic aneurysms and distal iliac aneurysms
6776791, Apr 01 1998 ENDOVASCULAR TECHNOLOGIES, INC Stent and method and device for packing of same
6790218, Dec 23 1999 Occlusive coil manufacture and delivery
6790229, May 25 1999 DAIDALOS SOLUTIONS B V Fixing device, in particular for fixing to vascular wall tissue
6790230, Apr 30 2001 MEDTECH DEVELOPMENT LLC Vascular implant
6790237, Oct 09 2001 Boston Scientific Scimed, Inc Medical stent with a valve and related methods of manufacturing
6792979, Feb 01 1999 Board of Regents, The University of Texas System Methods for creating woven devices
6814746, Nov 01 2002 Tyco Healthcare Group LP Implant delivery system with marker interlock
6821297, Feb 02 2000 SNYDERS HEART VALVE LLC Artificial heart valve, implantation instrument and method therefor
6837901, Apr 27 2001 InTek Technology L.L.C. Methods for delivering, repositioning and/or retrieving self-expanding stents
6843802, Nov 16 2000 CARDINAL HEALTH SWITZERLAND 515 GMBH Delivery apparatus for a self expanding retractable stent
6849085, Nov 19 1999 VACTRONIX SCIENTIFIC, LLC Self-supporting laminated films, structural materials and medical devices manufactured therefrom and method of making same
6863668, Aug 16 2002 Edwards Lifesciences Corporation Articulation mechanism for medical devices
6872223, Sep 30 1993 Boston Scientific Scimed, Inc Controlled deployment of a medical device
6872226, Jan 29 2001 3F THERAPEUTICS, INC Method of cutting material for use in implantable medical device
6875231, Sep 11 2002 MEDTRONIC 3F THERAPEUTICS, INC Percutaneously deliverable heart valve
6881220, Sep 30 1998 Bard Peripheral Vascular, Inc. Method of recapturing a stent
6887266, Nov 14 2002 Synecor, LLC Endoprostheses and methods of manufacture
6890340, Nov 29 2001 Medtronic Vascular, Inc Apparatus for temporary intraluminal protection
6893459, Sep 20 2000 MVRX, INC Heart valve annulus device and method of using same
6893460, Oct 11 2001 EDWARDS LIFESCIENCES PVT, INC Implantable prosthetic valve
6905743, Feb 25 1999 Boston Scientific Scimed, Inc Dimensionally stable balloons
6908481, Dec 31 1996 EDWARDS LIFESCIENCES PVT, INC Value prosthesis for implantation in body channels
6911036, Apr 03 2001 Medtronic Vascular, Inc Guidewire apparatus for temporary distal embolic protection
6911037, Sep 07 1999 ev3 Endovascular, Inc Retrievable septal defect closure device
6913614, May 08 2003 ATRIAL SOLUTIONS, INC Delivery system with safety tether
6921397, May 27 2003 ATRIAL SOLUTIONS, INC Flexible delivery device
6936058, Oct 18 2000 W L GORE & ASSOCIATES, INC Over-the-wire interlock attachment/detachment mechanism
6936067, May 17 2001 St. Jude Medical Inc.; ST JUDE MEDICAL, INC Prosthetic heart valve with slit stent
6945997, Mar 27 1997 Edwards Lifesciences Corporation Heart valves and suture rings therefor
6951571, Sep 30 2004 Valve implanting device
6953332, Nov 28 2000 St. Jude Medical, Inc.; ST JUDE MEDICAL, INC Mandrel for use in forming valved prostheses having polymer leaflets by dip coating
6960220, Jan 22 2003 Cardia, Inc. Hoop design for occlusion device
6960224, Jan 22 2003 Cardia, Inc. Laminated sheets for use in a fully retrievable occlusion device
6974464, Feb 28 2002 MEDTRONIC 3F THERAPEUTICS, INC Supportless atrioventricular heart valve and minimally invasive delivery systems thereof
6974476, May 05 2003 Rex Medical, L.P. Percutaneous aortic valve
6979350, Dec 18 1996 3F THERAPEUTICS, INC Methods for regulating the flow of blood through the blood system
6984242, Dec 20 2002 W L GORE & ASSOCIATES, INC Implantable medical device assembly
7011681, Dec 29 1997 The Cleveland Clinic Foundation Bioprosthetic cardiovascular valve system
7018406, Nov 17 1999 Medtronics CoreValve LLC Prosthetic valve for transluminal delivery
7025791, Dec 02 2002 GI DYNAMICS, INC Bariatric sleeve
7037331, Jun 14 2001 Codman & Shurtleff, Inc Intravascular stent device
7077861, Jul 06 2000 MEDTENTIA INTERNATIONAL LTD OY Annuloplasty instrument
7087072, Jan 22 2003 ATRIAL SOLUTIONS, INC Articulated center post
7115135, Jan 22 2003 ENCORE MEDICAL INC Occlusion device having five or more arms
7122020, Jun 25 2004 MOGUL ENTERPRISES, INC Linkage steering mechanism for deflectable catheters
7144410, Sep 18 2003 Cardia Inc. ASD closure device with self centering arm network
7166097, Mar 01 1999 ZOLL CIRCULATION, INC Cerebral perfusion augmentation
7175653, May 17 2000 XTENT MEDICAL INC Selectively expandable and releasable stent
7175654, Oct 16 2003 CARDINAL HEALTH SWITZERLAND 515 GMBH Stent design having stent segments which uncouple upon deployment
7189258, Jan 02 2002 Medtronic, Inc. Heart valve system
7191018, Apr 30 1998 Medtronic, Inc. Techniques for positioning therapy delivery elements within a spinal cord or brain
7192435, Sep 18 2003 Cardia, Inc. Self centering closure device for septal occlusion
7201772, Jul 08 2003 Medtronic Ventor Technologies Ltd Fluid flow prosthetic device
7235093, May 20 2003 Boston Scientific Scimed, Inc Mechanism to improve stent securement
7261732, Dec 22 2003 Stent mounted valve
7320704, May 05 2004 DIRECT FLOW ASSIGNMENT FOR THE BENEFIT OF CREDITORS , LLC Nonstented temporary valve for cardiovascular therapy
7329279, Dec 23 2003 Boston Scientific Scimed, Inc Methods and apparatus for endovascularly replacing a patient's heart valve
7374560, Aug 29 2001 ST JUDE MEDICAL, CARDIOLOGY DIVISION, INC Emboli protection devices and related methods of use
7381219, Dec 23 2003 Boston Scientific Scimed, Inc Low profile heart valve and delivery system
7402171, Mar 12 2003 Cook Medical Technologies LLC Prosthetic valve that permits retrograde flow
7413563, May 27 2003 Cardia, Inc. Flexible medical device
7445631, Dec 23 2003 Boston Scientific Scimed, Inc Methods and apparatus for endovascularly replacing a patient's heart valve
7455689, Aug 25 2005 Edwards Lifesciences Corporation Four-leaflet stented mitral heart valve
7566336, Nov 25 2003 ATRIAL SOLUTIONS, INC Left atrial appendage closure device
7582104, Dec 08 2004 ENCORE MEDICAL INC Daisy design for occlusion device
7591848, Apr 06 2006 Medtronic Vascular, Inc.; Medtronic Vascular, Inc Riveted stent valve for percutaneous use
7625364, May 27 2003 Cardia, Inc. Flexible center connection for occlusion device
7632298, May 20 1999 LIFEPORT SCIENCES LLC Delivery system for endoluminal implant
7658748, Sep 23 2003 ENCORE MEDICAL INC Right retrieval mechanism
7691115, Jun 19 2006 ENCORE MEDICAL INC Occlusion device with flexible fabric connector
7712606, Sep 13 2005 Boston Scientific Scimed, Inc Two-part package for medical implant
7722666, Apr 15 2005 Boston Scientific Scimed, Inc.; Boston Scientific Scimed, Inc Valve apparatus, system and method
7748389, Dec 23 2003 Boston Scientific Scimed, Inc Leaflet engagement elements and methods for use thereof
7749238, Jun 19 2006 ENCORE MEDICAL INC Occlusion device with flexible polymeric connector
7780725, Jun 16 2004 Boston Scientific Scimed, Inc Everting heart valve
7803184, Nov 21 2000 Rex Medical, L.P. Percutaneous aortic valve
7803186, Sep 28 2007 ST JUDE MEDICAL, LLC Prosthetic heart valves with flexible leaflets and leaflet edge clamping
7824442, Dec 23 2003 Boston Scientific Scimed, Inc Methods and apparatus for endovascularly replacing a heart valve
7824443, Dec 23 2003 Boston Scientific Scimed, Inc Medical implant delivery and deployment tool
7896915, Apr 13 2007 JENAVALVE TECHNOLOGY, INC ; JVT RESEARCH & DEVELOPMENT CORPORATION Medical device for treating a heart valve insufficiency
7905901, Nov 29 2004 Cardia, Inc. Self-centering occlusion device
7927351, Jun 19 2006 Cardia, Inc. Occlusion device with flexible wire connector
7972361, Jun 19 2006 Cardia, Inc.; CARDIA, INC Occlusion device with flexible spring connector
8043368, Nov 23 2005 Methods and apparatus for atrioventricular valve repair
8057540, Dec 31 1996 EDWARDS LIFESCIENCES PVT, INC Method of treating aortic stenosis using an implantable prosthetic valve
8092520, Nov 10 2005 Edwards Lifesciences CardiAQ LLC Vascular prosthesis connecting stent
8167935, Nov 21 2000 Rex Medical, L.P. Percutaneous aortic valve
8236049, Jun 20 2008 Edwards Lifesciences Corporation Multipiece prosthetic mitral valve and method
8317858, Feb 26 2008 JENAVALVE TECHNOLOGY, INC ; JVT RESEARCH & DEVELOPMENT CORPORATION Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
8366741, Sep 13 2007 ENCORE MEDICAL INC Occlusion device with centering arm
8398708, Mar 05 2010 Edwards Lifesciences Corporation Retaining mechanisms for prosthetic valves
8425593, Sep 26 2007 ST JUDE MEDICAL, LLC Collapsible prosthetic heart valves
8444689, Mar 30 2009 JC MEDICAL, INC Valve prosthesis with movably attached claspers with apex
8449599, Dec 04 2009 Edwards Lifesciences Corporation Prosthetic valve for replacing mitral valve
8551132, Oct 19 2005 PULSAR VASCULAR, INC Methods and systems for endovascularly clipping and repairing lumen and tissue defects
8551161, Apr 25 2006 Medtronic Vascular, Inc.; Medtronic Vascular, Inc Cardiac valve annulus restraining device
8562672, Nov 19 2004 Medtronic, Inc Apparatus for treatment of cardiac valves and method of its manufacture
8568475, Oct 05 2010 Edwards Lifesciences Corporation Spiraled commissure attachment for prosthetic valve
8579964, May 05 2010 STRUL MEDICAL GROUP, LLC Transcatheter mitral valve prosthesis
8579966, Nov 15 2000 Medtronic Corevalve LLC Prosthetic valve for transluminal delivery
8623074, Feb 16 2007 Medtronic, Inc Delivery systems and methods of implantation for replacement prosthetic heart valves
8628566, Jan 24 2008 Medtronic, Inc Stents for prosthetic heart valves
8673000, Jan 24 2008 Medtronic, Inc. Stents for prosthetic heart valves
8685080, Jul 21 2008 Edwards Lifesciences CardiAQ LLC Repositionable endoluminal support structure and its applications
8721708, Nov 15 2000 Medtronic Corevalve LLC Prosthetic valve for transluminal delivery
8728155, Mar 21 2011 Cephea Valve Technologies, Inc. Disk-based valve apparatus and method for the treatment of valve dysfunction
8740962, Nov 07 2006 CORVIA MEDICAL, INC Prosthesis for retrieval and deployment
8795356, Apr 15 2009 Edwards Lifesciences CardiAQ LLC Vascular implant
8801779, Nov 17 1999 Medtronic Corevalve, LLC Prosthetic valve for transluminal delivery
8845722, Aug 03 2009 Heart valve prosthesis and method of implantation thereof
8852272, Aug 05 2011 CARDIOVALVE LTD Techniques for percutaneous mitral valve replacement and sealing
8870948, Jul 17 2013 Cephea Valve Technologies, Inc. System and method for cardiac valve repair and replacement
8894702, Sep 29 2008 Edwards Lifesciences CardiAQ LLC Replacement heart valve and method
8911455, Oct 01 2008 Edwards Lifesciences CardiAQ LLC Delivery system for vascular implant
8956404, Sep 12 2011 HIGHLIFE SAS Transcatheter valve prosthesis
8986375, Mar 12 2013 Medtronic, Inc Anti-paravalvular leakage component for a transcatheter valve prosthesis
8998976, Jul 12 2011 Boston Scientific Scimed, Inc. Coupling system for medical devices
9011527, Sep 20 2010 ST JUDE MEDICAL, CARDIOLOGY DIVISION, INC Valve leaflet attachment in collapsible prosthetic valves
9017399, Jul 21 2010 CARDIOVALVE LTD Techniques for percutaneous mitral valve replacement and sealing
9023074, Oct 15 2010 Oregon Health and Science University Multi-stage occlusion devices
9023100, Sep 23 2010 Edwards Lifesciences CardiAQ LLC Replacement heart valves, delivery devices and methods
9034032, Oct 19 2011 TWELVE, INC Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
9039757, Oct 19 2011 TWELVE, INC Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
9060857, May 13 2005 Medtronic Corevalve LLC Heart valve prosthesis and methods of manufacture and use
9101467, Mar 30 2012 MEDTRONIC CV LUXEMBOURG S.A.R.L. Valve prosthesis
9125740, Jun 21 2011 FOUNDRY NEWCO XII, INC Prosthetic heart valve devices and associated systems and methods
9132009, Jul 21 2010 CARDIOVALVE LTD Guide wires with commissural anchors to advance a prosthetic valve
9155617, Jan 23 2004 Edwards Lifesciences Corporation Prosthetic mitral valve
9168130, Feb 26 2008 JENAVALVE TECHNOLOGY, INC ; JVT RESEARCH & DEVELOPMENT CORPORATION Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient
9168131, Dec 09 2011 Edwards Lifesciences Corporation Prosthetic heart valve having improved commissure supports
9232994, Mar 15 2013 Medtronic Vascular Galway Limited Stented prosthetic heart valve and methods for making
9387071, Sep 19 2006 Medtronic, Inc. Sinus-engaging valve fixation member
9393110, Oct 05 2010 Edwards Lifesciences Corporation Prosthetic heart valve
9393112, Aug 20 2007 Medtronic Ventor Technologies Ltd. Stent loading tool and method for use thereof
9414913, Oct 25 2013 Medtronic, Inc Stented prosthetic heart valve
9421083, Feb 05 2007 Boston Scientific Scimed, Inc Percutaneous valve, system and method
9439757, Dec 09 2014 CEPHEA VALVE TECHNOLOGIES, INC Replacement cardiac valves and methods of use and manufacture
9474605, May 16 2012 Edwards Lifesciences Corporation Devices and methods for reducing cardiac valve regurgitation
9474609, Sep 21 2005 Boston Scientific Scimed, Inc. Venous valve, system, and method with sinus pocket
9480556, Sep 07 2004 Medtronic, Inc. Replacement prosthetic heart valve, system and method of implant
9480558, Dec 05 2011 Medtronic, Inc.; Medtronic, Inc Transcatheter valve having reduced seam exposure
9480563, Mar 08 2013 ST JUDE MEDICAL, CARDIOLOGY DIVISION, INC Valve holder with leaflet protection
9486306, Apr 02 2013 Tendyne Holdings, Inc. Inflatable annular sealing device for prosthetic mitral valve
9492273, Dec 09 2014 CEPHEA VALVE TECHNOLOGIES, INC Replacement cardiac valves and methods of use and manufacture
9498330, Apr 21 2005 Edwards Lifesciences AG Blood flow controlling apparatus
9504564, May 13 2005 Medtronic Corevalve LLC Heart valve prosthesis and methods of manufacture and use
9504568, Feb 16 2007 Medtronic, Inc Replacement prosthetic heart valves and methods of implantation
9510943, Jan 19 2007 Medtronic, Inc Stented heart valve devices and methods for atrioventricular valve replacement
9561103, Jul 17 2013 CEPHEA VALVE TECHNOLOGIES, INC System and method for cardiac valve repair and replacement
9579198, Mar 01 2012 TWELVE, INC Hydraulic delivery systems for prosthetic heart valve devices and associated methods
9655722, Oct 19 2012 TWELVE, INC Prosthetic heart valve devices, prosthetic mitral valves and associated systems and methods
9883941, Jun 19 2012 Boston Scientific Scimed, Inc. Replacement heart valve
9949824, Aug 03 2001 JENAVALVE TECHNOLOGY, INC ; JVT RESEARCH & DEVELOPMENT CORPORATION Devices useful for implantation at a heart valve
20010007956,
20010039450,
20010041928,
20010041930,
20010044652,
20010044656,
20020002396,
20020010489,
20020026233,
20020029981,
20020032481,
20020055769,
20020062135,
20020082609,
20020095173,
20020120328,
20020161392,
20020161394,
20020177766,
20020183781,
20020188341,
20020188344,
20030023303,
20030036791,
20030040771,
20030040772,
20030040791,
20030050694,
20030055495,
20030060844,
20030070944,
20030109924,
20030109930,
20030114912,
20030130729,
20030135257,
20030144732,
20030149476,
20030149477,
20030149478,
20030176884,
20030181850,
20030187495,
20030199971,
20030208224,
20030212429,
20030212454,
20030216774,
20030225421,
20030225445,
20030229390,
20030233117,
20040034411,
20040049224,
20040049226,
20040049262,
20040060563,
20040082904,
20040082967,
20040087982,
20040093016,
20040098022,
20040098099,
20040111096,
20040116951,
20040117004,
20040122468,
20040127936,
20040127979,
20040133274,
20040138694,
20040143294,
20040148021,
20040153094,
20040158277,
20040167565,
20040181140,
20040186563,
20040204755,
20040215331,
20040215339,
20040220655,
20040225321,
20040225354,
20040254636,
20050033402,
20050070934,
20050075662,
20050085841,
20050085842,
20050085843,
20050085890,
20050090846,
20050096692,
20050096734,
20050096735,
20050096736,
20050096738,
20050100580,
20050107822,
20050113910,
20050137686,
20050137687,
20050137688,
20050137689,
20050137691,
20050137692,
20050137694,
20050137696,
20050137697,
20050137701,
20050143809,
20050165352,
20050182486,
20050197694,
20050197695,
20050203614,
20050203615,
20050203616,
20050203617,
20050209580,
20050228472,
20050251250,
20050251251,
20050261759,
20050267560,
20050283962,
20050288766,
20060004439,
20060004442,
20060015168,
20060058872,
20060116717,
20060155312,
20060161249,
20060190030,
20060195183,
20060235510,
20060247680,
20060253191,
20060259134,
20060259135,
20060259137,
20060265045,
20060271166,
20060287668,
20070016286,
20070055340,
20070088431,
20070100440,
20070112355,
20070118214,
20070203503,
20070203575,
20070244552,
20070255389,
20070265656,
20070276324,
20070288089,
20080015619,
20080033543,
20080082165,
20080140189,
20080140191,
20080167682,
20080177381,
20080188928,
20080208328,
20080208332,
20080221672,
20080234797,
20080288054,
20090005863,
20090062841,
20090082803,
20090171456,
20090182405,
20090192585,
20090222076,
20090254165,
20090264759,
20090287290,
20090306768,
20100036479,
20100049313,
20100094314,
20100121434,
20100161036,
20100219092,
20100268204,
20100280495,
20100284724,
20100298931,
20100312333,
20110004296,
20110022157,
20110034987,
20110166636,
20110218619,
20110245911,
20110257723,
20110264198,
20110295363,
20110301702,
20120016464,
20120059458,
20120078360,
20120197283,
20120197391,
20130041447,
20130041458,
20130253643,
20130261737,
20130282110,
20130282114,
20130304197,
20130310923,
20130331931,
20140005775,
20140005778,
20140012368,
20140012374,
20140052237,
20140052244,
20140067048,
20140081383,
20140214159,
20140222136,
20140243954,
20140249622,
20140257476,
20140277390,
20140324164,
20140330368,
20140379076,
20150039083,
20150094802,
20150112430,
20150135506,
20150142100,
20150157457,
20150173897,
20150209139,
20150351903,
20160038280,
20160151153,
20160158000,
20160158003,
20160166384,
20160310269,
20170035569,
20170042675,
20170209261,
20170209269,
20170231762,
20170245991,
CA2859666,
CN1338951,
EP409929,
EP819013,
EP937439,
EP1042045,
EP1057459,
EP1057460,
EP1059894,
EP1078610,
EP1229864,
EP1340473,
EP1356793,
EP1430853,
EP1469797,
EP1600121,
EP1616531,
EP1849440,
EP2124826,
WO9059,
WO44308,
WO44313,
WO67661,
WO105331,
WO135870,
WO164137,
WO2100297,
WO236048,
WO241789,
WO3003943,
WO3003949,
WO3011195,
WO3015851,
WO3030776,
WO3094797,
WO2004014256,
WO2004019811,
WO2004026117,
WO2004041126,
WO2004047681,
WO2004066876,
WO2004082536,
WO2005037361,
WO2005084595,
WO2005087140,
WO2009072122,
WO2009108615,
WO2009132187,
WO2009137755,
WO2010141847,
WO2011057087,
WO2013158608,
WO2013158613,
WO9504556,
WO9529640,
WO9614032,
WO9624306,
WO9836790,
WO9857599,
WO9944542,
/////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 24 2014WALLACE, DANCEPHEA VALVE TECHNOLOGIES, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0456480946 pdf
Jan 27 2014ERZBERGER, GARYCEPHEA VALVE TECHNOLOGIES, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0456480946 pdf
Jan 27 2014CORCORAN, MICHAEL P CEPHEA VALVE TECHNOLOGIES, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0456480946 pdf
Jan 27 2014MONTORFANO, MATTEOCEPHEA VALVE TECHNOLOGIES, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0456480946 pdf
Jan 27 2014CHIEFFO, ALAIDECEPHEA VALVE TECHNOLOGIES, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0456480946 pdf
Feb 04 2014GRANADA, JUAN F CEPHEA VALVE TECHNOLOGIES, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0456480946 pdf
Feb 04 2014LADUCA, ROBERTCEPHEA VALVE TECHNOLOGIES, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0456480946 pdf
Aug 28 2017Cephea Valve Technlologies, Inc.(assignment on the face of the patent)
Oct 03 2018CEPHEA VALVE TECHNOLOGIES, INC Abbott Vascular IncSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0471510729 pdf
Date Maintenance Fee Events
Aug 28 2017BIG: Entity status set to Undiscounted (note the period is included in the code).
Sep 01 2017SMAL: Entity status set to Small.
Jun 01 2022BIG: Entity status set to Undiscounted (note the period is included in the code).
Jun 06 2022M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Dec 11 20214 years fee payment window open
Jun 11 20226 months grace period start (w surcharge)
Dec 11 2022patent expiry (for year 4)
Dec 11 20242 years to revive unintentionally abandoned end. (for year 4)
Dec 11 20258 years fee payment window open
Jun 11 20266 months grace period start (w surcharge)
Dec 11 2026patent expiry (for year 8)
Dec 11 20282 years to revive unintentionally abandoned end. (for year 8)
Dec 11 202912 years fee payment window open
Jun 11 20306 months grace period start (w surcharge)
Dec 11 2030patent expiry (for year 12)
Dec 11 20322 years to revive unintentionally abandoned end. (for year 12)