Method and system for providing analyte sensor alignment and retention mechanism for improved connectivity with a transmitter unit for electrical connection, and further including transmitter unit contact pins with metal components to improve electrical conductivity with the analyte sensor in an analyte monitoring and management system is provided.

Patent
   10159433
Priority
Feb 28 2006
Filed
Apr 18 2016
Issued
Dec 25 2018
Expiry
Sep 12 2026

TERM.DISCL.
Extension
196 days
Assg.orig
Entity
Large
4
854
currently ok
14. A method comprising:
inserting a sensor device into a sensor electronics mount, wherein the sensor electronics mount includes a spring biased retaining mechanism;
holding, by the spring biased retaining mechanism, an analyte sensor in place relative to the sensor electronics mount; and
applying a transmitter housing to the sensor electronics mount.
1. A method of applying an electronic device to the body of a user, the method comprising:
applying a sensor electronics mount to a skin surface of the user;
inserting, with an insertion mechanism, a sensor device into the sensor electronics mount to place at least a portion of an analyte sensor in fluid contact with a bodily fluid, wherein the sensor electronics mount includes a spring biased retaining mechanism configured to hold the analyte sensor relative to the sensor electronics mount;
removing the insertion mechanism from the sensor electronics mount; and
applying a transmitter housing to the sensor electronics mount.
2. The method of claim 1, wherein the sensor electronics mount further includes an opening to detachably couple to the transmitter housing when the analyte sensor is connected to the sensor electronics mount.
3. The method of claim 1, wherein the spring biased retaining mechanism includes a plurality of clip portions.
4. The method of claim 1, wherein the analyte sensor includes a plurality of conductive pads and the transmitter housing includes a plurality of electrical contacts, and wherein the spring biased retaining mechanism is further configured to bias the plurality of conductive pads toward the corresponding plurality of electrical contacts.
5. The method of claim of claim 1, wherein the sensor electronics mount is coupled to an adhesive layer, the adhesive layer configured to adhere to the skin surface of the user.
6. The method of claim 1, wherein the analyte sensor includes a plurality of conductive pads and the transmitter housing includes a plurality of electrical contacts.
7. The method of claim 6, wherein each of the plurality of electrical contacts is configured to self-align with a respective one of the conductive pads when the transmitter housing is coupled to the analyte sensor.
8. The method of claim 6, wherein the plurality of conductive pads are planar.
9. The method of claim of claim 8, wherein applying the transmitter housing to the sensor electronics mount further comprises placing each of the plurality of electrical contacts in substantial contact with the respective one of the plurality of conductive pads.
10. The method of claim 6, wherein each of the plurality of electrical contacts includes a conductive polymer.
11. The method of claim 6, wherein each of the plurality of electrical contacts is substantially conical shaped.
12. The method of claim 6, wherein each of the plurality of electrical contacts includes a metal component disposed therein, wherein at least a first end of each of the plurality of electrical contacts is configured to substantially contact the respective one of the plurality of conductive pads of the analyte sensor.
13. The method of claim 12, wherein the metal component includes one of gold or beryllium copper.
15. The method of claim 14, wherein the analyte sensor includes a plurality of conductive pads and the transmitter housing includes a plurality of electrical contacts.
16. The method of claim 15, wherein the sensor electronics mount further includes an opening to detachably couple to the transmitter housing when the analyte sensor is connected to the transmitter housing.
17. The method of claim 15, wherein the spring biased retaining mechanism includes a plurality of clip portions.
18. The method of claim 15, wherein the spring biased retaining mechanism is configured to bias the plurality of conductive pads toward the corresponding plurality of electrical contacts.
19. The method of claim 15, wherein each of the plurality of electrical contacts is configured to self-align with a respective one of the conductive pads when the transmitter housing is coupled to the analyte sensor.
20. The method of claim 15, wherein the plurality of conductive pads are planar.

The present application is a continuation of U.S. patent application Ser. No. 13/252,118, filed Oct. 3, 2011, which is a continuation of U.S. patent application Ser. No. 11/365,334, filed Feb. 28, 2006, now U.S. Pat. No. 8,029,441, all of which are incorporated herein by reference in their entireties for all purposes.

Analyte monitoring systems including continuous glucose monitoring systems generally include an analyte sensor such as a subcutaneous analyte sensor, at least a portion of which is configured for fluid contact with biological fluid, for detecting analyte levels such as for example glucose or lactate levels, a transmitter (such as for example a Radio Frequency (RF) transmitter) in communication with the sensor and configured to receive the sensor signals and to transmit them to a corresponding receiver unit by for example, using an RF data transmission protocol. The receiver may be operatively coupled to a glucose monitor that performs glucose related calculations and data analysis.

The transmitter may be mounted or adhered to the skin of a patient and also in signal communication with the sensor. Generally, the sensor is configured to detect the analyte of the patient over a predetermined period of time, and the transmitter is configured to transmit the detected analyte information over the predetermined period of time for further analysis. To initially deploy the sensor so that the sensor contacts and electrodes are in fluid contact with the patient's analyte fluids, a separate deployment mechanism such as a sensor inserter or introducer is used. Moreover, a separate base component or mounting unit is provided on the skin of the patient so that the transmitter unit may be mounted thereon, and also, to establish signal communication between the transmitter unit and the analyte sensor.

As discussed above, the base component or mounting unit is generally adhered to the skin of the patient using an adhesive layer that is fixedly provided on the bottom surface of the base component or the mounting unit for the transmitter.

To minimize data errors in the continuous or semi-continuous monitoring system, it is important to properly insert the sensor through the patient's skin and securely retain the sensor during the time that the sensor is configured to detect analyte levels. In addition to accurate positioning of the sensor through the skin of the patient, it is important to ensure that the appropriate electrode of the analyte sensor are in continuous and proper electrical connection or communication with the corresponding contact points or pads on the transmitter unit.

Additionally, for the period of continuous or semi-continuous monitoring which can include, for example, 3 days, 5 days or 7 days, it is important to have the transmitter unit securely mounted to the patient, and more importantly, in proper contact with the analyte sensor so as to minimize the potential errors in the monitored data.

In view of the foregoing, it would be desirable to have an approach to provide methods and system for accurate and simple ways in which to securely couple the analyte sensor with the transmitter unit so as to maintain continuous electrical connection therebetween. Moreover, it would be desirable to have methods and system for easy deployment of sensors and subsequent simple removal of the same in a time effective and straight forward manner.

In accordance with the various embodiments of the present invention, there is provided method and system for providing analyte sensor alignment and retention mechanism for improved connectivity with a transmitter unit for electrical connection, and further including transmitter unit contact pins with metal components to improve electrical conductivity with the analyte sensor in an analyte monitoring and management system.

These and other objects, features and advantages of the present invention will become more fully apparent from the following detailed description of the embodiments, the appended claims and the accompanying drawings.

FIG. 1 is a block diagram illustrating a data monitoring and management system in accordance with one embodiment of the present invention;

FIGS. 2A-2D illustrate various views of the analyte sensor alignment with a transmitter unit in accordance with one embodiment of the present invention;

FIGS. 3A-3D illustrate various views of the analyte sensor alignment with a transmitter unit in accordance with another embodiment of the present invention;

FIGS. 4A-4E illustrate various views of the analyte sensor latch configuration in accordance with one embodiment of the present invention;

FIGS. 5A-5C illustrate various views of the analyte sensor latch configuration in accordance with another embodiment of the present invention;

FIGS. 6A-6D illustrate various views of the analyte sensor latch configuration in accordance with yet another embodiment of the present invention;

FIGS. 7A-7E illustrate a transmitter unit interconnect configuration in accordance with one embodiment of the present invention; and

FIGS. 8A-8C illustrate a polymer pin with contact cap of the transmitter unit interconnect shown in FIGS. 7A-7E in one embodiment of the present invention.

FIG. 1 illustrates a data monitoring and management system such as, for example, an analyte monitoring and management system 100 in accordance with one embodiment of the present invention. In such embodiment, the glucose monitoring system 100 includes a sensor 101, a transmitter unit 102 coupled to the sensor 101, and a receiver unit 104 which is configured to communicate with the transmitter 102 via a communication link 103. The receiver unit 104 may be further configured to transmit data to a data processing terminal 105 for evaluating the data received by the receiver unit 104. In addition, as shown in the Figure, a medication delivery unit 106 may be provided and operatively coupled to the receiver unit 104 and configured to receive one or more of data or commands directed to the control of the medication delivery unit 106 for delivering medication to a patient such as insulin.

Only one sensor 101, transmitter unit 102, communication link 103, receiver unit 104, data processing terminal 105, and medication delivery unit 106 are shown in the embodiment of the analyte monitoring and management system 100 illustrated in FIG. 1. However, it will be appreciated by one of ordinary skill in the art that the glucose monitoring system 100 may include one or more sensor 101, transmitter unit 102, communication link 103, receiver unit 104, and data processing terminal 105, where each receiver unit 104 is uniquely synchronized with a respective transmitter unit 102 to deliver medication through the medication delivery unit 106 such as an infusion pump. Moreover, within the scope of the present invention, the analyte monitoring and management system 100 may be a continuous monitoring and management system, or a semi-continuous or discrete monitoring and management system.

In one embodiment of the present invention, the sensor 101 is physically positioned on the body of a user whose glucose level is being monitored. The sensor 101 may be configured to continuously sample the glucose level of the user and convert the sampled analyte level into a corresponding data signal for transmission by the transmitter unit 102. In one embodiment, the transmitter unit 102 is mounted on the sensor 101 so that both devices are positioned on the user's body. The transmitter unit 102 performs data processing such as filtering and encoding on data signals, each of which corresponds to a sampled analyte level of the user, for transmission to the receiver unit 104 via the communication link 103.

In one embodiment, the analyte monitoring and management system 100 is configured as a one-way RF communication path from the transmitter unit 102 to the receiver unit 104. In such embodiment, the transmitter unit 102 transmits the sampled data signals received from the sensor 101 without acknowledgement from the receiver unit 104 that the transmitted sampled data signals have been received. For example, the transmitter unit 102 may be configured to transmit the encoded sampled data signals at a fixed rate (e.g., at one minute intervals) after the completion of the initial power on procedure. Likewise, the receiver unit 104 may be configured to detect such transmitted encoded sampled data signals at predetermined time intervals. Alternatively, the analyte monitoring and management system 100 may be configured with a bi-directional RF communication between the transmitter unit 102 and the receiver unit 104.

Additionally, in one aspect, the receiver unit 104 may include two sections. The first section is an analog interface section that is configured to communicate with the transmitter unit 102 via the communication link 103. In one embodiment, the analog interface section may include an RF receiver and an antenna for receiving and amplifying the data signals from the transmitter 102, which are thereafter, demodulated with a local oscillator and filtered through a band-pass filter. The second section of the receiver unit 104 is a data processing section which is configured to process the data signals received from the transmitter unit 102 such as by performing data decoding, error detection and correction, data clock generation, and data bit recovery.

In operation, upon completing the power-on procedure, the receiver unit 104 is configured to detect the presence of the transmitter unit 102 within its range based on, for example, the strength of the detected data signals received from the transmitter unit 102 or a predetermined transmitter identification information. Upon successful synchronization with the corresponding transmitter unit 102, the receiver unit 104 is configured to begin receiving from the transmitter unit 102 data signals corresponding to the user's detected glucose level. More specifically, the receiver unit 104 in one embodiment is configured to perform synchronized time hopping with the corresponding synchronized transmitter unit 102 via the communication link 103 to obtain the user's detected analyte level.

Referring again to FIG. 1, the data processing terminal 105 may include a desktop computer terminal, a data communication enabled kiosk, a laptop computer, a handheld computing device such as a personal digital assistant (PDAs), or a data communication enabled mobile telephone, and the like, each of which may be configured for data communication with the receiver via a wired or a wireless connection. Additionally, the data processing terminal 105 may further be connected to a data network (not shown) for storing, retrieving and updating data corresponding to the detected glucose level of the user. In addition, the data processing terminal 105 in one embodiment may include physician's terminal and/or a bedside terminal in a hospital environment, for example.

Moreover, the medication delivery unit 106 may include an infusion device such as an insulin infusion pump, which may be configured to administer insulin to patients, and which is configured to communicate with the receiver unit 104 for receiving, among others, the measured analyte level. Alternatively, the receiver unit 104 may be configured to integrate an infusion device therein so that the receiver unit 104 is configured to administer insulin therapy to patients, for example, for administering and modifying basal profiles, as well as for determining appropriate boluses for administration based on, among others, the detected glucose levels received from the transmitter unit 102. Referring again to FIG. 1, the medication delivery unit 106 may include, but is not limited to, an external infusion device such as an external insulin infusion pump, an implantable pump, a pen-type insulin injector device, a patch pump, an inhalable infusion device for nasal insulin delivery, or any other type of suitable delivery system.

Each of the transmitter unit 102, the receiver unit 104, the data processing unit 105, and the medication delivery unit 106 may be configured to communicate with each other over a wireless data communication link similar to the communication link 103 such as, but not limited to, RF communication link, Bluetooth® communication link, infrared communication link, or any other type of suitable wireless communication connection between two or more electronic devices. The data communication link may also include wired cable connection such as, for example, but not limited to, RS232 connection, USB connection, or serial cable connection.

Moreover, referring to FIG. 1, the analyte sensor 101 may include, but is not limited to, short term subcutaneous analyte sensors or transdermal analyte sensors, for example, which are configured to detect analyte levels of a patient over a predetermined time period.

Additional analytes that may be monitored, determined or detected by the analyte sensor 101 include, for example, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketones, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be determined.

FIGS. 2A-2D illustrate various views of the analyte sensor alignment with a transmitter unit in accordance with one embodiment of the present invention. Referring to FIG. 2A, a transmitter unit 102 (FIG. 1) housing 210 is provided with a protrusion 220 substantially on the same side as the location of a plurality of transmitter contacts 230A, 230B, 230C, 230D, each of which are configured to couple to a respective segment of an analyte sensor 250 (FIG. 2B).

That is, when the transmitter unit housing 210 is positioned on an adhesive layer 240 for adhesion to a skin surface of a patient, the protrusion 220 of the transmitter unit housing 210 is configured to correspondingly mate with a notch or hole 260 on the surface of the analyte sensor 250 such that during the process of placing and guiding the transmitter unit on the adhesive layer 240 (and upon a transmitter mounting unit 270 (FIG. 2C)), it is possible to accurately position and align the transmitter contacts 230A, 230B, 230C, and 230D and to electrically couple to a respective one of the working electrode, the counter electrode, the reference electrode, and a guard trace, provided on the analyte sensor 250. Referring to FIGS. 2C and 2D, side cross sectional view of the transmitter contacts before and after alignment and engagement with the analyte sensor 250, respectively, are shown.

In the manner described above, in one embodiment of the present invention, there is provided a protrusion 220 on the transmitter unit housing 210 which is configured to mate with a notch or hole 260 on the analyte sensor 250 such that substantially accurate positioning and alignment of the analyte sensor 250 with respect to the transmitter unit 102 may be provided.

FIGS. 3A-3D illustrate various views of the analyte sensor alignment with a transmitter unit in accordance with another embodiment of the present invention. Referring to FIGS. 3A-3B, it can be seen that the analyte sensor 330 is provided with a seal 340 having a plurality of substantially circular lead-in segments 341A, 341B, 341C, 341D, each provided substantially respectively on one of the working electrode, counter electrode, reference electrode, and the guard trace of the analyte sensor 330. Moreover, referring to FIG. 3C, the electrical contact pins 350A, 350B, 350C, 350D on the transmitter unit housing 310 is each configured in substantially tapered manner extending outwards and away from the transmitter unit housing 310.

In this manner, in one embodiment of the present invention, when after analyte sensor 330 has been subcutaneously positioned through the skin of the patient, the transmitter unit housing 310 may be configured to mate with the transmitter mount unit 360 provided on the adhesive layer 320 such that the electrical contact pins 350A, 350B, 350C, 350D guided by the respective lead-in segments 341A, 341B, 341C, 341D on the sensor seal 340 such that the proper alignment of the sensor electrodes and guard trace are provided to the respective electrical contact pins 350A, 350B, 350C, 350D to establish electrical contacts with the same.

FIG. 3D illustrates a side cross sectional view of the electrical contact pins 350A, 350B, 350C, 350D on the transmitter unit 102 coupled to the respective lead-in segments 341A, 341B, 341C, 341D on the sensor seal 340 to establish electrical contact between the transmitter unit 102 (FIG. 1) and the analyte sensor 101. In one embodiment, the sensor seal 340 is provided on the analyte sensor 330 during the sensor manufacturing process, and as such, it is possible to achieve a high degree of accuracy in positioning the seal 340, and further, to obtain a substantially concentric lead-in segments 341A, 341B, 341C, 341D as shown, for example, in FIG. 3B, such that when the tip portion of the electrical contact pins 350A, 350B, 350C, 350D on the transmitter unit 102 are positioned within the concentric lead-in segments 341A, 341B, 341C, 341D, the proper alignment of the sensor contact pads or electrodes and guard trace with the respective electrical contact pins 350A, 350B, 350C, 350D on the transmitter unit 102 can be achieved.

Referring back to FIG. 3B, the seal 340 on the analyte sensor 330 may be provided during the manufacturing process of the sensor 330 and as such, pre-bonded to the sensor 330. In this manner, accurate alignment of the analyte sensor 330 with the transmitter unit 102 with a degree of tolerating potential misalignment of the electrical contact pins 350A, 350B, 350C, 350D on the transmitter unit 102 may be tolerated given the concentric shape of the lead-in segments 341A, 341B, 341C, 341D on the seal 340 of the analyte sensor 330.

FIGS. 4A-4E illustrate various views of the analyte sensor latch configuration in accordance with one embodiment of the present invention. Referring to FIG. 4A, there is shown a sensor 410 having an upper flap portion 412 and a lower flap portion 411. The lower flap portion of the sensor 410 is configured in one embodiment to retain the sensor in proper position within a sharp or introducer 430 (FIG. 4B) of an insertion mechanism 420 (FIG. 4B) so as to minimize the potential sensor displacement prior to positioning the sensor in fluid contact with the patient's analytes using the insertion mechanism 420.

Referring back to FIG. 4A, the upper flap portion 412 of the sensor 410 is configured in one embodiment to facilitate the removal of the sensor 410 after its intended use (for example, 3 days, 5 days or 7 days), by providing an area which may be manually manipulated for removal from the inserted position in the patient. In one embodiment, the upper flap portion 412 and the lower flap portion 411 are extended in opposite directions relative to the body of the analyte sensor 410. This configuration further provides secure sensor positioning during the sensor insertion process such that the sensor movement when coupled to the introducer 430 is minimized. FIG. 4C illustrates the transmitter mount 440 in cooperation with the insertion mechanism 420 having the sensor 410 loaded in the introducer 430 before the sensor is placed in the patient. FIGS. 4D and 4E illustrate the insertion mechanism 420 coupled with the transmitter mount 440 after the insertion mechanism has deployed the introducer 430 so as to place at least a portion of the sensor 410 in fluid contact with the patient's analytes.

FIGS. 5A-5C illustrate various views of the analyte sensor latch configuration in accordance with another embodiment of the present invention. Referring to FIGS. 5A-5C, transmitter mount 520 is provided with a plurality of hooks (or barbs) 521A, 521B, each of which are configured to mate with a corresponding one of a plurality of open segments 511A, 511B on the sensor 510. During deployment of the sensor 510 for example, using an insertion mechanism 550 having an introducer 540 coupled to the sensor 510, the sensor 510 is positioned relative to the transmitter mount 520 such that the open segments 511A, 511B of the sensor 510 are coupled or latched with the respective hook/latch 521A, 521B on the transmitter mount 520, to securely retain the sensor 510 in position relative to the transmitter unit 102 being mounted on the transmitter mount 520 to couple to the sensor 510.

In one embodiment, the plurality of hooks/barbs 521A, 521B on the transmitter mount 520 are provided as molded plastic protrusions on the transmitter mount 520. Upon engaging with the respective open segments 511A, 511B on the sensor 510, it can be seen that the sensor 510 is retained substantially in a fixed position relative to the transmitter mount 520 (which is in turn, fixedly positioned on the patient's skin by the adhesive layer 530), so that proper alignment and coupling with the respective electrical contact pins on the transmitter unit 102 may be achieved.

FIGS. 6A-6D illustrate various views of the analyte sensor latch configuration in accordance with yet another embodiment of the present invention. Referring to FIG. 6A illustrating a component view of the latch configuration, there is provided a transmitter mount 620, adhesive layer 610, a retaining segment 630 having a plurality of clip portions 631A, 631B, and a mounting segment 640. Referring to FIG. 6B, it can be seen that the retaining segment 630 is positioned on the transmitter mount 620 with the mounting segment provided thereon. Moreover, the transmitter mount is provided on the adhesive layer 610, which is in turn, placed on the patient's skin and adhered thereto for secure positioning.

Referring to FIGS. 6C-6D, in one embodiment, the clip portions 631A, 631B of the retaining segment 630 are each spring biased and configured for spring loading the sensor 650 in the direction towards the electrical contact pins of the transmitter unit 102, thus facilitating the sensor (650)—transmitter (670) connection. Moreover, the clip portions 631A, 631B are further configured to provide a latch/locking mechanism of the subcutaneously positioned sensor 650 relative to the transmitter mount 620, such that the sensor 650 is held firmly in place.

In the manner described above, in accordance with the various embodiments of the present invention, there are provided different mechanisms for sensor alignment relative to the transmitter electrical contact pins to effectively couple the sensor contacts (working, reference and counter electrodes and the guard trace), with the corresponding electrical contact pads or connections on the transmitter unit 102. Moreover, as further described above, in accordance with the various embodiments of the present invention, there are provided mechanism for sensor retention and secure positioning relative to the transmitter mount which is placed on the patient's skin such that the transmitter unit 102 may be easily and accurately guided to establish proper connection with the sensor 101.

FIGS. 7A-7E illustrate a transmitter unit interconnect configuration in accordance with one embodiment of the present invention. More specifically, FIGS. 7A-7E show various different perspectives and views of the transmitter unit housing 710 that includes a plurality of electrical contact pins 711A, 711B, 711C, 711D, each configured to establish electrical connection to a respective portion of the analyte sensor 720. As discussed below, each of the electrical contact pins 711A, 711B, 711C, 711D in one embodiment includes a polymer pin with a contact cap that provides improved electrical conductivity between the transmitter unit 102 and the sensor 101.

FIGS. 8A-8C illustrate a polymer pin with contact cap of the transmitter unit interconnect shown in FIGS. 7A-7E in one embodiment of the present invention. As shown in FIGS. 8A-8C, contact pin 800 includes an outer body portion 810 and an inner contact portion 820 with an end segment 821. In one embodiment, the inner contact portion 820 is configured to substantially entirely be positioned within the outer body portion 810 (as shown in FIG. 8A), except for the end segment 821 of the inner contact portion 820 extending out of one end of the outer body portion 810.

In one embodiment, the outer body portion 810 may be injection molded using a silicone based, carbon loaded (impregnated, for example) soft polymer material. Furthermore, the end segment 821 and the inner contact portion 820 comprise a metal such as for example, Beryllium copper (BeCu), Nickel Silver, Phosphor Bronze Brass, Rhodium or gold plated to provide improved electrical conductivity. More specifically, the inner contact portion 820 placed within the outer body portion 810 may comprise a light gauge wire (such as 30 g), and may be insert molded into the outer body portion 810.

In this manner, the contact pin 800 in one embodiment includes a carbon loaded, silicone based, injection molded soft polymer pin with a metal cap or end segment 821 which is shaped and positioned to cover substantially a large portion of the contact area where the sensor contact is to occur. Moreover, the metal inner contact portion 820 extending the length of the outer body portion 810 of the contact pin 800 further improves electrical conductivity. Moreover, a metal end segment 821 provides additional resistance to wear over a prolonged use based on repeated contact with other surfaces (for example, sensor surfaces).

Accordingly, in one aspect of the present invention, the transmitter unit 102 may be provided with a plurality of contact pins 800 that have a large metal sensor contact surface to increase the electrical conductivity with the sensor. In addition, the metal contact surface may provide improved resistance to abrasion, wear and damage to the end segment 821 of the contact pin 800. In addition, the contact pin 800 configuration described above also provides flexibility, desired compliance and self-sealing capability, and further, may be press fit into the transmitter housing. Further, the contact pins 800 may additionally be chemically resistant, substantially water proof, and thus improve the transmitter unit 102 interconnect assembly life.

Accordingly, an apparatus for providing alignment in one embodiment of the present invention includes a sensor having a hole thereon, and a transmitter housing including a protrusion at a first end, the protrusion configured to substantially engage with the hole of the sensor such that the transmitter is in electrical contact with the sensor.

An apparatus for providing alignment in accordance with another embodiment of the present invention includes a sensor including a plurality of conductive pads, and a transmitter housing including a plurality of electrical contacts, each of the electrical contacts configured to substantially align with a respective one of the plurality of the conductive pads.

The apparatus may further include a seal segment adhered to the sensor, where the seal segment includes a plurality of radial seal holes disposed on the seal segment, and further, where each of the radial holes may be configured to receive a respective one of the plurality of electrical contacts.

In another aspect, each of the electrical contacts may be substantially tapered.

Moreover, the transmitter electrical contacts may be configured to self-align with a respective one of the conductive pads of the sensor when the transmitter is coupled to the sensor.

An apparatus for providing a sensor connection in a data monitoring system in accordance with yet another embodiment of the present invention includes a sensor having a plurality of conductive pads, and a transmitter housing, the housing including a plurality of electrical contacts, each of the contacts configured to substantially contact the respective one of the sensor conductive pads, where each of the plurality of electrical contacts include conductive polymer.

The electrical contacts in one embodiment may be silicon doped with carbon.

Moreover, the electrical contacts may be substantially conical shaped.

In another aspect, each of the electrical contacts may include a metal component disposed therein, wherein at least a first end of each of the electrical contacts is configured to substantially contact the respective one of the sensor conductive pads.

The metal component may include one of gold or beryllium copper.

An apparatus for providing a sensor connection in a data monitoring system in still another embodiment of the present invention includes a sensor having a plurality of conductive pads, a transmitter mount having a spring biased mechanism, and a transmitter housing, the housing including a plurality of electrical contacts, where each of the plurality of electrical contacts of the transmitter is configured to substantially contact the respective one of the sensor conductive pads by the spring biased mechanism of the transmitter housing.

In yet another aspect, the spring biased mechanism of the transmitter mount may include a tapered cantilever beam disposed on the transmitter mount.

An apparatus for positioning a sensor in a data monitoring system in yet still another embodiment of the present invention may include a sensor having a cutout portion, and a transmitter mount having a latch mechanism, the transmitter mount configured to couple to the sensor by the latch mechanism engaging the cutout portion of the sensor.

An apparatus for positioning a sensor in a data monitoring system in yet still a further embodiment of the present invention may include a sensor, and a transmitter mount, the transmitter including a latch mechanism, the latch mechanism configured to engage with the sensor for substantially permanently positioning the sensor relative to the transmitter.

Further, the latch mechanism may, in one embodiment, include a metal clip.

Various other modifications and alterations in the structure and method of operation of this invention will be apparent to those skilled in the art without departing from the scope and spirit of the invention. Although the invention has been described in connection with specific preferred embodiments, it should be understood that the invention as claimed should not be unduly limited to such specific embodiments. It is intended that the following claims define the scope of the present invention and that structures and methods within the scope of these claims and their equivalents be covered thereby.

Mazza, John C., Stafford, Gary Ashley, Naegeli, Andrew H.

Patent Priority Assignee Title
10517134, May 11 2017 Pacesetter, Inc. Method and system for managing communication between external and implantable devices
11224087, May 11 2017 Pacesetter, Inc. Method and system for managing communication between external and implantable devices
11564278, May 11 2017 Pacesetter, Inc. Method and system for managing communication between external and implantable devices
11800593, May 11 2017 Pacesetter, Inc. Method and system for managing communication between external and implantable devices
Patent Priority Assignee Title
3581062,
3926760,
3949388, Nov 17 1971 Monitron Industries, Inc. Physiological sensor and transmitter
4036749, Apr 30 1975 Purification of saline water
4055175, May 07 1976 Miles Laboratories, Inc. Blood glucose control apparatus
4129128, Feb 23 1977 TAUT, INC , 2571 KANEVILLE ROAD, GENEVA, COUNTY KANE, ILLINOIS, A DE CORP Securing device for catheter placement assembly
4245634, Dec 11 1975 Hospital For Sick Children Artificial beta cell
4305401, May 16 1979 Hughes Aircraft Company Digital watch/infrared plethysmograph having a quick release remote pulse sensor having a finger cuff
4327725, Nov 25 1980 ALZA Corporation Osmotic device with hydrogel driving member
4344438, Aug 02 1978 The United States of America as represented by the Department of Health, Optical sensor of plasma constituents
4349728, Dec 07 1978 LOMAH ELECTRONIC TARGETRY, INC , 333 KEY PALM ROAD, BOCA RATON, FL A CORP OF FL Target apparatus
4373527, Apr 27 1979 The Johns Hopkins University Implantable, programmable medication infusion system
4392849, Jul 27 1981 The Cleveland Clinic Foundation Infusion pump controller
4425920, Oct 24 1980 Purdue Research Foundation Apparatus and method for measurement and control of blood pressure
4478976, Sep 25 1981 BASF Aktiengesellschaft Water-insoluble protein material, its preparation and its use
4494950, Jan 19 1982 The Johns Hopkins University Plural module medication delivery system
4509531, Jul 28 1982 AVIONICS SPECIALTIES, INC Personal physiological monitor
4527240, Dec 29 1982 RELONIX, INC Balascopy method for detecting and rapidly evaluating multiple imbalances within multi-parametric systems
4538616, Jul 25 1983 Blood sugar level sensing and monitoring transducer
4545382, Oct 23 1981 MEDISENSE, INC Sensor for components of a liquid mixture
4619793, Apr 29 1982 Ciba-Geigy Corporation Method of producing annealed polyvinyl alcohol contact lens
4671288, Jun 13 1985 The Regents of the University of California Electrochemical cell sensor for continuous short-term use in tissues and blood
4703756, May 06 1986 Regents of the University of California, The Complete glucose monitoring system with an implantable, telemetered sensor module
4711245, Oct 22 1982 MEDISENSE, INC Sensor for components of a liquid mixture
4731726, May 19 1986 Roche Diabetes Care, Inc Patient-operated glucose monitor and diabetes management system
4749985, Apr 13 1987 United States of America as represented by the United States Department Functional relationship-based alarm processing
4757022, Sep 10 1985 DEXCOM, INC Biological fluid measuring device
4759828, Apr 09 1987 FIRST NATIONAL BANK OF BOSTON, THE Glucose electrode and method of determining glucose
4777953, Feb 25 1987 ASH ACCESS TECHNOLOGY, INC Capillary filtration and collection method for long-term monitoring of blood constituents
4779618, Aug 10 1984 Pacesetter AB Device and method for the physiological frequency control of a heart pacemaker equipped with a stimulating electrode
4854322, Feb 25 1987 ASH ACCESS TECHNOLOGY, INC Capillary filtration and collection device for long-term monitoring of blood constituents
4871351, Sep 28 1984 Implantable medication infusion system
4890620, Sep 20 1985 The Regents of the University of California Two-dimensional diffusion glucose substrate sensing electrode
4925268, Jul 25 1988 HOSPIRA, INC Fiber-optic physiological probes
4953552, Apr 21 1989 Blood glucose monitoring system
4986271, Jul 19 1989 University of New Mexico Vivo refillable glucose sensor
4995402, Oct 12 1988 Thorne, Smith, Astill Technologies, Inc.; THORNE, SMITH, ASTILL TECHNOLOGIES, INC , 1056 MILLCREST CIRCLE, BOUNTIFUL, UT 84010, A CORP OF DE Medical droplet whole blood and like monitoring
5000180, Aug 03 1988 DRAGER NEDERLAND B V Polarographic-amperometric three-electrode sensor
5002054, Feb 25 1987 Volcano Corporation Interstitial filtration and collection device and method for long-term monitoring of physiological constituents of the body
5019974, May 01 1987 EURUS LLC; DIVA MEDICAL MANAGEMENT SYSTEMS BY Diabetes management system and apparatus
5050612, Sep 12 1989 Device for computer-assisted monitoring of the body
5055171, Oct 06 1986 T AND G CORPORATION A CT CORPORATION Ionic semiconductor materials and applications thereof
5068536, Jan 19 1989 Futrex, Inc. Method for providing custom calibration for near infrared instruments for measurement of blood glucose
5082550, Dec 11 1989 The United States of America as represented by the Department of Energy Enzyme electrochemical sensor electrode and method of making it
5106365, Jun 16 1989 Europhor SA Microdialysis probe
5122925, Apr 22 1991 Control Products, Inc. Package for electronic components
5165407, Apr 19 1990 UNIVERSITY OF KANSAS, THE, Implantable glucose sensor
5202261, Jul 19 1990 Miles Inc. Conductive sensors and their use in diagnostic assays
5205297, Mar 25 1988 Covidien AG Multipurpose medical stimulation electrode
5246867, Jan 17 1992 LAKOWICZ, JOSEPH R , PH D Determination and quantification of saccharides by luminescence lifetimes and energy transfer
5262035, Aug 02 1989 Abbott Diabetes Care Inc Enzyme electrodes
5262305, Mar 04 1991 THERASENSE, INC Interferant eliminating biosensors
5264104, Aug 02 1989 THERASENSE, INC Enzyme electrodes
5264105, May 08 1992 THERASENSE, INC Enzyme electrodes
5279294, Jul 25 1986 KUDD, ARTHUR R ; DAYTON, JUDSON M Medical diagnostic system
5285792, Jan 10 1992 CREDITANSTALT BANKVEREIN System for producing prioritized alarm messages in a medical instrument
5293877, Dec 11 1991 Covidien AG Body temperature thermometer and method fo measuring human body temperature utilizing calibration mapping
5299571, Jan 22 1993 Disetronic Licensing AG Apparatus and method for implantation of sensors
5320725, Aug 02 1989 THERASENSE, INC Electrode and method for the detection of hydrogen peroxide
5322063, Oct 04 1991 Disetronic Licensing AG Hydrophilic polyurethane membranes for electrochemical glucose sensors
5340722, Aug 24 1988 AVL Medical Instruments AG Method for the determination of the concentration of an enzyme substrate and a sensor for carrying out the method
5342789, Dec 14 1989 SENSOR TECHNOLOGIES, INC Method and device for detecting and quantifying glucose in body fluids
5356786, Mar 04 1991 THERASENSE, INC Interferant eliminating biosensor
5360404, Dec 14 1988 INVIRO MEDICAL DEVICES, INC Needle guard and needle assembly for syringe
5372427, Dec 19 1991 TEXAS INSTRUMENTS INCORPORATED A CORPORATION OF DE Temperature sensor
5379238, Mar 03 1989 Signal processing method and apparatus
5390671, Mar 15 1994 MEDTRONIC MINIMED, INC Transcutaneous sensor insertion set
5391250, Mar 15 1994 MEDTRONIC MINIMED, INC Method of fabricating thin film sensors
5394877, Mar 21 1994 Axon Medical, Inc. Ultrasound medical diagnostic device having a coupling medium providing self-adherence to a patient
5402780, Sep 02 1993 Medical electrode with offset contact stud
5408999, Oct 23 1992 BRUCE A MCKINLEY Fiber-optic probe for the measurement of fluid parameters
5411647, Nov 23 1992 Disetronic Licensing AG Techniques to improve the performance of electrochemical sensors
5425868, Jul 24 1992 RADIOMETER MEDICAL APS Sensor for non-invasive, in vivo determination of an analyte and blood flow
5431160, Jul 19 1989 University of New Mexico Miniature implantable refillable glucose sensor and material therefor
5431921, Sep 28 1990 Pfizer Inc Dispensing device containing a hydrophobic medium
5462645, Sep 20 1991 Imperial College of Science, Technology & Medicine Dialysis electrode device
5489414, Apr 23 1993 Boehringer Mannheim GmbH System for analyzing compounds contained in liquid samples
5497772, Nov 19 1993 MANN, ALFRED E , FOUNDATION FOR SCIENTIFIC RESEARCH Glucose monitoring system
5507288, May 05 1994 Boehringer Mannheim GmbH Analytical system for monitoring a substance to be analyzed in patient-blood
5509410, Jun 06 1983 MediSense, Inc. Strip electrode including screen printing of a single layer
5514718, Mar 03 1992 ZIMMER, INC Heterocyclic compounds, processes for their preparation and pharmaceutical compositions containing them
5531878, May 13 1993 The Victoria University of Manchester Sensor devices
5532686, Jul 29 1991 Bio Medic Data Systems, Inc. Programmable transponder
5568806, Feb 16 1995 MEDTRONIC MINIMED, INC Transcutaneous sensor insertion set
5569186, Apr 25 1994 MEDTRONIC MINIMED, INC Closed loop infusion pump system with removable glucose sensor
5582184, Oct 13 1993 Integ Incorporated Interstitial fluid collection and constituent measurement
5586553, Feb 16 1995 MEDTRONIC MINIMED, INC Transcutaneous sensor insertion set
5593852, Dec 02 1993 Abbott Diabetes Care Inc Subcutaneous glucose electrode
5601435, Nov 04 1994 RAYA SYSTEMS, INC Method and apparatus for interactively monitoring a physiological condition and for interactively providing health related information
5609575, Apr 11 1994 Graseby Medical Limited Infusion pump and method with dose-rate calculation
5628310, May 19 1995 LAKOWICZ, JOSEPH R Method and apparatus to perform trans-cutaneous analyte monitoring
5628324, Feb 04 1995 Polar Electro Oy Autonomous system for measuring, processing and transmitting essentially physiological parameters
5628890, Sep 27 1995 MEDISENSE, INC Electrochemical sensor
5634468, Apr 03 1992 VECTRACOR, INC Sensor patch and system for physiological monitoring
5640954, May 05 1995 INSTITUT FUER DIABETES-TECHNOLOGIE GEMEINNUETZIGE FORSCHUNGS- UND ENTWICKLUNGSGESELLSCHAFT MBH AN DER UNIVERSITAET ULM Method and apparatus for continuously monitoring the concentration of a metabolyte
5653239, Mar 08 1991 PNC Bank, National Association Continuous temperature monitor
5665222, Oct 11 1995 THERASENSE, INC Soybean peroxidase electrochemical sensor
5673322, Mar 22 1996 RAKUTEN, INC System and method for providing protocol translation and filtering to access the world wide web from wireless or low-bandwidth networks
5707502, Jul 12 1996 Siemens Healthcare Diagnostics Inc Sensors for measuring analyte concentrations and methods of making same
5711001, May 08 1992 Motorola Mobility, Inc Method and circuit for acquisition by a radio receiver
5711861, Nov 22 1995 Legacy Good Samaritan Hospital and Medical Center Device for monitoring changes in analyte concentration
5724030, Oct 13 1994 BIO MEDIC DATA SYSTEMS, INC System monitoring reprogrammable implantable transponder
5733259, Jan 31 1992 Gensia Pharmaceuticals, Inc. Method and apparatus for closed loop drug delivery
5735285, Jun 04 1996 GE MEDICAL SYSTEMS INFORMATION TECHNOLOGIES, INC Method and hand-held apparatus for demodulating and viewing frequency modulated biomedical signals
5749907, Feb 18 1997 Pacesetter, Inc. System and method for identifying and displaying medical data which violate programmable alarm conditions
5771891, May 10 1995 Apparatus and method for non-invasive blood analyte measurement
5772586, Feb 12 1996 Nokia Technologies Oy Method for monitoring the health of a patient
5791344, Nov 19 1993 ALFRED E MANN FOUNDATION FOR SCIENTIFIC RESEARCH Patient monitoring system
5800420, Nov 04 1994 Elan Corporation, PLC Analyte-controlled liquid delivery device and analyte monitor
5804047, Mar 31 1992 Dai Nippon Printing Co., Ltd.; Isao, Karube Enzyme-immobilized electrode, composition for preparation of the same and electrically conductive enzyme
5820551, May 05 1983 Abbott Laboratories Strip electrode with screen printing
5822715, Jan 10 1997 HEALTH HERO NETWORK, INC Diabetes management system and method for controlling blood glucose
5833603, Mar 13 1996 Allergan, Inc Implantable biosensing transponder
5875186, Jun 25 1993 AVAYA Inc Dynamic wireless local area network with interactive communications within the network
5891049, Sep 28 1994 Koninklijke Philips Electronics N V Time and data correlated medical display system
5899855, Nov 17 1992 HEALTH HERO NETWORK, INC Modular microprocessor-based health monitoring system
5918603, May 23 1994 HEALTH HERO NETWORK, INC Method for treating medical conditions using a microprocessor-based video game
5925021, Mar 09 1994 Becton, Dickinson and Company Medication delivery device with a microprocessor and characteristic monitor
5935224, Apr 24 1997 Microsoft Technology Licensing, LLC Method and apparatus for adaptively coupling an external peripheral device to either a universal serial bus port on a computer or hub or a game port on a computer
5942979, Apr 07 1997 On guard vehicle safety warning system
5951485, Sep 28 1994 Philips Electronics North America Corporation Method and apparatus for recording and replaying time-correlated medical event data
5954643, Jun 09 1997 MEDTRONIC MINIMED, INC Insertion set for a transcutaneous sensor
5957854, Sep 04 1993 Body Science LLC Wireless medical diagnosis and monitoring equipment
5961451, Apr 07 1997 WILLIAM REBER, L L C Noninvasive apparatus having a retaining member to retain a removable biosensor
5964993, Dec 19 1996 TENAX THERAPEUTICS, INC Glucose sensor
5965380, Dec 02 1993 THERASENSE, INC Subcutaneous glucose electrode
5971922, Apr 07 1998 RESEARCH INSTITUTE OF APPLICATION TECHNOLOGIES FOR CHAOS & COMPLEX SYSTEMS CO , LTD System and method for predicting blood glucose level
5972199, Oct 11 1995 Abbott Diabetes Care Inc Electrochemical analyte sensors using thermostable peroxidase
5995860, Jul 06 1995 Thomas Jefferson University Implantable sensor and system for measurement and control of blood constituent levels
6001067, Mar 04 1997 DEXCOM, INC Device and method for determining analyte levels
6022315, Dec 29 1993 Clinical Decision Support, LLC Computerized medical diagnostic and treatment advice system including network access
6024699, Mar 13 1998 HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR ADMINISTRATIVE AGENT Systems, methods and computer program products for monitoring, diagnosing and treating medical conditions of remotely located patients
6032064, Oct 11 1996 Nellcor Puritan Bennett LLC Electrode array system for measuring electrophysiological signals
6049727, Apr 03 1998 Animas Corporation Implantable sensor and system for in vivo measurement and control of fluid constituent levels
6071391, Sep 12 1997 Abbott Diabetes Care Inc Enzyme electrode structure
6083710, Dec 02 1993 THERASENSE, INC Electrochemical analyte measurement system
6088608, Oct 20 1997 ALFRED E MANN FOUNDATION Electrochemical sensor and integrity tests therefor
6091976, May 09 1996 Roche Diagnostics GmbH Determination of glucose concentration in tissue
6091987, Apr 29 1998 Medtronic, Inc. Power consumption reduction in medical devices by employing different supply voltages
6093172, Feb 05 1997 MEDTRONIC MINIMED, INC Injector for a subcutaneous insertion set
6103033, Mar 04 1998 THERASENSE, INC Process for producing an electrochemical biosensor
6117290, Sep 26 1997 Pepex Biomedical, LLC System and method for measuring a bioanalyte such as lactate
6119028, Oct 20 1997 ALFRED E MANN FOUNDATION Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces
6120676, Feb 06 1997 THERASENSE, INC Method of using a small volume in vitro analyte sensor
6121009, Dec 02 1993 THERASENSE, INC Electrochemical analyte measurement system
6121611, May 20 1998 Keysight Technologies, Inc Force sensing probe for scanning probe microscopy
6122351, Jan 21 1997 MED GRAPH, INC Method and system aiding medical diagnosis and treatment
6130623, Dec 31 1996 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Encryption for modulated backscatter systems
6134461, Mar 04 1998 Abbott Diabetes Care Inc Electrochemical analyte
6141573, Sep 12 1995 Animas Technologies LLC Chemical signal-impermeable mask
6143164, Feb 06 1997 ABBOTT DIABETES CARE, INC Small volume in vitro analyte sensor
6144837, Nov 04 1994 HEALTH HERO NETWORK, INC Method and apparatus for interactively monitoring a physiological condition and for interactively providing health-related information
6144871, Mar 31 1998 NEC Corporation Current detecting sensor and method of fabricating the same
6144922, Oct 31 1997 Roche Diabetes Care, Inc Analyte concentration information collection and communication system
6159147, Feb 28 1997 VECTRACOR, INC Personal computer card for collection of real-time biological data
6161095, Dec 16 1998 Health Hero Network Treatment regimen compliance and efficacy with feedback
6162611, Dec 02 1993 THERASENSE, INC Subcutaneous glucose electrode
6175752, Apr 30 1998 Abbott Diabetes Care Inc Analyte monitoring device and methods of use
6200265, Apr 16 1999 Medtronic, Inc.; Medtronic, Inc Peripheral memory patch and access method for use with an implantable medical device
6212416, Nov 22 1995 Legacy Good Samaritan Hospital and Medical Center Device for monitoring changes in analyte concentration
6213972, Sep 13 1994 CAREFUSION 303, INC Fluid flow resistance monitoring system
6219574, Jun 17 1997 ALZA Corporation Device and method for enchancing transdermal sampling
6233471, May 13 1998 Lifescan IP Holdings, LLC Signal processing for measurement of physiological analysis
6248067, Feb 05 1999 MEDTRONIC MINIMED, INC Analyte sensor and holter-type monitor system and method of using the same
6264810, Dec 14 1999 ELYSIS LIMITED PARTNERSHIP Electromechanical attachment of inert electrode to a current conductor
6270455, Mar 28 1997 Health Hero Network Networked system for interactive communications and remote monitoring of drug delivery
6275717, Jun 16 1997 Alkermes Pharma Ireland Limited Device and method of calibrating and testing a sensor for in vivo measurement of an analyte
6283761, Sep 08 1992 GTJ VENTURES, LLC Apparatus and method for processing and/or for providing healthcare information and/or healthcare-related information
6284478, Dec 02 1993 Abbott Diabetes Care Inc Subcutaneous glucose electrode
6291200, Nov 17 1999 University of Pittsburgh of the Commonwealth System of Higher Education Enzyme-containing polymeric sensors
6293925, Dec 31 1997 MEDTRONIC MINIMED, INC Insertion device for an insertion set and method of using the same
6294997, Oct 04 1999 Intermec IP Corp. RFID tag having timing and environment modules
6295506, Oct 27 1997 RPX Corporation Measurement apparatus
6299757, Oct 08 1998 Abbott Diabetes Care Inc Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
6306104, Dec 06 1996 Abbott Laboratories Method and apparatus for obtaining blood for diagnostic tests
6309884, Feb 26 1997 Dominion Assets, LLC Individual calibration of blood glucose for supporting noninvasive self-monitoring blood glucose
6329161, Dec 02 1993 Abbott Diabetes Care Inc Subcutaneous glucose electrode
6338790, Oct 08 1998 ABBOTT DIABETES CARE, INC Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
6348640, Oct 03 1997 Tampon detection system
6359444, May 28 1999 University of Kentucky Research Foundation Remote resonant-circuit analyte sensing apparatus with sensing structure and associated method of sensing
6360888, Feb 25 1999 MEDTRONIC MINIMED, INC Glucose sensor package system
6366794, Nov 20 1998 University of Connecticut, The; PRECISION CONTROL DESIGN, INC Generic integrated implantable potentiostat telemetry unit for electrochemical sensors
6377828, Nov 12 1997 LighTouch Medical, Inc. Method for non-invasive measurement of an analyte
6377894, Nov 30 1998 Abbott Laboratories Analyte test instrument having improved calibration and communication processes
6379301, Jan 10 1997 Health Hero Network Diabetes management system and method for controlling blood glucose
6400974, Jun 29 2000 Senseonics, Incorporated Implanted sensor processing system and method for processing implanted sensor output
6416471, Apr 15 1999 CLEARPATH PARTNERS, LLC Portable remote patient telemonitoring system
6418332, Feb 25 1999 MEDTRONIC MINIMED, INC Test plug and cable for a glucose monitor
6418346, Dec 14 1999 Medtronic, Inc. Apparatus and method for remote therapy and diagnosis in medical devices via interface systems
6424847, Feb 25 1999 MEDTRONIC MINIMED, INC Glucose monitor calibration methods
6427088, Jan 21 2000 MEDTRONIC MINIMED, INC Ambulatory medical apparatus and method using telemetry system with predefined reception listening periods
6440068, Apr 28 2000 International Business Machines Corporation Measuring user health as measured by multiple diverse health measurement devices utilizing a personal storage device
6461496, Oct 08 1998 Abbott Diabetes Care Inc Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
6478736, Oct 08 1999 MICROLIFE MEDICAL HOME SOLUTIONS INC Integrated calorie management system
6484046, Mar 04 1998 Abbott Diabetes Care Inc Electrochemical analyte sensor
6496729, Oct 28 1998 Medtronic, Inc. Power consumption reduction in medical devices employing multiple supply voltages and clock frequency control
6497655, Dec 17 1999 Medtronic, Inc.; Medtronic, Inc Virtual remote monitor, alert, diagnostics and programming for implantable medical device systems
6503381, Sep 12 1997 Abbott Diabetes Care Inc Biosensor
6514460, Jul 28 1999 Abbott Laboratories Luminous glucose monitoring device
6514718, Mar 04 1991 TheraSense, Inc. Subcutaneous glucose electrode
6540891, May 08 1998 Abbott Laboratories Test strip
6544212, Jul 31 2001 Roche Diabetes Care, Inc Diabetes management system
6549796, May 25 2001 Cilag GmbH International; Lifescan IP Holdings, LLC Monitoring analyte concentration using minimally invasive devices
6551494, Feb 06 1997 Abbott Diabetes Care Inc Small volume in vitro analyte sensor
6558320, Jan 20 2000 MEDTRONIC MINIMED, INC Handheld personal data assistant (PDA) with a medical device and method of using the same
6558321, Mar 04 1997 DEXCOM INC Systems and methods for remote monitoring and modulation of medical devices
6558351, Jun 03 1999 MEDTRONIC MINIMED, INC Closed loop system for controlling insulin infusion
6560471, Jan 02 2001 Abbott Diabetes Care Inc Analyte monitoring device and methods of use
6561975, Apr 19 2000 Medtronic, Inc Method and apparatus for communicating with medical device systems
6561978, Feb 12 1999 Lifescan IP Holdings, LLC Devices and methods for frequent measurement of an analyte present in a biological system
6562001, Jan 21 2000 MEDTRONIC MINIMED, INC Microprocessor controlled ambulatory medical apparatus with hand held communication device
6564105, Jan 21 2000 MEDTRONIC MINIMED, INC Method and apparatus for communicating between an ambulatory medical device and a control device via telemetry using randomized data
6565509, Apr 30 1998 Abbott Diabetes Care Inc Analyte monitoring device and methods of use
6571128, Jan 21 2000 MEDTRONIC MINIMED, INC Microprocessor controlled ambulatory medical apparatus with hand held communication device
6572542, Mar 03 2000 Medtronic, Inc. System and method for monitoring and controlling the glycemic state of a patient
6574510, Nov 30 2000 Cardiac Pacemakers, Inc Telemetry apparatus and method for an implantable medical device
6576101, Feb 06 1997 THERASENSE, INC Small volume in vitro analyte sensor
6577899, Jan 21 2000 MEDTRONIC MINIMED, INC Microprocessor controlled ambulatory medical apparatus with hand held communication device
6579231, Mar 27 1998 Apple Inc Personal medical monitoring unit and system
6579690, Dec 05 1997 Abbott Diabetes Care Inc Blood analyte monitoring through subcutaneous measurement
6585644, Jan 21 2000 MEDTRONIC MINIMED, INC Ambulatory medical apparatus and method using a telemetry system with predefined reception listening periods
6591125, Jun 27 2000 Abbott Diabetes Care Inc Small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
6592745, Oct 08 1998 Abbott Diabetes Care Inc Method of using a small volume in vitro analyte sensor with diffusible or non-leachable redox mediator
6595919, May 13 1998 Lifescan IP Holdings, LLC Device for signal processing for measurement of physiological analytes
6600997, Nov 30 1998 Abbott Laboratories Analyte test instrument having improved calibration and communication processes
6605200, Nov 15 1999 Abbott Diabetes Care Inc Polymeric transition metal complexes and uses thereof
6605201, Nov 15 1999 Abbott Diabetes Care Inc Transition metal complexes with bidentate ligand having an imidazole ring and sensor constructed therewith
6607509, Dec 31 1997 MEDTRONIC MINIMED, INC Insertion device for an insertion set and method of using the same
6610012, Apr 10 2000 MICROLIFE MEDICAL HOME SOLUTIONS INC System and method for remote pregnancy monitoring
6616819, Nov 04 1999 Abbott Diabetes Care Inc Small volume in vitro analyte sensor and methods
6618934, Oct 08 1998 Abbott Diabetes Care Inc Method of manufacturing small volume in vitro analyte sensor
6633772, Aug 18 2000 Lifescan IP Holdings, LLC Formulation and manipulation of databases of analyte and associated values
6635014, Jan 21 2000 MEDTRONIC MINIMED, INC Ambulatory medical apparatus and method having telemetry modifiable control software
6635167, Dec 04 1997 Roche Diabetes Care, Inc Apparatus and method for determining the concentration of a component of a sample
6641533, Aug 18 1998 Medtronic MiniMed, Inc. Handheld personal data assistant (PDA) with a medical device and method of using the same
6648821, Jan 21 2000 MEDTRONIC MINIMED, INC Microprocessor controlled ambulatory medical apparatus with hand held communication device
6654625, Jun 18 1999 Abbott Diabetes Care Inc Mass transport limited in vivo analyte sensor
6659948, Jan 21 2000 MEDTRONIC MINIMED, INC Ambulatory medical apparatus and method using a telemetry system with predefined reception listening periods
6668196, Jan 21 2000 MEDTRONIC MINIMED, INC Ambulatory medical apparatus with hand held communication device
6671534, Apr 19 2000 Ad-Tech Medical Instrument Corporation Electrical connector for multi-contact medical electrodes
6675030, Aug 21 2000 EURO-CELTIQUE, S A Near infrared blood glucose monitoring system
6676816, May 11 2001 Abbott Diabetes Care Inc Transition metal complexes with (pyridyl)imidazole ligands and sensors using said complexes
6687546, Jan 21 2000 MEDTRONIC MINIMED, INC Ambulatory medical apparatus and method using a robust communication protocol
6689056, Apr 07 1999 Given Imaging LTD Implantable monitoring probe
6694191, Jan 21 2000 MEDTRONIC MINIMED, INC Ambulatory medical apparatus and method having telemetry modifiable control software
6695860, Nov 13 2000 WAVEFORM TECHNOLOGIES, INC Transcutaneous sensor insertion device
6698269, Apr 27 2001 Oceana Sensor Technologies, Inc. Transducer in-situ testing apparatus and method
6702857, Jul 27 2001 DEXCOM, INC Membrane for use with implantable devices
6730200, Jun 18 1999 Abbott Laboratories Electrochemical sensor for analysis of liquid samples
6731976, Oct 30 1998 Medtronic, Inc Device and method to measure and communicate body parameters
6733446, Jan 21 2000 MEDTRONIC MINIMED, INC Ambulatory medical apparatus and method using a telemetry system with predefined reception listening periods
6735183, May 13 1996 Round Rock Research, LLC Radio frequency data communications device
6736957, Oct 17 1997 Abbott Diabetes Care Inc Biosensor electrode mediators for regeneration of cofactors and process for using
6740075, Jan 21 2000 MEDTRONIC MINIMED, INC Ambulatory medical apparatus with hand held communication device
6741877, Mar 04 1997 DEXCOM, INC Device and method for determining analyte levels
6743635, Apr 25 2002 TRIVIDIA HEALTH, INC System and methods for blood glucose sensing
6746582, May 12 2000 Abbott Diabetes Care Inc Electrodes with multilayer membranes and methods of making the electrodes
6749740, Nov 04 1999 Abbott Diabetes Care Inc Small volume in vitro analyte sensor and methods
6758810, Jan 21 2000 MEDTRONIC MINIMED, INC Ambulatory medical apparatus and method using a robust communication protocol
6764581, Sep 05 1997 Abbott Diabetes Care Inc Electrode with thin working layer
6770030, Sep 17 1999 Device for conducting in vivo measurements of quantities in living organisms
6773671, Nov 30 1998 Abbott Diabetes Care Inc Multichemistry measuring device and test strips
6790178, Sep 24 1999 MICROLIFE MEDICAL HOME SOLUTIONS INC Physiological monitor and associated computation, display and communication unit
6804558, Jul 07 1999 ROSELLINI SCIENTIFIC BENELUX, SPRI System and method of communicating between an implantable medical device and a remote computer system or health care provider
6809653, Oct 08 1998 MEDTRONIC MINIMED, INC Telemetered characteristic monitor system and method of using the same
6810290, Jan 21 2000 MEDTRONIC MINIMED, INC Ambulatory medical apparatus with hand held communication device
6811533, Jan 21 2000 MEDTRONIC MINIMED, INC Ambulatory medical apparatus and method using a robust communication protocol
6811534, Jan 21 2000 MEDTRONIC MINIMED, INC Ambulatory medical apparatus and method using a telemetry system with predefined reception listening periods
6813519, Jan 21 2000 MEDTRONIC MINIMED, INC Ambulatory medical apparatus and method using a robust communication protocol
6814844, Aug 29 2001 Roche Diabetes Care, Inc Biosensor with code pattern
6862465, Mar 04 1997 DEXCOM, INC Device and method for determining analyte levels
6873268, Jan 21 2000 MEDTRONIC MINIMED, INC Microprocessor controlled ambulatory medical apparatus with hand held communication device
6878112, Dec 17 1999 Medtronic, Inc Virtual remote monitor, alert, diagnostics and programming for implantable medical device systems
6881551, Mar 04 1991 TheraSense, Inc. Subcutaneous glucose electrode
6892085, Feb 25 1999 Medtronic MiniMed, Inc. Glucose sensor package system
6893545, Sep 12 1997 Abbott Diabetes Care Inc Biosensor
6895263, Feb 23 2000 Medtronic MiniMed, Inc. Real time self-adjusting calibration algorithm
6895265, May 15 2000 Implantable sensor
6923764, Jun 27 2000 INTUITY MEDICAL, INC Analyte monitor
6925393, Nov 18 1999 Roche Diagnostics GmbH System for the extrapolation of glucose concentration
6931327, Aug 01 2003 DEXCOM, INC System and methods for processing analyte sensor data
6932894, May 15 2001 Abbott Diabetes Care Inc Biosensor membranes composed of polymers containing heterocyclic nitrogens
6936006, Mar 22 2002 Novo Nordisk A S Atraumatic insertion of a subcutaneous device
6940403, Mar 07 1997 HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT Reprogrammable remote sensor monitoring system
6941163, Aug 18 2000 Lifescan IP Holdings, LLC Formulation and manipulation of databases of analyte and associated values
6942518, Nov 04 1999 Abbott Diabetes Care Inc Small volume in vitro analyte sensor and methods
6950708, Jan 21 2000 Medtronic MiniMed, Inc. Ambulatory medical apparatus and method using a telemetry system with predefined reception listening
6958705, Jan 21 2000 MEDTRONIC MINIMED, INC Microprocessor controlled ambulatory medical apparatus with hand held communication device
6968294, Mar 15 2001 Koninklijke Philips Electronics N.V. Automatic system for monitoring person requiring care and his/her caretaker
6971274, Apr 02 2004 SIERRA INSTRUMENTS, INC Immersible thermal mass flow meter
6974437, Jan 21 2000 MEDTRONIC MINIMED, INC Microprocessor controlled ambulatory medical apparatus with hand held communication device
6975893, Jun 18 1999 Abbott Diabetes Care Inc Mass transport limited in vivo analyte sensor
6990366, Apr 30 1998 Abbott Diabetes Care Inc Analyte monitoring device and methods of use
6997907, Feb 05 1997 Medtronic MiniMed, Inc. Insertion device for an insertion set and method of using the same
6998247, Mar 08 2002 GLT ACQUISITION CORP Method and apparatus using alternative site glucose determinations to calibrate and maintain noninvasive and implantable analyzers
7003336, Feb 10 2000 MEDTRONIC MINIMED, INC Analyte sensor method of making the same
7003340, Mar 04 1998 Abbott Diabetes Care Inc Electrochemical analyte sensor
7003341, Apr 30 1998 Abbott Diabetes Care, Inc. Analyte monitoring devices and methods of use
7009511, Dec 17 2002 Cardiac Pacemakers, Inc. Repeater device for communications with an implantable medical device
7020508, Aug 22 2002 JB IP ACQUISITION LLC Apparatus for detecting human physiological and contextual information
7022072, Dec 27 2001 MEDTRONICS MINIMED, INC System for monitoring physiological characteristics
7024236, Aug 18 2000 Lifescan IP Holdings, LLC Formulation and manipulation of databases of analyte and associated values
7024245, Jan 21 2000 Medtronic MiniMed, Inc. Ambulatory medical apparatus and method using a robust communication protocol
7025774, Apr 19 2002 Sanofi-Aventis Deutschland GmbH Tissue penetration device
7029444, Feb 23 2000 Medtronic MiniMed, Inc. Real time self-adjusting calibration algorithm
7041068, Jun 12 2001 Sanofi-Aventis Deutschland GmbH Sampling module device and method
7041468, Apr 02 2001 Abbott Diabetes Care Inc Blood glucose tracking apparatus and methods
7043305, Mar 06 2002 Cardiac Pacemakers, Inc Method and apparatus for establishing context among events and optimizing implanted medical device performance
7052483, Dec 19 2000 Lifescan IP Holdings, LLC Transcutaneous inserter for low-profile infusion sets
7056302, Feb 26 2002 Ypsomed AG Insertion device for an insertion set and method of using the same
7058453, Dec 14 1999 Medtronic, Inc. Apparatus and method for remote therapy and diagnosis in medical devices via interface systems
7060031, Dec 17 1999 Medtronic, Inc Method and apparatus for remotely programming implantable medical devices
7074307, Jul 25 2003 DexCom, Inc. Electrode systems for electrochemical sensors
7081195, Dec 08 2003 DEXCOM, INC Systems and methods for improving electrochemical analyte sensors
7082334, Dec 19 2001 Medtronic, Inc System and method for transmission of medical and like data from a patient to a dedicated internet website
7098803, Oct 08 1998 Medtronic MiniMed, Inc. Telemetered characteristic monitor system and method of using the same
7108778, Jul 25 2003 DEXCOM, INC Electrochemical sensors including electrode systems with increased oxygen generation
7110803, Mar 04 1997 DexCom, Inc. Device and method for determining analyte levels
7113821, Aug 25 1999 Lifescan, Inc Tissue electroperforation for enhanced drug delivery
7118667, Jun 02 2004 Biosensors having improved sample application and uses thereof
7125382, May 20 2004 MAGNA EQUITIES I, LLC Embedded bio-sensor system
7134999, Apr 04 2003 DEXCOM, INC Optimized sensor geometry for an implantable glucose sensor
7136689, Mar 04 1997 DexCom, Inc. Device and method for determining analyte levels
7167818, Jan 10 1997 HEALTH HERO NETWORK, INC Disease simulation system and method
7171274, Jan 21 2000 Medtronic MiniMed, Inc. Method and apparatus for communicating between an ambulatory medical device and a control device via telemetry using randomized data
7183102, Mar 08 2002 GLT ACQUISITION CORP Apparatus using reference measurement for calibration
7190988, Apr 30 1998 SYNTHEON NEUROVASCULAR LLC Analyte monitoring device and methods of use
7192450, May 21 2003 DEXCOM, INC Porous membranes for use with implantable devices
7198606, Apr 19 2002 Sanofi-Aventis Deutschland GmbH Method and apparatus for a multi-use body fluid sampling device with analyte sensing
7203549, Oct 02 2003 Medtronic, Inc Medical device programmer with internal antenna and display
7225535, Oct 08 1998 Abbott Diabetes Care Inc Method of manufacturing electrochemical sensors
7226978, May 22 2002 DexCom, Inc. Techniques to improve polyurethane membranes for implantable glucose sensors
7228182, Mar 15 2004 Cardiac Pacemakers, Inc Cryptographic authentication for telemetry with an implantable medical device
7237712, Dec 01 2004 ALFRED E MANN FOUNDATION FOR SCIENTIFIC RESEARCH, THE Implantable device and communication integrated circuit implementable therein
7267665, Jun 03 1999 MEDTRONIC MINIMED, INC Closed loop system for controlling insulin infusion
7276029, Aug 01 2003 DEXCOM, INC System and methods for processing analyte sensor data
7278983, Jul 24 2002 MEDTRONIC MINIMED, INC Physiological monitoring device for controlling a medication infusion device
7299082, Oct 31 2003 Abbott Diabetes Care Inc Method of calibrating an analyte-measurement device, and associated methods, devices and systems
7310544, Jul 13 2004 DexCom, Inc. Methods and systems for inserting a transcutaneous analyte sensor
7318816, Feb 05 1997 Medtronic MiniMed, Inc. Insertion device for an insertion set and method of using the same
7324850, Apr 29 2004 Cardiac Pacemakers, Inc Method and apparatus for communication between a handheld programmer and an implantable medical device
7335294, Feb 06 1997 Abbott Diabetes Care Inc Integrated lancing and measurement device and analyte measuring methods
7347819, Jan 21 2000 Medtronic MiniMed, Inc. Ambulatory medical apparatus and method using a robust communication protocol
7354420, Jun 03 1999 Medtronic MiniMed, Inc. Closed loop system for controlling insulin infusion
7364592, Feb 12 2004 DEXCOM, INC Biointerface membrane with macro-and micro-architecture
7366556, Oct 04 2006 DEXCOM, INC Dual electrode system for a continuous analyte sensor
7379765, Jul 25 2003 DEXCOM, INC Oxygen enhancing membrane systems for implantable devices
7384397, Dec 30 2003 MEDTRONIC MINIMED, INC System and method for sensor recalibration
7387010, Jun 10 2003 Smiths Detection Inc. Sensor arrangement having sensor array provided on upper portion of a container
7399277, Dec 27 2001 MEDTRONIC MINIMED, INC System for monitoring physiological characteristics
7402153, Jun 03 1999 Medtronic MiniMed, Inc. Closed-loop method for controlling insulin infusion
7404796, Mar 01 2004 EMBECTA CORP System for determining insulin dose using carbohydrate to insulin ratio and insulin sensitivity factor
7419573, Nov 06 2003 3M Innovative Properties Company Circuit for electrochemical sensor strip
7424318, Oct 04 2006 DEXCOM, INC Dual electrode system for a continuous analyte sensor
7429255, Dec 29 2003 Medtronic, Inc. Closed loop medicament pump
7448996, Apr 16 2002 CAREMATIX, INC Method and apparatus for remotely monitoring the condition of a patient
7460898, Oct 04 2006 DEXCOM, INC Dual electrode system for a continuous analyte sensor
7467003, Dec 05 2003 DEXCOM, INC Dual electrode system for a continuous analyte sensor
7471972, Jul 27 2001 DexCom, Inc. Sensor head for use with implantable devices
7476827, Aug 29 2001 Roche Diabetes Care, Inc Method of making a biosensor
7492254, Oct 24 2003 Symbol Technologies, LLC Radio frequency identification (RFID) based sensor networks
7494465, Jul 13 2004 DEXCOM, INC Transcutaneous analyte sensor
7497827, Jul 13 2004 DexCom, Inc. Transcutaneous analyte sensor
7519408, Nov 19 2003 DEXCOM, INC Integrated receiver for continuous analyte sensor
7547281, Feb 01 2005 MEDTRONICS MINIMED, INC Algorithm sensor augmented bolus estimator for semi-closed loop infusion system
7565197, Jun 18 2004 Medtronic INC Conditional requirements for remote medical device programming
7569030, Sep 07 2001 Medtronic MiniMed, Inc. Safety limits for closed-loop infusion pump control
7574266, Jan 19 2006 Medtronic, Inc System and method for telemetry with an implantable medical device
7583990, Aug 01 2003 DexCom, Inc. System and methods for processing analyte sensor data
7591801, Feb 26 2004 DEXCOM, INC Integrated delivery device for continuous glucose sensor
7599726, Aug 01 2003 DexCom, Inc. System and methods for processing analyte sensor data
7602310, Oct 08 1998 Medtronic MiniMed, Inc. Telemetered characteristic monitor system and method of using the same
7604178, May 11 2005 ZEST LABS, INC Smart tag activation
7613491, Apr 14 2006 DEXCOM, INC Silicone based membranes for use in implantable glucose sensors
7615007, Oct 04 2006 DEXCOM, INC Analyte sensor
7618369, Oct 02 2006 ABBOTT DIABETES CARE, INC Method and system for dynamically updating calibration parameters for an analyte sensor
7632228, Jul 27 2001 DexCom, Inc. Membrane for use with implantable devices
7637868, Jan 12 2004 DEXCOM, INC Composite material for implantable device
7640048, Jul 13 2004 DEXCOM, INC Analyte sensor
7651596, Apr 08 2005 DEXCOM, INC Cellulosic-based interference domain for an analyte sensor
7654956, Jul 13 2004 DexCom, Inc. Transcutaneous analyte sensor
7657297, May 03 2004 DEXCOM, INC Implantable analyte sensor
7659823, Mar 20 2007 AT&T Corp Tracking variable conditions using radio frequency identification
7668596, Feb 07 2002 Cardiac Pacemakers, Inc. Methods and apparatuses for implantable medical device telemetry power management
7711402, Mar 04 1997 DexCom, Inc. Device and method for determining analyte levels
7713574, Jul 13 2004 DexCom, Inc. Transcutaneous analyte sensor
7715893, Dec 05 2003 DEXCOM, INC Calibration techniques for a continuous analyte sensor
7741734, Jul 12 2005 Massachusetts Institute of Technology Wireless non-radiative energy transfer
7775444, Dec 01 2004 Alfred E. Mann Foundation for Scientific Research Implantable device and communication integrated circuit implementable therein
7779332, Sep 25 2006 Alfred E. Mann Foundation for Scientific Research Rotationally invariant non-coherent burst coding
7780827, Aug 29 2001 Roche Diabetes Care, Inc Biosensor
7782192, Apr 26 2005 Roche Diabetes Care, Inc Energy-optimised data transmission for a medical appliance
7783333, Jul 13 2004 DexCom, Inc. Transcutaneous medical device with variable stiffness
7791467, Dec 17 2002 Cardiac Pacemakers, Inc. Repeater providing data exchange with a medical device for remote patient care and method thereof
7792562, Mar 04 1997 DexCom, Inc. Device and method for determining analyte levels
7831310, Jan 21 2000 Medtronic MiniMed, Inc. Microprocessor controlled ambulatory medical apparatus with hand held communication device
7860574, Dec 19 2001 Cardiac Pacemakers, Inc. Implantable medical device with two or more telemetry systems
7873299, Oct 03 2006 FUJIFILM Business Innovation Corp Conveyed material conveying apparatus, image forming apparatus, conveying method, and image forming method
7882611, Sep 23 2005 Medtronic MiniMed, Inc. Method of making an analyte sensor
7883464, Sep 30 2005 ABBOTT DIABETES CARE, INC Integrated transmitter unit and sensor introducer mechanism and methods of use
7912674, Oct 31 2006 Roche Diabetes Care, Inc Method for processing a chronological sequence of measurements of a time dependent parameter
7914460, Aug 15 2006 UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC Condensate glucose analyzer
7916013, Mar 21 2005 Greatbatch Ltd RFID detection and identification system for implantable medical devices
7920907, Jun 07 2006 ABBOTT DIABETES CARE, INC Analyte monitoring system and method
7946985, Dec 29 2006 MEDTRONIC MINIMED, INC Method and system for providing sensor redundancy
7955258, Apr 22 2005 Cardiac Pacemakers, Inc. External data processing device to interface with an ambulatory repeater and method thereof
7970448, Mar 04 1997 DexCom, Inc. Device and method for determining analyte levels
7999674, Jan 15 2007 DEKA Products Limited Partnership Device and method for food management
8010174, Aug 22 2003 DEXCOM, INC Systems and methods for replacing signal artifacts in a glucose sensor data stream
8029441, Feb 28 2006 ABBOTT DIABETES CARE, INC Analyte sensor transmitter unit configuration for a data monitoring and management system
8072310, Jun 05 2007 PULSED INDIGO DEVELOPMENT, LLC System for detecting and measuring parameters of passive transponders
8090445, Jun 30 2003 MEDOS INTERNATIONAL SARL System and method for controlling an implantable medical device subject to magnetic field or radio frequency exposure
8093991, Sep 16 2009 Greatbatch Ltd RFID detection and identification system for implantable medical devices
8094009, Aug 27 2008 Biolinq Incorporated Health-related signaling via wearable items
8098159, Jun 09 2006 ZEST LABS, INC RF device comparing DAC output to incoming signal for selectively performing an action
8098160, Jan 22 2007 Cisco Technology, Inc Method and system for remotely provisioning and/or configuring a device
8098161, Dec 01 2008 Raytheon Company Radio frequency identification inlay with improved readability
8098201, Nov 29 2007 Electronics & Telecommunications Research Institute; Industrial Cooperation Foundation of Chonbuk National University Radio frequency identification tag and radio frequency identification tag antenna
8098208, May 30 2006 POLYIC GMBH & CO KG Antenna configuration and use thereof
8102021, May 12 2008 MURATA ELECTRONICS NORTH AMERICA, INC RF devices
8102154, Sep 04 2008 Medtronic MiniMed, Inc. Energy source isolation and protection circuit for an electronic device
8102263, Dec 08 2006 Electronics and Telecommunications Research Institute Passive tag including volatile memory
8102789, Dec 29 2005 Medtronic, Inc. System and method for synchronous wireless communication with a medical device
8103241, Dec 07 2007 Roche Diabetes Care, Inc Method and system for wireless device communication
8103325, Aug 31 2000 Tyco Healthcare Group LP Method and circuit for storing and providing historical physiological data
8111042, Aug 05 2008 AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED Integrated wireless resonant power charging and communication channel
8112240, Apr 29 2005 Abbott Diabetes Care Inc Method and apparatus for providing leak detection in data monitoring and management systems
8115488, Aug 21 2006 ABQMR, INC Tuning low-inductance coils at low frequencies
8116681, Jun 21 1999 PHILIPS IP VENTURES B V Adaptive inductive power supply with communication
8116683, Apr 01 2011 PHILIPS IP VENTURES B V Adaptive inductive power supply with communication
8117481, Jun 06 2008 Roche Diabetes Care, Inc Apparatus and method for processing wirelessly communicated information within an electronic device
8120493, Dec 20 2006 Intel Corporation Direct communication in antenna devices
8124452, Jun 14 2009 TERECIRCUITS CORPORATION Processes and structures for IC fabrication
8130093, Dec 17 2002 Cardiac Pacemakers, Inc. Repeater providing data exchange with a medical device for remote patient care and method thereof
8131351, Dec 15 2000 Cardiac Pacemakers, Inc. System and method for correlation of patient health information and implant device data
8131365, Jul 09 2008 Cardiac Pacemakers, Inc. Event-based battery monitor for implantable devices
8131565, Oct 24 2006 HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR ADMINISTRATIVE AGENT System for medical data collection and transmission
8132037, Jun 06 2008 Roche Diabetes Care, Inc Apparatus and method for processing wirelessly communicated data and clock information within an electronic device
8135352, May 02 2006 3M Innovative Properties Company Telecommunication enclosure monitoring system
8136735, Jan 23 2004 SEMICONDUCTOR ENERGY LABORATORY CO , LTD ID label, ID card, and ID tag
8138925, Jan 15 2008 Corning Optical Communications LLC RFID systems and methods for automatically detecting and/or directing the physical configuration of a complex system
8140160, Jan 29 2002 NeuroPace, Inc. Systems and methods for interacting with an implantable medical device
8140168, Oct 02 2003 Medtronic, Inc External power source for an implantable medical device having an adjustable carrier frequency and system and method related therefore
8140299, May 17 2006 Siemens Aktiengesellschaft Operating method for a sensor and a control facility communicating with the sensor
8150321, Aug 16 2006 NXP USA, INC Near field RF communicators and near field communications enabled devices
8150516, Dec 11 2008 Pacesetter, Inc. Systems and methods for operating an implantable device for medical procedures
8179266, Jan 29 2008 Balluff GmbH Sensor with RFID data carrier
8180423, Sep 30 2003 Roche Diabetes Care, Inc Sensor with increased biocompatibility
8373544, Oct 29 2003 NXP USA, INC RFID apparatus
8512243, Sep 30 2005 ABBOTT DIABETES CARE, INC Integrated introducer and transmitter assembly and methods of use
8515518, Dec 28 2005 ABBOTT DIABETES CARE, INC Analyte monitoring
8545403, Dec 28 2005 ABBOTT DIABETES CARE, INC Medical device insertion
8585591, Nov 04 2005 Abbott Diabetes Care Inc. Method and system for providing basal profile modification in analyte monitoring and management systems
8602991, Aug 30 2005 Abbott Diabetes Care Inc. Analyte sensor introducer and methods of use
8617071, Apr 30 1998 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
8622903, Dec 31 2002 Abbott Diabetes Care Inc. Continuous glucose monitoring system and methods of use
8628498, Feb 05 1997 Medtronic MiniMed, Inc. Insertion device for an insertion set and method of using the same
8652043, Jan 02 2001 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
8684930, Oct 31 2003 Abbott Diabetes Care Inc. Method of calibrating an analyte-measurement device, and associated methods, devices and systems
8692655, May 07 2007 BLOOMBERG FINANCE L P Dynamically programmable RFID transponder
8771183, Dec 31 2002 Abbott Diabetes Care Inc Method and system for providing data communication in continuous glucose monitoring and management system
8797163, Jun 28 2004 AIRE TECHNOLOGY LIMITED Transponder unit
8961413, Jun 16 2000 JB IP ACQUISITION LLC Wireless communications device and personal monitor
9014774, May 15 2001 Abbott Diabetes Care Inc. Biosensor membranes
9031630, Feb 28 2006 Abbott Diabetes Care Inc. Analyte sensors and methods of use
9060805, Feb 08 2005 Abbott Diabetes Care Inc. Analyte meter including an RFID reader
9066697, Apr 30 1998 Abbott Diabetes Care Inc. Analyte monitoring device and methods of use
20010037060,
20020019022,
20020057993,
20020072784,
20020103499,
20020106709,
20020111832,
20020128594,
20020169635,
20020188748,
20030004403,
20030023461,
20030032867,
20030032874,
20030065308,
20030100821,
20030176933,
20030187338,
20030199790,
20030208113,
20030212379,
20030216630,
20040010207,
20040039298,
20040040840,
20040064068,
20040073266,
20040078215,
20040106858,
20040122353,
20040133164,
20040135684,
20040138588,
20040146909,
20040152622,
20040167801,
20040171921,
20040176672,
20040186365,
20040193090,
20040197846,
20040204687,
20040254433,
20040254434,
20040267300,
20050003470,
20050004439,
20050004494,
20050031689,
20050038680,
20050043598,
20050090607,
20050096511,
20050096512,
20050113653,
20050114068,
20050121322,
20050137530,
20050176136,
20050177398,
20050187720,
20050195930,
20050199494,
20050203360,
20050241957,
20050245799,
20050245839,
20050277164,
20050281234,
20050287620,
20060001538,
20060004270,
20060006141,
20060015020,
20060016700,
20060020186,
20060020188,
20060020190,
20060020191,
20060020192,
20060029177,
20060031094,
20060036140,
20060036141,
20060036142,
20060036143,
20060036144,
20060079740,
20060155180,
20060166629,
20060173260,
20060173444,
20060183985,
20060189863,
20060202805,
20060222566,
20060226985,
20060247710,
20060272652,
20060287691,
20070010950,
20070016381,
20070027381,
20070033074,
20070055799,
20070060814,
20070066873,
20070071681,
20070073129,
20070078321,
20070078323,
20070093786,
20070106135,
20070124002,
20070156033,
20070163880,
20070168224,
20070173706,
20070173761,
20070179349,
20070179352,
20070191701,
20070203407,
20070203539,
20070203966,
20070228071,
20070231846,
20070232880,
20070235331,
20070244383,
20070253021,
20070255531,
20070258395,
20070270672,
20070282299,
20070285238,
20080004904,
20080009692,
20080017522,
20080021666,
20080029391,
20080030369,
20080033254,
20080039702,
20080045824,
20080057484,
20080058626,
20080058678,
20080064937,
20080064943,
20080071156,
20080071157,
20080071158,
20080071328,
20080083617,
20080086042,
20080086044,
20080097289,
20080108942,
20080114228,
20080119705,
20080125636,
20080127052,
20080154513,
20080167543,
20080167572,
20080172205,
20080183060,
20080183061,
20080183399,
20080188731,
20080188796,
20080189051,
20080194935,
20080194936,
20080194938,
20080195232,
20080197024,
20080200788,
20080200789,
20080200791,
20080208025,
20080208113,
20080214915,
20080214918,
20080228051,
20080228054,
20080235469,
20080242961,
20080255434,
20080255437,
20080255438,
20080255808,
20080256048,
20080262469,
20080275313,
20080287761,
20080287762,
20080287763,
20080287764,
20080287765,
20080287766,
20080288180,
20080288204,
20080296155,
20080306368,
20080306434,
20080306435,
20080306444,
20080312518,
20080312841,
20080312842,
20080312844,
20080312845,
20090005665,
20090006034,
20090006133,
20090012377,
20090012379,
20090018424,
20090018425,
20090030294,
20090033482,
20090036747,
20090036758,
20090036760,
20090036763,
20090043181,
20090043182,
20090043525,
20090043541,
20090043542,
20090045055,
20090055149,
20090062633,
20090062635,
20090062767,
20090063402,
20090076356,
20090076360,
20090076361,
20090085768,
20090099436,
20090105554,
20090105560,
20090105636,
20090112478,
20090124877,
20090124878,
20090124879,
20090124964,
20090131768,
20090131769,
20090131776,
20090131777,
20090137886,
20090137887,
20090143659,
20090143660,
20090150186,
20090156919,
20090156924,
20090163790,
20090163791,
20090164190,
20090164239,
20090164251,
20090178459,
20090182217,
20090192366,
20090192380,
20090192722,
20090192724,
20090192745,
20090192751,
20090198118,
20090203981,
20090204341,
20090216103,
20090234200,
20090240120,
20090240128,
20090240193,
20090242399,
20090242425,
20090247855,
20090247856,
20090247931,
20090253973,
20090267765,
20090287073,
20090287074,
20090289796,
20090299155,
20090299156,
20090299162,
20090299276,
20100010324,
20100010331,
20100010332,
20100016687,
20100016698,
20100022855,
20100030038,
20100030053,
20100030484,
20100030485,
20100036215,
20100036216,
20100036222,
20100036223,
20100036225,
20100041971,
20100045465,
20100049024,
20100063373,
20100076283,
20100081908,
20100081910,
20100087724,
20100096259,
20100099970,
20100099971,
20100105999,
20100119693,
20100121169,
20100146300,
20100152554,
20100160760,
20100161269,
20100168538,
20100168540,
20100168541,
20100168542,
20100168543,
20100168544,
20100168546,
20100168547,
20100168645,
20100174157,
20100174158,
20100174163,
20100174164,
20100174165,
20100174166,
20100174167,
20100174168,
20100179399,
20100179400,
20100179401,
20100179402,
20100179404,
20100179405,
20100179407,
20100179408,
20100179409,
20100185065,
20100185069,
20100185070,
20100185071,
20100185072,
20100185073,
20100185074,
20100185075,
20100190435,
20100191082,
20100198035,
20100198036,
20100198142,
20100312176,
20110004276,
20110046977,
20110145172,
20110152637,
20120190989,
EP98592,
EP127958,
EP320109,
EP390390,
EP396788,
EP1669020,
EP1729128,
WO2000059370,
WO2001052935,
WO2001054753,
WO2003082091,
WO2008001366,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jan 26 2007NAEGELI, ANDREW H Abbott Diabetes Care IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0420320645 pdf
Jan 26 2007STAFFORD, GARY ASHLEYAbbott Diabetes Care IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0420320645 pdf
Jan 29 2007MAZZA, JOHN C Abbott Diabetes Care IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0420320645 pdf
Apr 18 2016Abbott Diabetes Care Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
May 11 2022M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Dec 25 20214 years fee payment window open
Jun 25 20226 months grace period start (w surcharge)
Dec 25 2022patent expiry (for year 4)
Dec 25 20242 years to revive unintentionally abandoned end. (for year 4)
Dec 25 20258 years fee payment window open
Jun 25 20266 months grace period start (w surcharge)
Dec 25 2026patent expiry (for year 8)
Dec 25 20282 years to revive unintentionally abandoned end. (for year 8)
Dec 25 202912 years fee payment window open
Jun 25 20306 months grace period start (w surcharge)
Dec 25 2030patent expiry (for year 12)
Dec 25 20322 years to revive unintentionally abandoned end. (for year 12)