A semiconductor device includes a pmos FinFET and an nmos FinFET. The pmos FinFET includes a substrate, a silicon germanium layer disposed over the substrate, a silicon layer disposed over the silicon germanium layer, and a pmos fin disposed over the silicon layer. The pmos fin contains silicon germanium. The nmos FinFET includes the substrate, a silicon germanium oxide layer disposed over the substrate, a silicon oxide layer disposed over the silicon germanium oxide layer, and an nmos fin disposed over the silicon oxide layer. The nmos fin contains silicon. The silicon germanium oxide layer and the silicon oxide layer collectively define a concave recess in a horizontal direction. The concave recess is partially disposed below the nmos fin.
|
1. A method of fabricating a semiconductor device, comprising:
forming a first layer over a substrate, the first layer spanning across both a first region and a second region;
forming a second layer over the first layer;
etching the first and second layers to form a plurality of openings in the first region and the second region, wherein the plurality of openings extend vertically through the first layer and the second layer;
forming a dielectric layer in the openings in the first region but not in openings of the second region; and
forming an insulating layer between the first and second layers in the second region.
12. A method of fabricating a semiconductor device having a p-channel metal-oxide-semiconductor (pmos) region and an n-channel metal-oxide-semiconductor (nmos) region, the method comprising:
forming a first semiconductor layer over a substrate, the first semiconductor layer spanning across both the pmos region and the nmos region;
forming a second semiconductor layer over the first semiconductor layer;
forming a plurality of recesses that each extend through the first semiconductor layer and the second semiconductor layer, the recesses being formed in both the pmos region and the nmos region;
forming a first protective layer that covers the recesses in the pmos region; but that does not cover the recesses in the pmos region;
transforming a portion of the second semiconductor layer in the nmos region into an insulating layer;
thereafter removing the first protective layer;
thereafter forming shallow trench isolations (STIs) in the recesses in both the pmos region and the nmos region;
forming a plurality of pmos fins and a plurality of nmos fins; and
removing a native oxide formed on the pmos fins and the nmos fins, wherein the removing the native oxide causes the nmos fins to be shaped differently from the pmos fins due to differences in materials between the nmos fins and the pmos fins.
11. A method of fabricating a semiconductor device, comprising:
forming a first layer over a substrate the first layer spanning across both a first region and a second region;
forming a second layer over the first layer;
etching the first and second layers to form a plurality of openings in the first region and the second region;
forming a dielectric layer in the openings in the first region but not in openings of the second region; and
forming an insulating layer between the first and second layers in the second region;
forming insulating structures in the openings in both the first and second regions;
forming a second dielectric layer over the second region but not in the first region;
thereafter partially, but not completely, removing the second layer in the first region while the second dielectric layer prevents the layers therebelow from being removed;
forming a third layer over remaining portions of the second layer in the first region;
partially removing the insulating structures in both the first and second regions, wherein remaining portions of the third layer in the first region form first fins, and wherein remaining portions of the second layer in the second region form second fins; and
reshaping the first fins and the second fins such that the reshaped first fins and the reshaped second fins each have a narrower top portion and a wider bottom portion;
wherein:
the first fins and the second fins have first cross-sectional profiles before the reshaping and second cross-sectional profiles after the reshaping;
the first cross-sectional profiles are more rectangular than the second cross-sectional profiles; and
the second cross-sectional profiles have curved top and side surfaces.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
forming a second dielectric layer over the second region but not in the first region;
thereafter partially, but not completely, removing the second layer in the first region while the second dielectric layer prevents the layers therebelow from being removed; and
forming a third layer over remaining portions of the second layer in the first region.
7. The method of
partially removing the insulating structures in both the first and second regions, wherein remaining portions of the third layer in the first region form first fins, and wherein remaining portions of the second layer in the second region form second fins; and
reshaping the first fins and the second fins such that the first fins and second fins each have a narrower top portion and a wider bottom portion.
8. The method of
9. The method of
10. The method of
13. The method of
forming a second protective layer over the second semiconductor layer and over the STIs in the nmos region but not in the pmos region;
thereafter partially removing the second semiconductor layer in the pmos region while leaving remaining portions of the second semiconductor layer to be disposed over the first semiconductor layer in the pmos region; and
forming a third layer over the remaining portions of the second semiconductor layer in the pmos region;
wherein the forming the plurality of the pmos fins and the plurality of the nmos fins comprises: partially removing the STIs in both the pmos region and the nmos region, thereby defining:
the plurality of pmos fins that include at least a plurality of remaining segments of the third layer laterally exposed by the removal of the STIs in the pmos region; and
the plurality of nmos fins that include at least a plurality of remaining segments of the second semiconductor layer laterally exposed by the removal of the STIs in the nmos region.
15. The method of
16. The method of
17. The method of
18. The method of
the forming of the first semiconductor layer comprises epi-growing a silicon germanium as the first semiconductor layer over the substrate; and
the forming of the second semiconductor layer comprises epi-growing silicon as the second semiconductor layer over the silicon germanium.
19. The method of
20. The method of
|
The present application is a divisional application of U.S. patent application Ser. No. 14/207,848, filed Mar. 13, 2014, entitled “FINFET DEVICES WITH UNIQUE FIN SHAPE AND THE FABRICATION THEREOF, the entire disclosure of which is incorporated herein by reference.
The semiconductor industry has progressed into nanometer technology process nodes in pursuit of higher device density, higher performance, and lower costs. As this progression takes place, challenges from both fabrication and design issues have resulted in the development of three-dimensional designs, such as fin-like field effect transistor (FinFET) device. A typical FinFET device is fabricated with a thin “fin” (or fin-like structure) extending from a substrate. The fin usually includes silicon and forms the body of the transistor device. The channel of the transistor is formed in this vertical fin. A gate is provided over (e.g., wrapping around) the fin. This type of gate allows greater control of the channel. Other advantages of FinFET devices include reduced short channel effect and higher current flow.
However, traditional methods of fabricating FinFET devices may still have various shortcomings. These shortcomings include, but are not limited to, defects related to certain process flows, small epitaxial growth process windows, unsatisfactory device performance, higher costs, etc. Therefore, while existing methods of fabricating FinFET devices have been generally adequate for their intended purposes, they have not been entirely satisfactory in every aspect.
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is noted that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
The following disclosure provides many different embodiments, or examples, for implementing different features of the provided subject matter. Specific examples of components and arrangements are described below to simplify the present disclosure. These are, of course, merely examples and are not intended to be limiting. For example, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed between the first and second features, such that the first and second features may not be in direct contact. In addition, the present disclosure may repeat reference numerals and/or letters in the various examples. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various embodiments and/or configurations discussed.
Further, spatially relative terms, such as “beneath,” “below,” “lower,” “above,” “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. The spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. The apparatus may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein may likewise be interpreted accordingly.
The use of FinFET devices has been gaining popularity in the semiconductor industry. Referring to
FinFET devices offer several advantages over traditional Metal-Oxide Semiconductor Field Effect Transistor (MOSFET) devices (also referred to as planar devices). These advantages may include better chip area efficiency, improved carrier mobility, and fabrication processing that is compatible with the fabrication processing of planar devices. Thus, it may be desirable to design an integrated circuit (IC) chip using FinFET devices for a portion of, or the entire IC chip.
However, traditional FinFET fabrication methods may still have shortcomings. For example, traditional methods of FinFET fabrication typically involve an “STI-first” process flow formation. In the STI-first process flow, the STI (shallow trench isolation) devices are formed first, and then the channel (e.g., a SiGe channel) is formed thereafter. The STI-first process flow may lead to defects in the channel that are induced by the STI, a smaller epitaxial growth process window for the channel, as well as undesirable epi and etch loading effects. Traditional methods of fabricating FinFET devices may also employ a Silicon-on-Insulator (SOI) approach to provide better electrical isolation. However, conventional SOI processes may involve wafer bonding, which is an extra process step and may increase fabrication time, cost, and complexity. In addition, traditional FinFET devices may not have fin shapes or surfaces that are optimized for device performance.
To address the problems of the traditional FinFET devices and their methods of fabrication, the present disclosure utilizes a channel-first process to reduce STI-related defects and to achieve an SOI scheme without using wafer bonding. The present disclosure also forms fins with a [551] or [661] surface, which improves the performance of the FinFET devices. Furthermore, the various process steps of fabricating the FinFET devices according to the present disclosure will lead to a distinct fin shape, which includes a laterally-recessed fin bottom, as will be discussed in more detail later.
Referring now to
Referring now to
Referring now to
Referring now to
The oxidation process 180 is performed until the semiconductor layer 120 in the NMOS region has become fully oxidized. The oxidation process 180 may also oxidize a portion of the semiconductor layer 130. Since silicon and silicon germanium have different oxidation rates (silicon germanium oxidizes at a faster rate than silicon), a small portion of the semiconductor layer 130 may be oxidized while the semiconductor layer 120 in the NMOS region is completely oxidized. For example, in the illustrated embodiment, the portion of the semiconductor layer 130 near the interface with the semiconductor layer 120 becomes oxidized, as well as a surface portion of the substrate 110.
As a result of the oxidation process 180, oxide segments 185, 190 and 195 are formed in the NMOS region of the semiconductor device 100, as illustrated in
These oxide segments 195, 190, and 185 collectively serve as an electrically insulating material similar to the insulator of the SOI approach. In other words, the semiconductor layer 130 in the NMOS region contains silicon in the illustrated embodiment, and it is now disposed on an insulator (formed collectively by the oxide segments 195, 190, and 185). As such, the present disclosure effectively provides an SOI-equivalent scheme without having to use wafer bonding. Also as discussed above, the dielectric layer 160 prevents the semiconductor layers 120 and 130 in the PMOS region from being oxidized in the oxidation process 180.
Referring now to
Referring now to
Traditional methods of fabricating FinFETs may employ an STI-first approach, in which the STI devices are formed before the channel. As discussed above, the STI-first process flow may lead to problems such as defects in the channel (induced by the STI), a smaller epitaxial growth process window for the channel, as well as undesirable epi and etch loading effects. In comparison, the present disclosure employs a channel-first approach, in which the STI devices 200 are formed after the channel (e.g., the semiconductor layer 130) is formed. By doing so, the semiconductor device 100 is substantially free of STI-induced defects. In addition, the formation of STI devices 200 after the formation of the channels also allows the semiconductor device 100 to enjoy a larger epitaxial process window. Furthermore, the channel-first approach substantially eliminates the epi and etch loading effects typically associated with the STI-first approach.
Referring now to
Referring now to
Note that according to the various aspects of the present disclosure, the semiconductor layer 130 in the PMOS region is not removed completely. Instead, the removal process is configured to stop so that a small portion of the semiconductor layer 130 is preserved. This remaining portion of the semiconductor layer 130 is hereinafter designated as the semiconductor layer 130A. The semiconductor layer 130A has a thickness 220. In some embodiments, the thickness 220 is in a range from about 20 angstroms to about 300 angstroms. One reason for the preservation of the semiconductor layer 130A is to improve the quality of a semiconductor layer to be grown in the PMOS region in a subsequent process, as discussed below.
Referring now to
A polishing process, such as a CMP process, may then be performed to remove excess portions of the semiconductor layer 230 (e.g., portions taller the STI devices 200) and to achieve a planarized upper surface. The dielectric layer 210 (shown in
Referring now to
The exposed portions of the semiconductor layers 230 and the semiconductor layer 130A may be referred to as fins 250 of a PMOS of a FinFET device (i.e., the semiconductor device 100), and the exposed portions of the semiconductor layer 130 may be referred to as fins 250 of an NMOS of the FinFET device. As such, the STI removal process illustrated in
It is understood that the oxide segments 185 disposed underneath the semiconductor layer 130 in the NMOS region may also be considered a part of the fins 250 for the NMOS. However, since the oxide segments 185 are not electrically conductive, they cannot be part of the channel (nor source or drain) of the NMOS.
Referring now to
The fin-reshaping process 300 is performed to improve device performance. In some embodiments, the fin-reshaping process 300 is performed in a manner such that the reshaped semiconductor layers 230A and 130B each have a [551] or a [661] surface. One benefit of the [551] or [651] surfaces is that they lead to smoother surfaces that can be more easily maintained for various environments. The smoother surfaces also improve epitaxial growth. Another benefit of the [551] or [661] surfaces is that they improve the electrical current drivability or deliverability of the semiconductor device 100, which may be a result of an enhanced current drivability or carrier mobility for the PMOS. In other words, the improved current drivability of the PMOS makes it approach the current drivability of the NMOS, so that they become more equal. This balanced current drivability of PMOS and NMOS is desirable especially for CMOS applications.
In some embodiments, the fin-reshaping process 300 includes a wet etching process, in which NH4OH, Ammonia-peroxide mixture (APM, or NH4OH+H2O2), tetramethylammonium hydroxide (TMAH), HPM (HCl+ NH4OH) may be used as etchants. In some embodiments, these etchants are used to etch the Fins for fin-reshaping according to a sequence for the purpose of handling the SiGe and Si Fins' surface roughness. The etchant may be applied in either a wet dipping process or a spin-coating type of process. The fin-reshaping process 300 is also performed at a temperature in a range from about room temperature (e.g., 25 degrees Celsius) to about 70 degrees Celsius.
Referring now to
As discussed above, there are oxide segments 185 (e.g., silicon oxide) at the bottom portions of the fins 250A in the NMOS region. Alternatively stated, the fins 250A in the NMOS region are sitting on top of oxide segments 185. Since the cleaning process 330 removes oxides, it also causes some portions of these oxide segments 185 to be removed. Furthermore, some portions of the oxide segments 190 (e.g., silicon germanium oxide) underneath the oxide segments 185 may also end up being removed by the cleaning process 330. The partial removal of the oxide segments 185 and 190 (by the cleaning process 330) creates laterally concaved recesses 350 at the bottom of the fins 250A in the NMOS region. These recesses 350 are one of the unique physical characteristics of the embodiments of the present disclosure, as they do not appear in FinFETs fabricated under traditional processes.
The fins 250A in the PMOS region are disposed over the semiconductor layer 130A, rather than oxides. Consequently, the cleaning process 330 does not cause any recesses to be formed in the fins 250A in the PMOS region. Thus, the NMOS fins and the PMOS fins are now shaped differently or have different geometries.
Note that in embodiments where the STI devices 200A include oxide, such as the illustrated embodiment, the cleaning process 330 may also cause portions of the STI devices 200A to be removed. The remaining STI devices 200A therefore exhibit a dishing-like profile. Furthermore, as shown in
As discussed above, the reshaped fin 250A has a profile such that it is narrower at the top but wider at the bottom. For example, at a depth (measure from the top of the fin) of about 5 nm, the fin 250A has a lateral dimension (or width) 440 that is in a range from about 3.6 nm to about 4.4 nm. At a depth of about 15 nm, the fin 250A has a lateral dimension (or width) 441 that is in a range from about 5.4 nm to about 6.6 nm. At a depth of about 30 nm, the fin 250A has a lateral dimension (or width) 442 that is in a range from about 9 nm to about 11 nm.
Also as discussed above, the STI devices 200A exhibit dishing-like profiles. For example, the STI device 200A is recessed vertically downward at a distance 450. In some embodiments, the distance 450 is greater than about 5 nm, for example in a range from about 12 nm to about 14 nm.
The method 500 includes a step 510 of forming a second semiconductor layer over the first semiconductor layer. In some embodiments, the step 510 of forming the second semiconductor layer includes epi-growing silicon as the second semiconductor layer over the silicon germanium (i.e., the first semiconductor layer).
The method 500 includes a step 515 of forming a plurality of recesses that each extend through the first semiconductor layer and the second semiconductor layer. The recesses are formed in both the PMOS region and the NMOS region.
The method 500 includes a step 520 of forming a first protective layer to cover the recesses in the PMOS region but not the recesses in the PMOS region.
The method 500 includes a step 525 of transforming a portion of the second semiconductor layer in the NMOS region into an insulating layer. In some embodiments, the transforming step 525 includes performing an oxidation process to transform silicon germanium of the first semiconductor layer into silicon germanium oxide. In some embodiments, the oxidation process transforms a portion of the silicon in the second semiconductor layer into silicon oxide.
The method 500 includes a step 530 of removing the first protective layer.
The method 500 includes a step 535 of forming shallow trench isolations (STIs) in the recesses in both the PMOS region and the NMOS region.
The method 500 includes a step 540 of forming a second protective layer over the second semiconductor layer and over the STIs in the NMOS region but not in the PMOS region.
The method 500 includes a step 545 of partially removing the second semiconductor layer in the PMOS region while leaving remaining portions of the second semiconductor layer to be disposed over the first semiconductor layer in the PMOS region.
The method 500 includes a step 550 of forming a third semiconductor layer over the remaining portions of the second semiconductor layer in the PMOS region. In some embodiments, the step 550 of forming of the third semiconductor layer comprises epi-growing silicon germanium as the third semiconductor layer over the remaining portions of the second semiconductor layer in the PMOS region.
The method 500 includes a step 555 of partially removing the STIs in both the PMOS region and the NMOS region, thereby defining: a plurality of PMOS fins and a plurality of NMOS fin. The PMOS fins include at least a plurality of remaining segments of the third semiconductor layer laterally exposed by the removal of the STIs in the PMOS region. The NMOS fins include at least a plurality of remaining segments of the first semiconductor layer laterally exposed by the removal of the STIs in the NMOS region.
The method 500 includes a step 560 of reshaping the PMOS fins and the NMOS fins. In some embodiments, the reshaping step 560 is performed such that the PMOS fins are shaped differently from the NMOS fins. In some embodiments, the reshaping is performed such that the PMOS fins and. NMOS fins include [551] or [661] surfaces.
The method 500 includes a step 565 of performing a cleaning process to the semiconductor device. In some embodiments, the cleaning process is performed to remove native oxide on the surfaces of the fins. As a result of the cleaning process, the PMOS fins and the NMOS fins have different geometries. For example, the bottom portions of the NMOS fins are laterally recessed inward, but not the PMOS fins.
It is understood that additional process steps may be performed before, during, or after the steps 505-565 discussed above to complete the fabrication of the semiconductor device. For example, a step of forming gate structures may be performed after the cleaning process 565 is performed. For example, the gate structures may be similar to the gate 60 shown in
The embodiments of the present disclosure offer advantages over existing art, though it is understood that other embodiments may offer different advantages, not all advantages are necessarily discussed herein, and that no particular advantage is required for all embodiments. One of the advantages is associated with the channel-first approach of fabricating the FinFET. For example, the STI devices 200 are formed after the channel (e.g., the semiconductor layer 130) is formed. The channel-first approach eliminates STI-induced defects that have been traditionally associated with FinFET devices fabricated under the STI-first approach. In addition, the channel-first approach discussed herein also enhances the epitaxy process window and reduces undesirable etching and loading effects associated with FinFET devices fabricated under the STI-first approach.
Another advantage is that the present disclosure effectively achieves an SOI scheme without having to use wafer bonding. For example, as discussed above, the silicon and silicon oxide layers (in the NMOS region) may be oxidized to transform themselves into silicon oxide and silicon germanium oxide, which are dielectric insulators. The channel layer (e.g., silicon for NMOS) is disposed over these dielectric insulators. This type of SOI formation is easy to integrate into existing process flow, and whatever additional process times and costs incurred are negligible.
Yet another advantage is the better crystal quality growth. As discussed above, when the silicon material in the PMOS region is removed, a layer thereof is still preserved. In other words, the silicon removal is intended to be incomplete. The remaining silicon layer allows the future silicon germanium to be formed thereon to have reduced defects, therefore ensuring a better quality channel.
One more advantage is the fin reshaping process to create the [551] or [661] surfaces for the channel portions of the fins. The [551] or [661] surfaces improve the current drivability of the FinFET, in particular the PMOS. As a result, device performance is improved, for example due to better balancing between the PMOS and the NMOS.
Some embodiments of the present disclosure involve a semiconductor device. The semiconductor device may include a FinFET device. The semiconductor device includes a substrate. A dielectric layer is disposed over the substrate. A fin structure is disposed over the dielectric layer. The fin structure contains a semiconductor material. The dielectric layer disposed below the fin structure includes a lateral recess.
Some embodiments of the present disclosure involve a PMOS FinFET and an NMOS FinFET. The PMOS FinFET includes a substrate, a silicon germanium layer disposed over the substrate, and a silicon layer disposed over the silicon germanium layer. The PMOS FinFET also includes a PMOS fin disposed over the silicon layer. The PMOS fin contains silicon germanium. The NMOS FinFET includes the substrate, a silicon germanium oxide layer disposed over the substrate, and a silicon oxide layer disposed over the silicon germanium oxide layer. The NMOS FinFET also includes an NMOS fin disposed over the silicon oxide layer. The NMOS fin contains silicon. The silicon germanium oxide layer and the silicon oxide layer collectively define a concave recess in a horizontal direction. The concave recess is partially disposed below the NMOS fin.
Some embodiments of the present disclosure involve a method of fabricating a semiconductor device having a PMOS region and an NMOS region. A first semiconductor layer is formed over the substrate. The first semiconductor layer spans across both the PMOS region and the NMOS region. A second semiconductor layer is formed over the first semiconductor layer. A plurality of recesses is formed such that they each extend through the first semiconductor layer and the second semiconductor layer. The recesses are formed in both the PMOS region and the NMOS region. A first protective layer is formed to cover the recesses in the PMOS region but not the recesses in the PMOS region. A portion of the second semiconductor layer in the NMOS region is transformed into an insulating layer. Thereafter, the first protective layer is removed. Thereafter, shallow trench isolations (STIs) are formed in the recesses in both the PMOS region and the NMOS region. A second protective layer is then formed over the second semiconductor layer and over the STIs in the NMOS region but not in the PMOS region. The second semiconductor layer in the PMOS region is then partially removed while leaving remaining portions of the second semiconductor layer to be disposed over the first semiconductor layer in the PMOS region. A third layer is formed over the remaining portions of the second semiconductor layer in the PMOS region. The STIs in both the PMOS region and the NMOS region are then partially removed. The removal of the STIs defines a plurality of PMOS fins and a plurality of NMOS fins. The PMOS fins include at least a plurality of remaining segments of the third layer laterally exposed by the removal of the STIs in the PMOS region. The NMOS fins include at least a plurality of remaining segments of the first semiconductor layer laterally exposed by the removal of the STIs in the NMOS region. The PMOS fins and the NMOS fins are then reshaped. Thereafter, a cleaning process is performed to the semiconductor device.
The foregoing outlines features of several embodiments so that those skilled in the art may better understand the aspects of the present disclosure. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions, and alterations herein without departing from the spirit and scope of the present disclosure.
Wu, Cheng-Hsien, Ko, Chih-Hsin, Wann, Clement Hsingjen, Lee, Yi-Jing
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
7425740, | Oct 07 2005 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and structure for a 1T-RAM bit cell and macro |
7667271, | Apr 27 2007 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fin field-effect transistors |
7910453, | Jul 14 2008 | Taiwan Semiconductor Manufacturing Company, Ltd. | Storage nitride encapsulation for non-planar sonos NAND flash charge retention |
8048723, | Dec 05 2008 | Taiwan Semiconductor Manufacturing Company, Ltd. | Germanium FinFETs having dielectric punch-through stoppers |
8053299, | Apr 17 2009 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of fabrication of a FinFET element |
8101486, | Oct 07 2009 | GLOBALFOUNDRIES U S INC | Methods for forming isolated fin structures on bulk semiconductor material |
8183627, | Dec 01 2004 | Taiwan Semiconductor Manufacturing Company, Ltd | Hybrid fin field-effect transistor structures and related methods |
8362575, | Sep 29 2009 | PARABELLUM STRATEGIC OPPORTUNITIES FUND LLC | Controlling the shape of source/drain regions in FinFETs |
8367498, | Oct 18 2010 | PARABELLUM STRATEGIC OPPORTUNITIES FUND LLC | Fin-like field effect transistor (FinFET) device and method of manufacturing same |
8377779, | Jan 03 2012 | MOSAID TECHNOLOGIES INC | Methods of manufacturing semiconductor devices and transistors |
8399931, | Jun 30 2010 | ADVANCED MANUFACTURING INNOVATIONS INC | Layout for multiple-fin SRAM cell |
8415718, | Oct 30 2009 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of forming epi film in substrate trench |
8440517, | Oct 13 2010 | MOSAID TECHNOLOGIES INC | FinFET and method of fabricating the same |
8487378, | Jan 21 2011 | Taiwan Semiconductor Manufacturing Company, Ltd | Non-uniform channel junction-less transistor |
8497177, | Oct 04 2012 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of making a FinFET device |
8497528, | May 06 2010 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for fabricating a strained structure |
8609518, | Jul 22 2011 | Taiwan Semiconductor Manufacturing Company, Ltd. | Re-growing source/drain regions from un-relaxed silicon layer |
8610240, | Oct 16 2009 | Taiwan Semiconductor Manufacturing Company, Ltd. | Integrated circuit with multi recessed shallow trench isolation |
8618556, | Jun 30 2011 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET design and method of fabricating same |
8633516, | Sep 28 2012 | Taiwan Semiconductor Manufacturing Company, Ltd | Source/drain stack stressor for semiconductor device |
8652894, | Feb 11 2010 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for fabricating a FinFET device |
8680576, | May 16 2012 | Taiwan Semiconductor Manufacturing Company, Ltd | CMOS device and method of forming the same |
8686516, | Sep 08 2011 | Taiwan Semiconductor Manufacturing Company, Ltd. | Silicide formation and associated devices |
8703565, | Feb 09 2010 | Taiwan Semiconductor Manufacturing Company, Ltd. | Bottom-notched SiGe FinFET formation using condensation |
8716765, | Mar 23 2012 | Taiwan Semiconductor Manufacturing Company, Ltd. | Contact structure of semiconductor device |
8723272, | Oct 04 2011 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET device and method of manufacturing same |
8729627, | May 14 2010 | Taiwan Semiconductor Manufacturing Company, Ltd. | Strained channel integrated circuit devices |
8729634, | Jun 15 2012 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET with high mobility and strain channel |
8735993, | Jan 31 2012 | Taiwan Semiconductor Manufacturing Company, Ltd | FinFET body contact and method of making same |
8736056, | Jul 31 2012 | Taiwan Semiconductor Manufacturing Company, Ltd. | Device for reducing contact resistance of a metal |
8742509, | Mar 01 2012 | Taiwan Semiconductor Manufacturing Company, Ltd. | Apparatus and method for FinFETs |
8772109, | Oct 24 2012 | Taiwan Semiconductor Manufacturing Company, Ltd.; Taiwan Semiconductor Manufacturing Company, Ltd | Apparatus and method for forming semiconductor contacts |
8776734, | May 19 2008 | Innovative Environmental Solutions, LLC; INNOVATIVE ENVIRONMENTAL SOLUTIONS, LLC DBA REMEDIATION SERVICE, INT L | Remedial system: a pollution control device for utilizing and abating volatile organic compounds |
8785285, | Mar 08 2012 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor devices and methods of manufacture thereof |
8796666, | Apr 26 2013 | Taiwan Semiconductor Manufacturing Company, Ltd. | MOS devices with strain buffer layer and methods of forming the same |
8796759, | Jul 15 2010 | PARABELLUM STRATEGIC OPPORTUNITIES FUND LLC | Fin-like field effect transistor (FinFET) device and method of manufacturing same |
8809139, | Nov 29 2012 | Taiwan Semiconductor Manufacturing Company, Ltd. | Fin-last FinFET and methods of forming same |
8815712, | Dec 28 2011 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for epitaxial re-growth of semiconductor region |
8816444, | Apr 29 2011 | Taiwan Semiconductor Manufacturing Company, Ltd. | System and methods for converting planar design to FinFET design |
8823065, | Nov 08 2012 | Taiwan Semiconductor Manufacturing Company, Ltd. | Contact structure of semiconductor device |
8826213, | Mar 11 2013 | Taiwan Semiconductor Manufacturing Company, Ltd. | Parasitic capacitance extraction for FinFETs |
8828823, | Oct 13 2011 | Taiwan Semiconductor Manufacturing Company, Ltd. | FinFET device and method of manufacturing same |
8836016, | Mar 08 2012 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor structures and methods with high mobility and high energy bandgap materials |
8841701, | Aug 30 2011 | Taiwan Semiconductor Manufacturing Company, Ltd.; Taiwan Semiconductor Manufacturing Company, Ltd | FinFET device having a channel defined in a diamond-like shape semiconductor structure |
8847293, | Mar 02 2012 | Taiwan Semiconductor Manufacturing Company, Ltd | Gate structure for semiconductor device |
8853025, | Feb 08 2013 | Taiwan Semiconductor Manufacturing Company | FinFET/tri-gate channel doping for multiple threshold voltage tuning |
8860148, | Apr 11 2012 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method for FinFET integrated with capacitor |
8887106, | Dec 28 2011 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method of generating a bias-adjusted layout design of a conductive feature and method of generating a simulation model of a predefined fabrication process |
9105490, | Sep 27 2012 | Taiwan Semiconductor Manufacturing Company, Ltd | Contact structure of semiconductor device |
9224736, | Jun 27 2014 | Taiwan Semicondcutor Manufacturing Company, Ltd. | Structure and method for SRAM FinFET device |
20060113603, | |||
20100163971, | |||
20110068407, | |||
20110108920, | |||
20130011983, | |||
20130285153, | |||
20140001574, | |||
20140110755, | |||
20140151812, | |||
20140183600, | |||
20140252412, | |||
20140264488, | |||
20140264590, | |||
20140264592, | |||
20140282326, | |||
20150076558, | |||
20150144998, | |||
20150263003, | |||
20150311336, | |||
20150340365, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 17 2014 | WU, CHENG-HSIEN | Taiwan Semiconductor Manufacturing Company, Ltd | CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY NAME PREVIOUSLY RECORDED AT REEL: 040967 FRAME: 0799 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 041621 | /0332 | |
Mar 17 2014 | KO, CHIH-HSIN | Taiwan Semiconductor Manufacturing Company, Ltd | CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY NAME PREVIOUSLY RECORDED AT REEL: 040967 FRAME: 0799 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 041621 | /0332 | |
Mar 17 2014 | WU, CHENG-HSIEN | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 040967 | /0799 | |
Mar 17 2014 | KO, CHIH-HSIN | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 040967 | /0799 | |
Mar 19 2014 | LEE, YI-JING | Taiwan Semiconductor Manufacturing Company, Ltd | CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY NAME PREVIOUSLY RECORDED AT REEL: 040967 FRAME: 0799 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 041621 | /0332 | |
Mar 19 2014 | LEE, YI-JING | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 040967 | /0799 | |
Mar 24 2014 | WANN, CLEMENT HSINGJEN | Taiwan Semiconductor Manufacturing Company, Ltd | CORRECTIVE ASSIGNMENT TO CORRECT THE RECEIVING PARTY NAME PREVIOUSLY RECORDED AT REEL: 040967 FRAME: 0799 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNMENT | 041621 | /0332 | |
Mar 24 2014 | WANN, CLEMENT HSINGJEN | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 040967 | /0799 | |
Jan 12 2017 | Taiwan Semiconductor Manufacturing Company, Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 15 2022 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 01 2022 | 4 years fee payment window open |
Jul 01 2022 | 6 months grace period start (w surcharge) |
Jan 01 2023 | patent expiry (for year 4) |
Jan 01 2025 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 01 2026 | 8 years fee payment window open |
Jul 01 2026 | 6 months grace period start (w surcharge) |
Jan 01 2027 | patent expiry (for year 8) |
Jan 01 2029 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 01 2030 | 12 years fee payment window open |
Jul 01 2030 | 6 months grace period start (w surcharge) |
Jan 01 2031 | patent expiry (for year 12) |
Jan 01 2033 | 2 years to revive unintentionally abandoned end. (for year 12) |