Described herein are multi-deck memory devices with an inverted deck. For example, in one embodiment a memory device includes a first deck of memory cells including layers of material, including a layer of storage material and a layer of selector material, and a second deck of memory cells over the first deck of memory cells, the second deck comprising layers of material in an order opposite relative to the first deck. In one such embodiment, conductive bitlines located between the first and second decks are common to both decks. Inverting the second deck can enable operating the decks symmetrically despite accessing the decks with opposite polarity voltages.
|
17. A memory device comprising:
a first deck of memory cells comprising layers of material, including a layer of self-selecting storage material between a first electrode and a second electrode, the self-selecting storage material comprising a self-selecting chalcogenide to both select a memory cell in an array and store data, wherein only one of the first and second electrodes includes a dielectric layer between the layer of self-selecting storage material and a conductive electrode layer; and
a second deck of memory cells over the first deck of memory cells, the second deck comprising layers of material in an order opposite relative to the first deck.
1. A memory device comprising:
a first deck of memory cells comprising layers of material, including a layer of chalcogenide storage material, a layer of selector material, and multi-layer electrodes including a first multi-layer electrode between a conductive access line and the layer of chalcogenide storage material and a second multi-layer electrode between the layer of chalcogenide storage material and the layer of selector material, each of the first and second multi-layer electrodes including a dielectric layer and a conductive layer, the dielectric layer between and in contact with the layer of chalcogenide storage material and the conductive layer; and
a second deck of memory cells over the first deck of memory cells, the second deck comprising layers of material in an order opposite relative to the first deck.
10. A system comprising:
a processor; and
a memory device communicatively coupled with the processor, the memory device comprising:
a first deck of memory cells comprising layers of material, including a layer of chalcogenide storage material, a layer of selector material, and multi-layer electrodes including a first multi-layer electrode between a conductive access line and the layer of chalcogenide storage material and a second multi-layer electrode between the layer of chalcogenide storage material and the layer of selector material, each of the first and second multi-layer electrodes including a dielectric layer and a conductive layer, the dielectric layer between and in contact with the layer of chalcogenide storage material and the conductive layer; and
a second deck of memory cells over the first deck of memory cells, the second deck comprising layers of material in an order opposite relative to the first deck.
2. The memory device of
the first deck comprises the layer of chalcogenide storage material over the layer of selector material; and
the second deck comprises a second layer of selector material over a second layer of storage material.
3. The memory device of
the first deck comprises the layer of selector material over the layer of chalcogenide storage material; and
the second deck comprises a second layer of storage material over a second layer of selector material.
4. The memory device of
conductive access lines including the conductive access line, the conductive access lines located between the first deck and the second deck, wherein the conductive access lines are common to both the first and the second deck.
5. The memory device of
the conductive access lines comprise conductive bitlines common to both the first deck and the second deck.
6. The memory device of
first conductive wordlines, wherein the layers of selector and storage material of the first deck are between the first conductive wordlines and the conductive bitlines; and
second conductive wordlines, wherein and the layers of selector and storage material of the second deck are between the second conductive wordlines and the conductive bitlines.
7. The memory device of
electrodes located:
between the first conductive wordlines and the layer of selector material of the first deck;
and
between the second conductive wordlines and the layer of selector material of the second deck.
8. The memory device of
the layer of storage material of the second deck and the layer of selector material of each of first and second decks comprise a chalcogenide material.
9. The memory device of
the layer of chalcogenide storage material of the first deck and the layer of storage material of the second deck comprise phase change chalcogenide material; and
the layer of selector material of each of the first and second decks comprises a chalcogenide glass.
11. The system of
the first deck comprises the layer of chalcogenide storage material over the layer of selector material; and
the second deck comprises the layer of selector material over the layer of storage material.
12. The system of
conductive access lines including the conductive access line, the conductive access lines located between the first deck and the second deck, wherein the conductive access lines are common to both the first deck and the second deck.
13. The system of
the conductive access lines comprise conductive bitlines common to both the first deck and the second deck.
14. The system of
first conductive wordlines, wherein the layers of selector and storage material of the first deck are between the first conductive wordlines and the conductive bitlines; and
second conductive wordlines, wherein and the layers of selector and storage material of the second deck are between the second conductive wordlines and the conductive bitlines.
15. The system of
electrodes located:
between the first conductive wordlines and the layer of selector material of the first deck;
and
between the second conductive wordlines and the layer of selector material of the second deck.
16. The system of
18. The memory device of
conductive bitlines located between the first deck and the second deck.
19. The memory device of
the conductive bitlines are common to both the first deck and the second deck.
|
The descriptions are generally related to memory, and more particularly, to a multi-deck three dimensional (3D) cross-point memory device with an inverted deck to enable suppression of polarity dependent performance.
Portions of the disclosure of this patent document may contain material that is subject to copyright protection. The copyright owner has no objection to the reproduction by anyone of the patent document or the patent disclosure as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever. The copyright notice applies to all data as described below, and in the accompanying drawings hereto, as well as to any software described below: Copyright © 2017, Intel Corporation, All Rights Reserved.
Memory resources have innumerable applications in electronic devices and other computing environments. There is demand for memory technologies that can scale smaller than traditional memory devices. One memory technology that can be enable high density memory devices is three-dimensional (3D) cross-point memory.
The following description includes discussion of figures having illustrations given by way of example of implementations of embodiments of the invention. The drawings should be understood by way of example, and not by way of limitation. As used herein, references to one or more “embodiments” are to be understood as describing at least one implementation of the invention that includes one or more particular features, structures, or characteristics. Thus, phrases such as “in one embodiment” or “in an alternate embodiment” appearing herein describe various embodiments and implementations of the invention, and do not necessarily all refer to the same embodiment. However, they are also not necessarily mutually exclusive.
Descriptions of certain details and implementations follow, including a description of the figures, which may depict some or all of the embodiments described below, as well as discussing other potential embodiments or implementations of the inventive concepts presented herein.
Described herein are multi-deck memory devices with an inverted deck to enable the suppression of polarity-dependent effects in memory technologies such as three-dimensional (3D) cross-point memory.
3D cross-point memory devices typically include one or more decks of memory cells. A “deck” of memory cells can also be referred to as a “tier” or “layer” of memory cells. A deck of memory cells includes a stack of materials (e.g., multiple layers of material), such as a storage material, a selector material, and conductive layers, which are patterned to form an array of memory cells with conductive access lines. Patterning the stack results in “cross-points.” A cross-point is an intersection between a bitline, a wordline, and active material(s) (e.g., the selector and/or storage material). The storage material (or memory material) is capable of storing data. The selector material enables accessing a single bit in the array. A multi-deck architecture enables further increasing the density of memory cells in a given area, but can result in undesirable effects during operation of the memory devices.
In one example of a dual deck memory device, two decks are vertically stacked and separated by shared access lines (such as shared or common bitlines for accessing bits in the array of memory cells). Because the two decks have common bitlines, the two decks are operated at opposite polarities, in accordance with embodiments. The memory cells can undergo changes that impact memory cell performance over time that are dependent upon the polarity at which the memory cells were operated. Accordingly, operating the two decks at opposite polarities results in asymmetric memory cell performance in the memory cells of the two decks.
In contrast, embodiments include a multi-deck memory device with an inverted deck. Inverting one of the decks can enable symmetric operation of the decks when opposite polarities are applied to the decks. Thus, an inverted deck enables suppression of polarity-dependent effects in multi-deck memory devices, in accordance with embodiments.
System 100 includes components of a memory subsystem having random access memory (RAM) 120 to store and provide data in response to operations of processor 110. System 100 receives memory access requests from a host or a processor 110, which is processing logic that executes operations based on data stored in RAM 120 or generates data to store in RAM 120. Processor 110 can be or include a host processor, central processing unit (CPU), microcontroller or microprocessor, graphics processor, peripheral processor, application specific processor, or other processor, and can be single core or multicore.
System 100 includes memory controller 130, which represents logic to interface with RAM 120 and manage access to data stored in the memory. In one embodiment, memory controller 130 is integrated into the hardware of processor 110. In one embodiment, memory controller 130 is standalone hardware, separate from processor 110. Memory controller 130 can be a separate circuit on a substrate that includes the processor. Memory controller 130 can be a separate die or chip integrated on a common substrate with a processor die (e.g., as a system on a chip (SoC)). In one embodiment, memory controller 130 is an integrated memory controller (iMC) integrated as a circuit on the processor die. In one embodiment, at least some of RAM 120 can be included on an SoC with memory controller 130 and/or processor 110.
In one embodiment, memory controller 130 includes read/write logic 134, which includes hardware to interface with RAM 120. Logic 134 enables memory controller 130 to generate read and write commands to service requests for data access generated by the execution of instructions by processor 110. In one embodiment, memory controller 130 includes scheduler 132 to schedule the sending of access commands to RAM 120 based on known timing parameters for read and write access for RAM 120. Known timing parameters can be those that are preprogrammed or otherwise preconfigured into system 100. Such parameters can be stored in RAM 120 and accessed by memory controller 130. In one embodiment, at least some parameters are determined by synchronization procedures. The timing parameters can include the timing associated with write latency for RAM 120. The write latency for RAM 120 can depend on the type of memory technology. RAM 120 can be a multi-deck memory with an inverted deck, as is described in further detail below.
The memory resources or cache lines in RAM 120 are represented by memory cell array 126, which can include a memory cell array with chalcogenide storage and/or selector elements. In one such embodiment, the storage elements can be formed from a phase change material that can be electrically switched between a generally amorphous and a generally crystalline state across the entire spectrum between completely amorphous and completely crystalline states. RAM 120 includes interface 124 (e.g., interface logic) to control the access to memory device array 126. Interface 124 can include decode logic, including logic to address specific rows or columns or bits of data. In one embodiment, interface 124 includes logic to control the amount of current provided to specific memory cells of memory device array 126. Thus, control over writing to memory device array 126 can occur through driver and/or other access logic of interface 124. Controller 122 represents an on-die controller on RAM 120 to control its internal operations to execute commands received from memory controller 130. For example, controller 122 can control any of timing, addressing, I/O (input/output) margining, scheduling, and error correction for RAM 120.
In one embodiment, controller 122 is configured to read and write memory device array 126 in accordance with any embodiment described herein. In one embodiment, controller 122 can differentiate between different logic-states as a consequence of the programming polarity of a memory cell. For example, in one embodiment, controller 122 can read a memory cell by applying a voltage drop via interface 124 to the memory cell to determine the state (e.g., one of multiple stable states) of the memory cell.
In one embodiment, when controller 122 is to write to a memory cell, controller 122 applies a voltage pulse to the memory cell. The RAM 120 can be operated at a single or dual polarity. For example, for single polarity operation, programming currents or voltages with different magnitudes, but with the same polarity, are applied to program the storage material. Applying programming currents or voltages with different magnitudes results in the storage material being set or reset to the programmed state. For example, in one embodiment, controller 122 applies a voltage pulse with one magnitude to put the cell in one state (e.g., to write a logic ‘1’), and applies a voltage pulse with a different magnitude, but at the same polarity, to put the cell in another state (e.g., to write a logic ‘0’). For dual polarity operation, programming in forward polarity will put the cell in one state and programming in reverse polarity will put the cell in another state, in accordance with embodiments. For example, in one embodiment, controller 122 applies a pulse in one polarity (e.g., bitline positive and wordline negative) to write a value (e.g., a logic ‘1’) or in the other polarity (e.g., bitline negative and wordline positive) to write another value (e.g., a logic ‘0’). In one such embodiment, controller 122 applies a pulse that is sufficient to trigger the storage material to transition to the desired stable state. System 100 includes power source 140, which can be a voltage source or regulator that provides power to RAM 120. Controller 122 and interface 124 can use the power available from power source 140 to apply a voltage drop to access a memory cell of array 126.
In one embodiment, the storage elements 208A, 208B include elements that are programmable to one of multiple states that correspond to logic states. Therefore, the storage elements can be programmed to one of multiple logic states, and thus store information. The storage elements can also be referred to as memory elements. In one embodiment, the storage elements 208A, 208B include a phase change material. A phase change material can be electrically switched between a generally amorphous and a generally crystalline state across the entire spectrum between completely amorphous and completely crystalline states. In another embodiment, the storage material is not a phase change material. In one embodiment in which the storage material is not a phase change material, the storage material is capable of switching between two or more stable states without changing phase. In one embodiment, the storage elements 208A, 208B include a chalcogenide material, such as Te—Se alloys, As—Se alloys, Ge—Te alloys, As—Se—Te alloys, Ge—As—Se alloys, Te—As—Ge alloys, Si—Ge—As—Se alloys, Si—Te—As—Ge alloys, or other chalcogenide materials capable of being programmed to one of multiple states. The storage elements can be programmed by application of a voltage, current, heat, or other physical or electrical stimuli to cause a change in state.
The selector elements 212A, 212B enable accessing a single bit in the array, in accordance with embodiments. In one embodiment, the selector elements 212A, 212B include a chalcogenide material, such a chalcogenide glass, or other material that enables selection of a bit in the array.
The conductive access lines 202A, 202B, and 216 enable access to the memory cells of the array. In embodiments illustrated and described herein, the conductive access lines are sometimes referred to as “bitlines” and “wordlines” for ease of reference. However, the opposite labels can be used for the access lines (e.g., the conductive access lines 202A and 202B can be referred to as bitlines, and the conductive access lines 216 can be referred to as wordlines). In one embodiment, a given one of the wordlines 202A, 202B is for accessing a particular word in a memory array and a given one of the bitlines 216 is for accessing a particular bit in the word, although the logical meaning of the wordlines and bitlines can be reversed. The wordlines 202A, 202B and bitlines 216 can be composed of one or more metals including: Al, Cu, Ni, Cr, Co, Ru, Rh, Pd, Ag, Pt, Au, Ir, Ta, and W; conductive metal nitrides including TiN, TaN, WN, and TaCN; conductive metal silicides including tantalum silicides, tungsten silicides, nickel silicides, cobalt silicides and titanium silicides; conductive metal silicide nitrides including TiSiN and WSiN; conductive metal carbide nitrides including TiCN and WCN, or any other suitable electrically conductive material. Note that, the memory cell array 200 includes shared bitlines between the decks 201A and 201B, which can have the benefit of enabling higher conductance bitlines (and thus enable better signal delivery) and can reduce process related costs. The term “common bitline” can refer to a single bitline, or bitlines for multiple decks that are in electrical contact with one another.
The electrodes 214A, 210A, 204A, 214B, 2108, and 204B are conductive elements or structures that electrically couple the elements that are on either side of the electrode, in accordance with embodiments. The electrodes can also be referred to as conductive contacts or electrode contacts. The electrodes can include the same or different materials as the conductive lines. For example, the electrodes 214A, 210A, 204A, 214B, 2108, and 204B can include one or more conductive and/or semiconductive materials such as: carbon (C), carbon nitride (CxNy); n-doped polysilicon and p-doped polysilicon; metals including, Al, Cu, Ni, Cr, Co, Ru, Rh, Pd, Ag, Pt, Au, Ir, Ta, and W; conductive metal nitrides including TiN, TaN, WN, and TaCN; conductive metal silicides including tantalum silicides, tungsten silicides, nickel silicides, cobalt silicides and titanium silicides; conductive metal silicides nitrides including TiSiN and WSiN; conductive metal carbide nitrides including TiCN and WCN; conductive metal oxides including RuO2, or other suitable conductive materials. In one embodiment, conductive wordline layer can include a same or similar conductive material as the electrodes. The electrodes illustrated in
In the embodiment illustrated in
In the embodiment illustrated in
In the embodiment illustrated in
However, there can be asymmetries in the operation of a memory device with two identical stacked decks, such as the memory cell array 200 of
The polarity dependent changes in cell performance are mostly due to ion migration in the chalcogenide materials of the cell array (e.g., a selecting chalcogenide, storage chalcogenide, or both), in accordance with embodiments. Due to the decks being operated at opposite polarities, ion migration occurs in the memory cells of each deck in the opposite direction, in accordance with embodiments. For example, referring to the deck 201A, if a voltage is applied to cause current to flow from the common bitlines 216 to the wordlines 202A (or vice versa), some elements in the storage chalcogenide 208A and the selector chalcogenide 212A physically move or migrate. For example, in a chalcogenide material that includes tellurium, germanium, and antimony (such as GeSbTe (germanium-antimony-tellurium), which can be further abbreviated as GST), the tellurium tends to move towards one end of the memory cell (e.g., in the opposite direction of the current), and the antimony and germanium tends to move towards the opposite end of the memory cell (e.g., in the direction of the current). In one such example, if a voltage is applied across the memory cells that causes current to flow from the common bitlines 216 towards the wordlines 202A, the antimony and germanium in the storage chalcogenide elements 208A and the selector chalcogenide elements 212A moves down in the elements towards the wordline 202A. In contrast, if a voltage is applied with the opposite polarity to deck 201B, which would also cause current to flow from the common bitlines 216 towards the wordlines 202B, the antimony and germanium in the storage chalcogenide elements 208B and the selector chalcogenide elements 212B moves up in the elements towards the wordline 202B. Thus, operating the decks so that the bitline is always driven to a higher voltage and the wordline is always grounded or driven to a lower voltage (or vice versa), then the current will flow from top to bottom in one deck and from bottom to top in the other deck. Accordingly, in an array with GST storage and selector elements, there will be a greater concentration of tellurium in the bottom part of the storage and selector elements in one deck, and a greater concentration of tellurium in the top part of the storage and selector elements of the other deck, or vice versa. The same phenomenon can be observed with other elements, such as antimony, arsenic, selenium, silicon, indium, and germanium. The migration of elements such as tellurium, antimony, and germanium in opposite directions in the memory cells of the two decks can cause significant operation and performance problems.
In contrast,
Referring first to
However, unlike
Although the deck 301B is the inverse of deck 301A in terms of the order of elements, the decks 301A and 301B can be operated symmetrically (e.g., identically in terms of voltage bias applied across the memory cells). The decks 301A and 301B share common bitlines 316, and therefore the deck 301B is operated in reverse relative to the deck 301A, as discussed above with respect to
Thus, the memory cell array 300A of
In the illustrated embodiment, each of the decks 331A, 331B includes electrodes, wordlines, and self-selecting storage elements. The electrodes 334A, 340A, 334B, 340B, the conductive lines 332A, 332B, 346, the sealing material 348, and the filler material 350 can be the same as or similar to the corresponding elements of
Inverting the top deck 331B relative to the bottom deck 331A results in the first electrodes 334B and second electrodes 340B of top deck 331B being in an order that is opposite to the electrodes of the bottom deck 331A. In the embodiment illustrated in
Note that although
Referring again to
In one embodiment, formation of a deck of memory cells can involve at least two patterning operations, one patterning operation that defines the memory cells in one direction and conductive access line (e.g., a wordline etch that define the wordlines and the memory cells in the direction of the wordlines), and another patterning operation that defines the memory cells in another direction and other conductive access lines (e.g., a bitline etch that defines the bitlines and the memory cells in the direction of the bitlines). In an embodiment with common access lines (e.g., the common bitlines 316), the common access lines include access lines for each deck that are physically and electrically coupled together. In one such embodiment, forming the first deck involves forming and patterning the access lines for the first deck, over which access lines for a second deck can be subsequently formed.
Thus, forming the first deck involves multiple processing techniques, such as deposition, etching, and lithography, in accordance with embodiments. Processing equipment can employ any suitable process for forming the conductive layers for the wordlines and electrodes, such as electroplating, physical vapor deposition (PVD), chemical vapor deposition, or other process for forming conductive layers. Processing equipment can employ any suitable deposition technique to form the layers of storage and selector material and lamina, such as chemical vapor deposition (CVD), atomic layer deposition (ALD), physical vapor deposition (PVD) such as physical sputtering, plasma-enhanced chemical vapor deposition (PECVD), hybrid physical chemical vapor deposition (HPCVD), or other deposition techniques.
After forming the first deck, the method 400 involves forming layers of material for the second deck in an order that is opposite the first deck, at operation 406. For example, processing equipment forms a layer of storage material and a layer of selector material in the opposite order as the first deck. Forming the layers of material for the second deck can also include forming one or more conductive layers for electrodes (e.g., electrodes 304B, 310B, and 314B of
The method 400 of
Processing equipment 600 also includes an etch tool or chamber 604, for example, a wet or dry etch tool. Wet etching can involve, for example, immersing the substrate being processed in a wet etchant, or other wet etching technique. Dry etching can involve, for example, the removal of material by exposing the substrate to bombardment of ions (e.g., via a plasma of reactive gases) that dislodge portions of the material from surfaces of the substrate that are exposed to the ions. Although one etch tool 604 is illustrated, other embodiments can include more than one etch tool. Etch tool 604 can perform etching or patterning operations of methods described herein.
Processing equipment 600 also includes lithography tool 606. Lithography tool 606 can use light to transfer a pattern from a photomask to a light-sensitive chemical “photoresist” on the substrate. Subsequent operations, such as chemical treatments, can then etch the pattern into the material under the photoresist, or enable deposition of a new material in the pattern. Processing equipment also includes an annealing and/or curing tool 607. Annealing/curing tool 607 can include a furnace or other heating mechanism to anneal or cure layers on a substrate.
Processing equipment also includes CMP tool 609. CMP tool 609 can perform chemical mechanical planarization operations by using, for example, a chemical slurry to planarize a surface of a substrate. The tools of processing equipment can be combined into a single tool, can be separate tools. In another embodiment, some tools are combined while others are separate. Robotic transfer mechanisms 610 can transfer the substrate or wafer being processed amongst tools.
Processing equipment includes control logic to operate the equipment and control parameters of the process. In one embodiment, each tool includes its own control logic. The control logic can include hardware logic and/or software/firmware logic to control the processing. The equipment can be programmed or configured to perform certain operations in a certain order. For example, a manufacturing entity can configure processing equipment 600 to perform operations on a wafer or substrate to form electronic circuits. The processing equipment can also include other components of a computer system, such one or more components of system 700 of
System 700 represents a computing device in accordance with any embodiment described herein, and can be a laptop computer, a desktop computer, a server, a gaming or entertainment control system, a scanner, copier, printer, routing or switching device, embedded computing device, or other electronic device.
System 700 includes processor 710, which provides processing, operation management, and execution of instructions for system 700. Processor 710 can include any type of microprocessor, central processing unit (CPU), graphics processing unit (GPU), processing core, or other processing hardware to provide processing for system 700, or a combination of processors. Processor 710 controls the overall operation of system 700, and can be or include, one or more programmable general-purpose or special-purpose microprocessors, digital signal processors (DSPs), programmable controllers, application specific integrated circuits (ASICs), programmable logic devices (PLDs), or the like, or a combination of such devices.
In one embodiment, system 700 includes interface 712 coupled to processor 710, which can represent a higher speed interface or a high throughput interface for system components that needs higher bandwidth connections, such as memory subsystem 720 or graphics interface components 740. Interface 712 can represent a “north bridge” circuit, which can be a standalone component or integrated onto a processor die. Graphics interface 740 interfaces to graphics components for providing a visual display to a user of system 700. In one embodiment, graphics interface 740 generates a display based on data stored in memory 730 or based on operations executed by processor 710 or both.
Memory subsystem 720 represents the main memory of system 700, and provides storage for code to be executed by processor 710, or data values to be used in executing a routine. Memory subsystem 720 can include one or more memory devices 730 such as read-only memory (ROM), flash memory, one or more varieties of random access memory (RAM), or other memory devices, or a combination of such devices. Memory devices 730 can include memory devices with doped storage and/or selector elements as described herein.
Memory 730 stores and hosts, among other things, operating system (OS) 732 to provide a software platform for execution of instructions in system 700. Additionally, applications 734 can execute on the software platform of OS 732 from memory 730. Applications 734 represent programs that have their own operational logic to perform execution of one or more functions. Processes 736 represent agents or routines that provide auxiliary functions to OS 732 or one or more applications 734 or a combination. OS 732, applications 734, and processes 736 provide logic to provide functions for system 700. In one embodiment, memory subsystem 720 includes memory controller 722, which is a memory controller to generate and issue commands to memory 730. It will be understood that memory controller 722 could be a physical part of processor 710 or a physical part of interface 712. For example, memory controller 722 can be an integrated memory controller, integrated onto a circuit with processor 710.
While not specifically illustrated, it will be understood that system 700 can include one or more buses or bus systems between devices, such as a memory bus, a graphics bus, interface buses, or others. Buses or other signal lines can communicatively or electrically couple components together, or both communicatively and electrically couple the components. Buses can include physical communication lines, point-to-point connections, bridges, adapters, controllers, or other circuitry or a combination. Buses can include, for example, one or more of a system bus, a Peripheral Component Interconnect (PCI) bus, a HyperTransport or industry standard architecture (ISA) bus, a small computer system interface (SCSI) bus, a universal serial bus (USB), or an Institute of Electrical and Electronics Engineers (IEEE) standard 1394 bus (commonly referred to as “Firewire”).
In one embodiment, system 700 includes interface 714, which can be coupled to interface 712. Interface 714 can be a lower speed interface than interface 712. In one embodiment, interface 714 can be a “south bridge” circuit, which can include standalone components and integrated circuitry. In one embodiment, multiple user interface components or peripheral components, or both, couple to interface 714. Network interface 750 provides system 700 the ability to communicate with remote devices (e.g., servers or other computing devices) over one or more networks. Network interface 750 can include an Ethernet adapter, wireless interconnection components, USB (universal serial bus), or other wired or wireless standards-based or proprietary interfaces. Network interface 750 can exchange data with a remote device, which can include sending data stored in memory or receiving data to be stored in memory.
In one embodiment, system 700 includes one or more input/output (I/O) interface(s) 760. I/O interface 760 can include one or more interface components through which a user interacts with system 700 (e.g., audio, alphanumeric, tactile/touch, or other interfacing). Peripheral interface 770 can include any hardware interface not specifically mentioned above. Peripherals refer generally to devices that connect dependently to system 700. A dependent connection is one where system 700 provides the software platform or hardware platform or both on which operation executes, and with which a user interacts.
In one embodiment, system 700 includes storage subsystem 780 to store data in a nonvolatile manner. In one embodiment, in certain system implementations, at least certain components of storage 780 can overlap with components of memory subsystem 720. Storage subsystem 780 includes storage device(s) 784, which can be or include any conventional medium for storing large amounts of data in a nonvolatile manner, such as one or more magnetic, solid state, or optical based disks, or a combination. Storage 784 holds code or instructions and data 786 in a persistent state (i.e., the value is retained despite interruption of power to system 700). Storage 784 can be generically considered to be a “memory,” although memory 730 is typically the executing or operating memory to provide instructions to processor 710. Whereas storage 784 is nonvolatile, memory 730 can include volatile memory (i.e., the value or state of the data is indeterminate if power is interrupted to system 700). In one embodiment, storage subsystem 780 includes controller 782 to interface with storage 784. In one embodiment controller 782 is a physical part of interface 714 or processor 710, or can include circuits or logic in both processor 710 and interface 714.
Power source 702 provides power to the components of system 700. More specifically, power source 702 typically interfaces to one or multiple power supplies 704 in system 700 to provide power to the components of system 700. In one embodiment, power supply 704 includes an AC to DC (alternating current to direct current) adapter to plug into a wall outlet. Such AC power can be renewable energy (e.g., solar power) power source 1102. In one embodiment, power source 702 includes a DC power source, such as an external AC to DC converter. In one embodiment, power source 702 or power supply 704 includes wireless charging hardware to charge via proximity to a charging field. In one embodiment, power source 702 can include an internal battery or fuel cell source.
Some embodiments of the disclosure follow. In one embodiment, memory device includes a first deck of memory cells comprising layers of material, including a layer of storage material and a layer of selector material, and a second deck of memory cells over the first deck of memory cells, the second deck comprising layers of material in an order opposite relative to the first deck.
In one embodiment, the first deck includes the layer of storage material over the layer of selector material, and the second deck includes a second layer of selector material over a second layer of storage material. In one embodiment, the first deck comprises the layer of selector material over the layer of storage material, and the second deck comprises a second layer of storage material over a second layer of selector material. In one embodiment, the memory device includes conductive access lines located between the first deck and the second deck, wherein the conductive access lines are common to both the first and the second deck. In one embodiment, the conductive access lines include conductive bitlines of the first deck and conductive bitlines of the second deck, wherein the conductive bitlines of the first deck are in direct contact with the conductive bitlines of the second deck.
In one embodiment, the memory device includes first conductive wordlines, wherein the layers of selector and storage material of the first deck are between the first conductive wordlines and the conductive bitlines, and second conductive wordlines, wherein the layers of selector and storage material of the second deck are between the second conductive wordlines and the conductive bitlines. In one embodiment, the memory device includes electrodes located: between the first conductive wordlines and the layer of selector material of the first deck, between the conductive bitlines and the layer of storage material of the first deck, between the conductive bitlines and the layer of storage material of the second deck, and between the second conductive wordlines and the layer of selector material of the second deck.
In one embodiment, the memory device further includes electrodes located between the selector material and the storage material of each of the first and second decks. In one embodiment, one or more of the electrodes include multi-layer electrodes, wherein a multi-layer electrode includes a layer of a conductive material and a dielectric layer. In one embodiment, the layer of storage material and the layer of selector material of each of first and second decks include a chalcogenide material. In one embodiment, the layer of storage material of each of the first and second decks includes a phase change chalcogenide material, and the layer of selector material of each of the first and second decks includes a chalcogenide glass.
In one embodiment, a system includes a processor, and a memory device communicatively coupled with the processor, wherein the memory device is in accordance with any of the embodiments described herein. In one embodiment, a system includes any of a display communicatively coupled to the processor, a network interface communicatively coupled to the processor, a battery coupled to provide power to the system, or other system components.
In one embodiment, a memory device includes a first deck of memory cells including layers of material, including a layer of self-selecting storage material between electrodes; and a second deck of memory cells over the first deck of memory cells, the second deck including layers of material in an order opposite relative to the first deck.
In one embodiment, the memory device includes conductive access lines located between the first deck and the second deck, and common to both the first deck and the second deck. In one embodiment, the conductive access lines include conductive bitlines of the first deck and conductive bitlines of the second deck, wherein the conductive bitlines of the first deck are in direct contact with the conductive bitlines of the second deck.
In one embodiment, the memory device further includes first conductive wordlines, wherein the layer of self-selecting storage material of the first deck is between the first conductive wordlines and the conductive bitlines, and second conductive wordlines, wherein the layer of self-selecting storage material of the second deck is between the second conductive wordlines and the conductive bitlines. In one embodiment, the memory device further includes electrodes located: between the first conductive wordlines and the layer of self-selecting storage material of the first deck, between the conductive bitlines and the layer of self-selecting storage material of the first deck, between the conductive bitlines and the layer of self-selecting storage material of the second deck, and between the second conductive wordlines and the layer of self-selecting storage material of the second deck. In one embodiment, the electrodes adjacent to the conductive bitlines comprise a different material or thickness than the electrodes adjacent to the conductive wordlines. In one embodiment, one or more of the electrodes include multi-layer electrodes, wherein a multi-layer electrode includes a layer of a conductive material and a dielectric layer. In one embodiment, the layer of self-selecting storage material includes a chalcogenide material.
In one embodiment, a method of forming a memory device includes forming layers of material for a first deck of memory cells, including forming a layer of storage material and a layer of selector material over a conductive wordline layer, forming layers of material for a second deck of memory cells over the first deck, including forming a second conductive wordline layer, a second layer of storage material and a second layer of selector material in an order opposite the first deck, and patterning one or more of the layers of material of the first and second decks to form the memory cells of the first and second decks.
In one embodiment, forming the layers of material for the second deck includes forming the layers of material for the second deck after patterning the one or more layers of material of the first deck to form the memory cells of the first deck. In one embodiment, forming the layers of material of the first and second decks includes forming the layer of selector material for the first deck over a conductive wordline layer, forming the layer of storage material for the first deck over the layer of selector material for the first deck, forming the layer of storage material for the second deck over a conductive bitline layer, and forming the layer of selector material for the second deck over the layer of storage material for the second deck.
In one embodiment, forming the layer of storage material, forming the layer of selector material, forming the second layer of storage material, and forming the second layer of selector material each involves forming a layer of chalcogenide material. In one embodiment, the method involves forming a conductive wordline layer under the layer of selector material of the first deck, and a second wordline layer over the second layer of selector material of the second deck, forming conductive bitline layers between the layer of storage material of the first deck and the second layer of storage material of the second deck, wherein patterning the one or more layers comprises etching the conductive bitline layers to define conductive bitlines and etching the conductive wordline layer and the second conductive wordline layer to form conductive wordlines.
In one embodiment, the method further involves forming conductive electrode layers: between the first conductive wordline layer and the layer of selector material of the first deck, between the layer of storage material of the first deck the conductive bitline layer, between the conductive bitline layer and the second layer of storage material of the second deck, and between the second conductive wordline layer and the second layer of selector material of the second deck. In one embodiment, forming a conductive electrode layer involves forming a metal layer and a dielectric layer.
In one embodiment, a method involves forming layers of material for a first deck of memory cells, including forming a layer of self-selecting storage material over a conductive wordline layer, forming layers of material for a second deck of memory cells over the first deck in an order opposite the first deck, wherein the layers of material for a second deck include a second conductive wordline layer and a second layer of self-selecting storage material, and patterning one or more of the layers of material of the first and second decks to form the memory cells of the first and second decks.
In one embodiment, forming the layers of material for the second deck involves forming the layers of material for the second deck after patterning the one or more layers of material of the first deck to form the memory cells of the first deck. In one embodiment, forming the layers of material of the first and second decks involves forming the layer of self-selecting storage material for the first deck over a conductive wordline layer and forming the second layer of self-selecting storage material for the second deck over a conductive bitline layer. In one embodiment, forming the layer of self-selecting storage material and forming the second layer of self-selecting storage material each involves forming a layer of chalcogenide material.
In one embodiment, the method involves forming a conductive wordline layer under the layer of self-selecting storage material of the first deck, and a second wordline layer over the second layer of self-selecting storage material of the second deck, and forming conductive bitline layers between the layer of self-selecting storage material of the first deck and the second layer of storage material of the second deck, wherein patterning the one or more layers comprises etching the conductive bitline layers to define conductive bitlines and etching the conductive wordline layer and the second conductive wordline layer to form conductive wordlines. In one embodiment, the method further involves forming conductive electrode layers: between the first conductive wordline layer and the layer of self-selecting storage material of the first deck, between the layer of self-selecting storage material of the first deck the conductive bitline layer, between the conductive bitline layer and the second layer of self-selecting storage material of the second deck, and between the second conductive wordlines. In one embodiment, forming a conductive electrode layer involves forming a metal layer and a dielectric layer. In one embodiment, forming the conductive electrode layers involves forming one or more of the conductive electrode layers with a material or thickness that is different than the other conductive electrode layers.
Various components described herein can be a means for performing the operations or functions described. Each component described herein includes software, hardware, or a combination of these. The components can be implemented as software modules, hardware modules, special-purpose hardware (e.g., application specific hardware, application specific integrated circuits (ASICs), digital signal processors (DSPs), etc.), embedded controllers, hardwired circuitry, etc.
Besides what is described herein, various modifications can be made to the disclosed embodiments and implementations of the invention without departing from their scope. Therefore, the illustrations and examples herein should be construed in an illustrative, and not a restrictive sense. The scope of the invention should be measured solely by reference to the claims that follow.
Pellizzer, Fabio, Tortorelli, Innocenzo, Pirovano, Agostino, Redaelli, Andrea, Kau, DerChang
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
7989789, | Apr 04 2002 | Kabushiki Kaisha Toshiba | Phase-change memory device that stores information in a non-volatile manner by changing states of a memory material |
8395926, | Jun 18 2010 | SanDisk Technologies LLC | Memory cell with resistance-switching layers and lateral arrangement |
8765581, | Nov 30 2009 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Self-aligned cross-point phase change memory-switch array |
20090256133, | |||
20120211716, | |||
20150263069, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 30 2017 | Intel Corporation | (assignment on the face of the patent) | / | |||
Nov 20 2017 | KAU, DERCHANG | Intel Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 052352 | /0331 |
Date | Maintenance Fee Events |
Jun 08 2022 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 25 2021 | 4 years fee payment window open |
Jun 25 2022 | 6 months grace period start (w surcharge) |
Dec 25 2022 | patent expiry (for year 4) |
Dec 25 2024 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 25 2025 | 8 years fee payment window open |
Jun 25 2026 | 6 months grace period start (w surcharge) |
Dec 25 2026 | patent expiry (for year 8) |
Dec 25 2028 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 25 2029 | 12 years fee payment window open |
Jun 25 2030 | 6 months grace period start (w surcharge) |
Dec 25 2030 | patent expiry (for year 12) |
Dec 25 2032 | 2 years to revive unintentionally abandoned end. (for year 12) |