The present disclosure provides NOMA between a unicast PDSCH signal and a sc-PTM signal. The apparatus receives, at a first ue, a combined signal including a first data transmission and a second data transmission. The apparatus also determines at the first ue, a first set of symbols for the first data transmission intended for the first ue. The apparatus further determines at the first ue, a second set of symbols for the second data transmission intended for a second ue. In an aspect, the first data transmission and the second data transmission include at least one overlapping resource element. In another aspect, the first set of symbols and the second set of symbols differ by at least one symbol. The apparatus also decodes, at the first ue, the first data transmission, based at least in part on the determined first set of symbols and the determined second set of symbols.
|
17. A method of wireless communication, comprising:
generating a first data transmission for a first group of user equipments (ues), wherein the first data transmission is a single-cell point-to-multipoint (sc-PTM) transmission;
generating a second data transmission for a second group of ues;
combining the first data transmission and the second data transmission into a combined signal such that interference cancellation is not performed when the first data transmission is decoded by the first group of ues; and
transmitting the combined signal to the first group of ues and the second group of ues,
wherein the first data transmission and the second data transmission include at least one overlapping resource element, and wherein a first set of symbols of the first data transmission and a second set of symbols of the second data transmission differ by at least one symbol.
1. A method of wireless communication, comprising:
receiving, at a first user equipment (ue), a combined signal including a first data transmission and a second data transmission, wherein at least one of the first data transmission or the second data transmission is a single-cell point-to-multipoint (sc-PTM) transmission;
determining, at the first ue, a first set of symbols for the first data transmission intended for the first ue;
determining, at the first ue, a second set of symbols for the second data transmission intended for a second ue, wherein the first data transmission and the second data transmission include at least one overlapping resource element, and wherein the first set of symbols and the second set of symbols differ by at least one symbol; and
decoding, at the first ue, the first data transmission, based at least in part on the determined first set of symbols and the determined second set of symbols, wherein the first data transmission is decoded without performing interference cancellation when the first data transmission is the sc-PTM transmission.
20. An apparatus for wireless communication, comprising:
means for receiving, at a first user equipment (ue), a combined signal including a first data transmission and a second data transmission;
means for determining, at the first ue, a first set of symbols for the first data transmission intended for the first ue, wherein at least one of the first data transmission or the second data transmission is a single-cell point-to-multipoint (sc-PTM) transmission;
means for determining, at the first ue, a second set of symbols for the second data transmission intended for a second ue, wherein the first data transmission and the second data transmission include at least one overlapping resource element, and wherein the first set of symbols and the second set of symbols differ by at least one symbol; and
means for decoding, at the first ue, at least one of the first data transmission, based at least in part on the determined first set of symbols and the determined second set of symbols, wherein the first data transmission is decoded without performing interference cancellation when the first data transmission is the sc-PTM transmission.
25. An apparatus for wireless communication, comprising:
a memory; and
at least one processor coupled to the memory and configured to:
receive, at a first user equipment (ue), a combined signal including a first data transmission and a second data transmission, wherein at least one of the first data transmission or the second data transmission is a single-cell point-to-multipoint (sc-PTM) transmission;
determine, at the first ue, a first set of symbols for a first data transmission intended for the first ue;
determine, at the first ue, a second set of symbols for a second data transmission intended for a second ue, wherein the first data transmission and the second data transmission include at least one overlapping resource element, and wherein the first set of symbols and the second set of symbols differ at least by one symbol; and
decode, at the first ue, the first data transmission, based at least in part on the determined first set of symbols and the determined second set of symbols, wherein the first data transmission is decoded without performing interference cancellation when the first data transmission is the sc-PTM transmission.
2. The method of
3. The method of
receiving a group-specific radio network temporary identifier (RNTI) associated with a group of ues,
wherein at least one of the first data transmission or the second data transmission is decoded based at least in part on the group-specific RNTI.
4. The method of
receiving a ue-specific radio network temporary identifier (RNTI) associated with the first ue; and
receiving interference cancellation information,
wherein at least one of the first data transmission or the second transmission is decoded based at least in part on the ue-specific RNTI and the interference cancellation information.
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
10. The method of
11. The method of
12. The method of
13. The method of
14. The method of
15. The method of
16. The method of
18. The method of
transmitting a group-specific radio network temporary identifier (RNTI) to the first group of ues;
transmitting interference cancellation information to the second group of ues; and
transmitting a different ue-specific RNTI to each ue in the second group of ues.
19. The method of
the first data transmission is a base layer of the combined signal and the second data transmission is an enhancement layer of the combined signal,
the base layer includes one or more layers,
the enhancement layer includes one or more layers, and
the second data transmission comprises one or more unicast transmissions.
21. The apparatus of
22. The apparatus of
means for receiving a group-specific radio network temporary identifier (RNTI) associated with a group of ues,
wherein the means for decoding is configured to decode at least one of the first data transmission or the second data transmission based at least in part on the group-specific RNTI.
23. The apparatus of
means for receiving a ue-specific radio network temporary identifier (RNTI) associated with the first ue; and
means for receiving interference cancellation information,
wherein the means for decoding is configured to decode at least one of the first data transmission or the second data transmission based at least in part on the ue-specific RNTI and the interference cancellation information.
24. The apparatus of
the second data transmission is a base layer of the combined signal and the first data transmission is an enhancement layer of the combined signal,
the base layer includes one or more layers, and
the enhancement layer includes one or more layers.
26. The apparatus of
27. The apparatus of
receive a group-specific radio network temporary identifier (RNTI) associated with a group of ues,
wherein the at least one processor is configured to decode at least one of the first data transmission or the second data transmission based at least in part on the group-specific RNTI.
28. The apparatus of
receive a ue-specific radio network temporary identifier (RNTI) associated with the first ue; and
receive interference cancellation information,
wherein the at least one processor is configured to decode at least one of the first data transmission or the second data transmission based at least in part ue-specific RNTI and the interference cancellation information.
29. The apparatus of
the second data transmission is a base layer of the combined signal and the first data transmission is an enhancement layer of the combined signal,
the base layer includes one or more layers, and
the enhancement layer includes one or more layers.
|
This application claims the benefit of U.S. Provisional Application Ser. No. 62/166,544, entitled “NON-ORTHOGONAL MULTIPLE ACCESS (NOMA) BETWEEN A PHYSICAL DOWNLINK SHARED CHANNEL (PDSCH) SIGNAL AND SINGLE-CELL POINT-TO-MULTIPOINT (SC-PTM) SIGNAL” and filed on May 26, 2015, which is expressly incorporated by reference herein in its entirety.
Field
The present disclosure relates generally to communication systems, and more particularly, to NOMA between a unicast PDSCH signal and a SC-PTM signal.
Background
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources. Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, and time division synchronous code division multiple access (TD-SCDMA) systems.
These multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different wireless devices to communicate on a municipal, national, regional, and even global level. An example telecommunication standard is Long Term Evolution (LTE). LTE is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by Third Generation Partnership Project (3GPP). LTE is designed to support mobile broadband access through improved spectral efficiency, lowered costs, and improved services using OFDMA on the downlink, SC-FDMA on the uplink, and multiple-input multiple-output (MIMO) antenna technology. However, as the demand for mobile broadband access continues to increase, there exists a need for further improvements in LTE technology. These improvements may also be applicable to other multi-access technologies and the telecommunication standards that employ these technologies.
Multiuser (MU) Superposition Transmission (MUST) is a joint optimization of MU operation from the perspective of both the user equipment (UE) and the evolved Node B (eNB) that may improve system capacity even if the transmission and/or precoding is non-orthogonal. SC-PTM is a type of transmission in which the PDSCH may be used to target transmissions for a group of UEs. While current MUST operation generally targets unicast PDSCH transmissions, there is also a need to extend MUST operations to include physical multicast channel (PMCH) transmissions and/or SC-PTM transmissions.
The following presents a simplified summary of one or more aspects in order to provide a basic understanding of such aspects. This summary is not an extensive overview of all contemplated aspects, and is intended to neither identify key or critical elements of all aspects nor delineate the scope of any or all aspects. Its sole purpose is to present some concepts of one or more aspects in a simplified form as a prelude to the more detailed description that is presented later.
MUST is a joint optimization of MU operation from the perspective of both the UE and the eNB that improves system capacity even if the transmission and/or precoding is non-orthogonal. SC-PTM is a type of transmission in which the PDSCH may be used to target transmissions for a group of UEs. While current MUST operation generally targets unicast PDSCH transmissions (e.g., different unicast transmission each intended for a specific UE), there is also a need to extend MUST operations to include PMCH transmissions (e.g., SC-PTM transmissions). UEs with better channel conditions may receive eMBMS services via the PMCH transmissions with higher date rates/high quality compared with UEs with worse channel conditions.
The present disclosure provides a solution to this problem by enabling MUST between one or more unicast transmissions and an SC-PTM transmission. For example, one or more unicast transmissions and an SC-PTM transmission may be combined such that resource blocks (RBs) and/or symbols used to transmit the one or more unicast transmissions may partially overlap with RBs used to transmit the SC-PTM transmission. In an aspect, the PDSCH of the SC-PTM transmission may be the base layer of the combined signal, while the PDSCH of the one or more unicast transmissions may be an enhancement layer of the combined signal. In other words, the UEs receiving the SC-PTM transmission may decode the SC-PTM transmission without interference cancellation, while the UE(s) receiving the one or more unicast transmissions may perform interference cancellation due to the SC-PTM for the overlapping RBs prior to decoding the unicast transmission.
In this way, the present disclosure is able to provide MUST between one or more unicast transmissions and an SC-PTM transmission.
In an aspect of the disclosure, a method, a computer-readable medium, and an apparatus are provided. The apparatus may receive, at a first UE, a combined signal including a first data transmission and a second data transmission. The apparatus also may determine at the first UE, a first set of symbols for the first data transmission intended for the first UE. The apparatus may further determine at the first UE, a second set of symbols for the second data transmission intended for a second UE. In an aspect, the first data transmission and the second data transmission may include at least one overlapping resource element. In another aspect, the first set of symbols and the second set of symbols may differ by at least one symbol. The apparatus may also decode, at the first UE, the first data transmission, based at least in part on the determined first set of symbols and the determined second set of symbols.
In another aspect, the apparatus generates a first data transmission for a first group of UEs. The apparatus also generates a second data transmission for a second group of UEs. The apparatus further combines the first data transmission and the second data transmission into a combined signal. In addition, the apparatus transmits the combined signal to the first group of UEs and the second group of UEs. In an aspect, the first data transmission and the second data transmission may include at least one overlapping resource element. In a further aspect, the first set of symbols and the second set of symbols may differ by at least one symbol.
To the accomplishment of the foregoing and related ends, the one or more aspects comprise the features hereinafter fully described and particularly pointed out in the claims. The following description and the annexed drawings set forth in detail certain illustrative features of the one or more aspects. These features are indicative, however, of but a few of the various ways in which the principles of various aspects may be employed, and this description is intended to include all such aspects and their equivalents.
The detailed description set forth below in connection with the appended drawings is intended as a description of various configurations and is not intended to represent the only configurations in which the concepts described herein may be practiced. The detailed description includes specific details for the purpose of providing a thorough understanding of various concepts. However, it will be apparent to those skilled in the art that these concepts may be practiced without these specific details. In some instances, well known structures and components are shown in block diagram form in order to avoid obscuring such concepts.
Several aspects of telecommunication systems will now be presented with reference to various apparatus and methods. These apparatus and methods will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, components, circuits, processes, algorithms, etc. (collectively referred to as “elements”). These elements may be implemented using electronic hardware, computer software, or any combination thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
By way of example, an element, or any portion of an element, or any combination of elements may be implemented as a “processing system” that includes one or more processors. Examples of processors include microprocessors, microcontrollers, graphics processing units (GPUs), central processing units (CPUs), application processors, digital signal processors (DSPs), reduced instruction set computing (RISC) processors, systems on a chip (SoC), baseband processors, field programmable gate arrays (FPGAs), programmable logic devices (PLDs), state machines, gated logic, discrete hardware circuits, and other suitable hardware configured to perform the various functionality described throughout this disclosure. One or more processors in the processing system may execute software. Software shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software components, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, etc., whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
Accordingly, in one or more example embodiments, the functions described may be implemented in hardware, software, or any combination thereof. If implemented in software, the functions may be stored on or encoded as one or more instructions or code on a computer-readable medium. Computer-readable media includes computer storage media. Storage media may be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can comprise a random-access memory (RAM), a read-only memory (ROM), an electrically erasable programmable ROM (EEPROM), optical disk storage, magnetic disk storage, other magnetic storage devices, combinations of the aforementioned types of computer-readable media, or any other medium that can be used to store computer executable code in the form of instructions or data structures that can be accessed by a computer.
The base stations 102 (collectively referred to as Evolved Universal Mobile Telecommunications System (UMTS) Terrestrial Radio Access Network (E-UTRAN)) interface with the EPC 160 through backhaul links 132 (e.g., S1 interface). In addition to other functions, the base stations 102 may perform one or more of the following functions: transfer of user data, radio channel ciphering and deciphering, integrity protection, header compression, mobility control functions (e.g., handover, dual connectivity), inter-cell interference coordination, connection setup and release, load balancing, distribution for non-access stratum (NAS) messages, NAS node selection, synchronization, radio access network (RAN) sharing, multimedia broadcast multicast service (MBMS), subscriber and equipment trace, RAN information management (RIM), paging, positioning, and delivery of warning messages. The base stations 102 may communicate directly or indirectly (e.g., through the EPC 160) with each other over backhaul links 134 (e.g., X2 interface). The backhaul links 134 may be wired or wireless.
The base stations 102 may wirelessly communicate with the UEs 104. Each of the base stations 102 may provide communication coverage for a respective geographic coverage area 110. There may be overlapping geographic coverage areas 110. For example, the small cell 102′ may have a coverage area 110′ that overlaps the coverage area 110 of one or more macro base stations 102. A network that includes both small cell and macro cells may be known as a heterogeneous network. A heterogeneous network may also include Home Evolved Node Bs (eNBs) (HeNBs), which may provide service to a restricted group known as a closed subscriber group (CSG). The communication links 120 between the base stations 102 and the UEs 104 may include uplink (UL) (also referred to as reverse link) transmissions from a UE 104 to a base station 102 and/or downlink (DL) (also referred to as forward link) transmissions from a base station 102 to a UE 104. The communication links 120 may use MIMO antenna technology, including spatial multiplexing, beamforming, and/or transmit diversity. The communication links may be through one or more carriers. The base stations 102/UEs 104 may use spectrum up to Y MHz (e.g., 5, 10, 15, 20 MHz) bandwidth per carrier allocated in a carrier aggregation of up to a total of Yx MHz (x component carriers) used for transmission in each direction. The carriers may or may not be adjacent to each other. Allocation of carriers may be asymmetric with respect to DL and UL (e.g., more or less carriers may be allocated for DL than for UL). The component carriers may include a primary component carrier and one or more secondary component carriers. A primary component carrier may be referred to as a primary cell (PCell) and a secondary component carrier may be referred to as a secondary cell (SCell).
The wireless communications system may further include a Wi-Fi access point (AP) 150 in communication with Wi-Fi stations (STAs) 152 via communication links 154 in a 5 GHz unlicensed frequency spectrum. When communicating in an unlicensed frequency spectrum, the STAs 152/AP 150 may perform a clear channel assessment (CCA) prior to communicating in order to determine whether the channel is available.
The small cell 102′ may operate in a licensed and/or an unlicensed frequency spectrum. When operating in an unlicensed frequency spectrum, the small cell 102′ may employ LTE and use the same 5 GHz unlicensed frequency spectrum as used by the Wi-Fi AP 150. The small cell 102′, employing LTE in an unlicensed frequency spectrum, may boost coverage to and/or increase capacity of the access network. LTE in an unlicensed spectrum may be referred to as LTE-unlicensed (LTE-U), licensed assisted access (LAA), or MuLTEfire.
The EPC 160 may include a Mobility Management Entity (MME) 162, other MMEs 164, a Serving Gateway 166, a Multimedia Broadcast Multicast Service (MBMS) Gateway 168, a Broadcast Multicast Service Center (BM-SC) 170, and a Packet Data Network (PDN) Gateway 172. The MME 162 may be in communication with a Home Subscriber Server (HSS) 174. The MME 162 is the control node that processes the signaling between the UEs 104 and the EPC 160. Generally, the MME 162 provides bearer and connection management. All user Internet protocol (IP) packets are transferred through the Serving Gateway 166, which itself is connected to the PDN Gateway 172. The PDN Gateway 172 provides UE IP address allocation as well as other functions. The PDN Gateway 172 and the BM-SC 170 are connected to the IP Services 176. The IP Services 176 may include the Internet, an intranet, an IP Multimedia Subsystem (IMS), a PS Streaming Service (PSS), and/or other IP services. The BM-SC 170 may provide functions for MBMS user service provisioning and delivery. The BM-SC 170 may serve as an entry point for content provider MBMS transmission, may be used to authorize and initiate MBMS Bearer Services within a public land mobile network (PLMN), and may be used to schedule MBMS transmissions. The MBMS Gateway 168 may be used to distribute MBMS traffic to the base stations 102 belonging to a Multicast Broadcast Single Frequency Network (MBSFN) area broadcasting a particular service, and may be responsible for session management (start/stop) and for collecting eMBMS related charging information.
The base station may also be referred to as a Node B, evolved Node B (eNB), an access point, a base transceiver station, a radio base station, a radio transceiver, a transceiver function, a basic service set (BSS), an extended service set (ESS), or some other suitable terminology. The base station 102 provides an access point to the EPC 160 for a UE 104. Examples of UEs 104 include a cellular phone, a smart phone, a session initiation protocol (SIP) phone, a laptop, a personal digital assistant (PDA), a satellite radio, a global positioning system, a multimedia device, a video device, a digital audio player (e.g., MP3 player), a camera, a game console, a tablet, a smart device, a wearable device, or any other similar functioning device. The UE 104 may also be referred to as a station, a mobile station, a subscriber station, a mobile unit, a subscriber unit, a wireless unit, a remote unit, a mobile device, a wireless device, a wireless communications device, a remote device, a mobile subscriber station, an access terminal, a mobile terminal, a wireless terminal, a remote terminal, a handset, a user agent, a mobile client, a client, or some other suitable terminology.
Referring again to
As illustrated in
As illustrated in
The transmit (TX) processor 316 and the receive (RX) processor 370 implement layer 1 functionality associated with various signal processing functions. Layer 1, which includes a physical (PHY) layer, may include error detection on the transport channels, forward error correction (FEC) coding/decoding of the transport channels, interleaving, rate matching, mapping onto physical channels, modulation/demodulation of physical channels, and MIMO antenna processing. The TX processor 316 handles mapping to signal constellations based on various modulation schemes (e.g., binary phase-shift keying (BPSK), quadrature phase-shift keying (QPSK), M-phase-shift keying (M-PSK), M-quadrature amplitude modulation (M-QAM)). The coded and modulated symbols may then be split into parallel streams. Each stream may then be mapped to an OFDM subcarrier, multiplexed with a reference signal (e.g., pilot) in the time and/or frequency domain, and then combined together using an Inverse Fast Fourier Transform (IFFT) to produce a physical channel carrying a time domain OFDM symbol stream. The OFDM stream is spatially precoded to produce multiple spatial streams. Channel estimates from a channel estimator 374 may be used to determine the coding and modulation scheme, as well as for spatial processing. The channel estimate may be derived from a reference signal and/or channel condition feedback transmitted by the UE 350. Each spatial stream may then be provided to a different antenna 320 via a separate transmitter 318TX. Each transmitter 318TX may modulate an RF carrier with a respective spatial stream for transmission.
At the UE 350, each receiver 354RX receives a signal through its respective antenna 352. Each receiver 354RX recovers information modulated onto an RF carrier and provides the information to the receive (RX) processor 356. The TX processor 368 and the RX processor 356 implement layer 1 functionality associated with various signal processing functions. The RX processor 356 may perform spatial processing on the information to recover any spatial streams destined for the UE 350. If multiple spatial streams are destined for the UE 350, they may be combined by the RX processor 356 into a single OFDM symbol stream. The RX processor 356 then converts the OFDM symbol stream from the time-domain to the frequency domain using a Fast Fourier Transform (FFT). The frequency domain signal comprises a separate OFDM symbol stream for each subcarrier of the OFDM signal. The symbols on each subcarrier, and the reference signal, are recovered and demodulated by determining the most likely signal constellation points transmitted by the eNB 310. These soft decisions may be based on channel estimates computed by the channel estimator 358. The soft decisions are then decoded and deinterleaved to recover the data and control signals that were originally transmitted by the eNB 310 on the physical channel. The data and control signals are then provided to the controller/processor 359, which implements layer 3 and layer 2 functionality.
The controller/processor 359 can be associated with a memory 360 that stores program codes and data. The memory 360 may be referred to as a computer-readable medium. In the UL, the controller/processor 359 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, and control signal processing to recover IP packets from the EPC 160. The controller/processor 359 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
Similar to the functionality described in connection with the DL transmission by the eNB 310, the controller/processor 359 provides RRC layer functionality associated with system information (e.g., MIB, SIBs) acquisition, RRC connections, and measurement reporting; PDCP layer functionality associated with header compression/decompression, and security (ciphering, deciphering, integrity protection, integrity verification); RLC layer functionality associated with the transfer of upper layer PDUs, error correction through ARQ, concatenation, segmentation, and reassembly of RLC SDUs, re-segmentation of RLC data PDUs, and reordering of RLC data PDUs; and MAC layer functionality associated with mapping between logical channels and transport channels, multiplexing of MAC SDUs onto TBs, demuliplexing of MAC SDUs from TBs, scheduling information reporting, error correction through HARQ, priority handling, and logical channel prioritization.
Channel estimates derived by a channel estimator 358 from a reference signal or feedback transmitted by the eNB 310 may be used by the TX processor 368 to select the appropriate coding and modulation schemes, and to facilitate spatial processing. The spatial streams generated by the TX processor 368 may be provided to different antenna 352 via separate transmitters 354TX. Each transmitter 354TX may modulate an RF carrier with a respective spatial stream for transmission.
The UL transmission is processed at the eNB 310 in a manner similar to that described in connection with the receiver function at the UE 350. Each receiver 318RX receives a signal through its respective antenna 320. Each receiver 318RX recovers information modulated onto an RF carrier and provides the information to a RX processor 370.
The controller/processor 375 can be associated with a memory 376 that stores program codes and data. The memory 376 may be referred to as a computer-readable medium. In the UL, the controller/processor 375 provides demultiplexing between transport and logical channels, packet reassembly, deciphering, header decompression, control signal processing to recover IP packets from the UE 350. IP packets from the controller/processor 375 may be provided to the EPC 160. The controller/processor 375 is also responsible for error detection using an ACK and/or NACK protocol to support HARQ operations.
MUST is a joint optimization of MU operation from the perspective of both the UE and the eNB that may improve system capacity even if the transmission and/or precoding is non-orthogonal. SC-PTM is a type of transmission in which the PDSCH may be used to target transmissions for a group of UEs. While current MUST operation generally targets unicast PDSCH transmissions (e.g., different unicast transmission each intended for a specific UE), there is also a need to extend MUST operations to include PMCH transmissions (e.g., SC-PTM transmissions). UEs with better channel conditions may receive eMBMS services via the PMCH transmissions with higher date rates/high quality compared with UEs with worse channel conditions.
The present disclosure provides a solution to this problem by enabling MUST between one or more unicast transmissions and an SC-PTM transmission. For example, one or more unicast transmissions and an SC-PTM transmission may be combined such that RBs and/or symbols used to transmit the one or more unicast transmissions may partially overlap with RBs and/or symbols used to transmit the SC-PTM transmission. In an aspect, the PDSCH of the SC-PTM transmission may be the base layer of the combined signal, while the PDSCH of the one or more unicast transmissions may be an enhancement layer of the combined signal. In other words, the UEs receiving the SC-PTM transmission may decode the SC-PTM transmission without interference cancellation, while the UE(s) receiving the one or more unicast transmissions may perform interference cancellation due to the SC-PTM for the overlapping RBs prior to decoding the unicast transmission.
In this way, the present disclosure is able to provide MUST between one or more unicast transmissions and an SC-PTM transmission.
Referring to
For DL-MIMO transmissions, the mode used for a transmission by the eNB 402 may be defined by a transmission strategy (TS). TSs may include a variety of techniques for allocation of resources to UEs 404, 406, 408. For example, signals to different UEs 404, 406, 408 may be differentiated by NOMA techniques. One NOMA technique that may be used is a power split between UEs 404, 406, 408 where the total transmit power for a set of resources is split between a plurality of UEs 404, 406 408. The combined signal 410 may include a first unicast PDSCH transmission intended for a first UE 406, a second unicast PDSCH transmission intended for a second UE 408, and a SC-PTM PDSCH transmission intended for a group of UEs 404.
In addition, the combined signal 410 may include a plurality of layers. For example, the combined signal 410 (e.g., a NOMA transmission) may include the simultaneous transmission of a large number of non-orthogonal beams/layers with the possibility of more than one layer of data transmission in a beam. In an aspect, the first unicast PDSCH transmission (e.g., signal to UE 406) may be a first enhancement layer of the combined signal 410, the second unicast PDSCH transmission (e.g., signal to UE 408) may be a second enhancement layer of the combined signal 410, and the SC-PTM PDSCH transmission (e.g., signal to the plurality of UEs 404) may be a base layer of the combined signal 410. The number of layers of the SC-PTM PDSCH transmission in the combined signal 410 may be limited to one. However, more than one SC-PTM layer is possible. In addition, the number of layers for unicast PDSCH transmission in the combined signal 410 maybe one or more. In other words, the unicast PDSCH transmission may be transmitted using SIMO or SU-MIMO operations. In one aspect, the combined signal 410 may include a first unicast PDSCH transmission, a second unicast PDSCH transmission that partially overlaps the resources and/or symbols of the first unicast PDSCH transmission, and an SC-PTM transmission that also partially overlaps the resources and/or symbols of the first and/or second unicast PDSCH transmission.
Each of the UEs 404, 406, 408 may determine 415 a first set of symbols in the combined signal 410 for a first data transmission (e.g., the first unicast transmission, the second unicast transmission, or the SC-PTM transmission) intended for that specific UE. In addition, each of the UEs 404, 406, 408 may determine 415 a second set of symbols for one or more second data transmissions (e.g., the first unicast transmission, the second unicast transmission, or the SC-PTM transmission) included in the combined signal 410 intended for a different UE. In an aspect, the first data transmission and the second data transmission may include at least one overlapping RE. In a further aspect, the first set of symbols and the second set of symbols differ by at least one symbol. In yet a further aspect, a starting symbol of the first data transmission may be different than a starting symbol of second data transmission. Based at least in part on the determined first set of symbols and the determined second set of symbols, each of the UEs 404, 406, 408 may decode 415 the data transmission intended for that specific UE from the combined signal.
The group of UEs 404 receiving the SC-PTM PDSCH transmission may perform detection as is. That is, the group of UEs 404 may decode the SC-PTM PDSCH transmission from the combined signal 410 without performing interference cancellation (e.g., when the SC-PTM PDSCH transmission is the base layer of the combined signal 410). In contrast, the UEs 406, 408 each receiving a unicast PDSCH transmission may need to perform interference cancellation before decoding their respective unicast PDSCH transmissions. This is because the resources and/or symbols used for the SC-PTM PDSCH transmission in the base layer may overlap with resources and/or symbols used for the first and/or second unicast PDSCH transmissions in the first and/or second enhancement layers. UEs 406, 408 may cancel interference using interference cancellation information 412 sent from the eNB 402. For example, the SC-PTM modulation and coding scheme (MCS) may correspond to a lower signal-to-interference plus-noise ratio (SINR) operation condition, such that unicast PDSCH UE(s) 406, 408 operating with higher SINR can decode and cancel SC-PTM before decoding the unicast PDSCH transmission.
As discussed supra, the resources occupied by the unicast PDSCH transmission(s) and the SC-PTM PDSCH transmission in the combined signal 410 may at least partially overlap. In one example embodiment, one or more of the unicast PDSCH transmission(s) may be located in RBs 5-15, while the SC-PTM PDSCH transmission is located in RBs 8-12 in the combined signal 410. In another example embodiment, one or more of the unicast PDSCH transmission(s) may be located in symbols 1-13, while SC-PTM PDSCH transmission is located in symbols 3-13 in the combined signal 410.
Still referring to
In an aspect, SC-PTM operation may or may not rely on CSI feedback from the group of UEs 404. In addition, SC-PTM operation may or may not include a HARQ operation. Even when SC-PTM operation includes a HARQ operation, there may be a HARQ feedback mechanism that does not include physical layer HARQ feedback from the group of UEs 404.
In an aspect, the reference signal (RS) type for the unicast PDSCH transmission and SC-PTM PDSCH transmission may be the same. For example, the RS type may be based on a DM-RS, UE-RS, or a CRS. In an aspect, the RS type for the unicast PDSCH transmission and SC-PTM PDSCH transmission may be different. For example, one of the unicast PDSCH transmissions may use a CRS and the SC-PTM PDSCH transmission may use a DM-RS, or vice versa. In an example embodiment, the unicast PDSCH transmission may be DM-RS based but the SC-PTM PDSCH transmission may be CRS based. In this example embodiment, the SC-PTM PDSCH transmission may rate match around DM-RS REs of the unicast PDSCH transmission (e.g., excludes 24 DM-RS REs per RB of the unicast PDSCH transmission). Similarly, if the unicast PDSCH transmission is CRS based but the SC-PTM PDSCH transmission is DM-RS based, the SC-PTM PDSCH transmission may rate match around CRS REs of the unicast PDSCH transmission.
In an aspect, precoding for the SC-PTM PDSCH transmission and the unicast PDSCH transmission(s) may be the same or different. The cyclic prefix (CP) type for the unicast PDSCH transmission and the SC-PTM PDSCH transmission may be the same. The presence and corresponding parameters of the SC-PTM PDSCH signal may be indicated to any unicast UE(s) 406, 408 via the control channel. For example, the corresponding parameters of the SC-PTM PDSCH transmission may be be indicated via interference cancellation information 412 transmitted from the eNB 402 to UEs 406, 408 each receiving a separate unicast PDSCH transmission.
In this way, the present disclosure is able to provide MUST between one or more unicast transmissions and an SC-PTM transmission.
At 502, the eNB may transmit a group-specific RNTI to a first group of UEs. For example, referring to
At 504, the eNB may transmit interference cancellation information to a second group of UEs. For example, referring to
At 506, the eNB may transmit a different C-RNTI to each UE in the second group of UEs. For example, referring to
At 508, the eNB may generate a first data transmission for the first group of UEs. For example, referring to
At 510, the eNB may generate a second data transmission for the second group of UEs. For example, referring to
At 512, the eNB may combine the first data transmission and the second data transmission into a combined signal. For example, referring to
At 514, the eNB may transmit the combined signal to the first group of UEs and the second group of UEs. In an aspect, the first data transmission and the second data transmission may include at least one overlapping RE. In a further aspect, the first set of symbols and the second set of symbols may differ by at least one symbol. For example, referring to
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of
The processing system 714 may be coupled to a transceiver 710. The transceiver 710 is coupled to one or more antennas 720. The transceiver 710 provides a means for communicating with various other apparatus over a transmission medium. The transceiver 710 receives a signal from the one or more antennas 720, extracts information from the received signal, and provides the extracted information to the processing system 714, specifically the reception component 604. In addition, the transceiver 710 receives information from the processing system 714, specifically the transmission component 610, and based on the received information, generates a signal to be applied to the one or more antennas 720. The processing system 714 includes a processor 704 coupled to a computer-readable medium/memory 706. The processor 704 is responsible for general processing, including the execution of software stored on the computer-readable medium/memory 706. The software, when executed by the processor 704, causes the processing system 714 to perform the various functions described supra for any particular apparatus. The computer-readable medium/memory 706 may also be used for storing data that is manipulated by the processor 704 when executing software. The processing system 714 further includes at least one of the components 604, 606, 608, 610. The components may be software components running in the processor 704, resident/stored in the computer readable medium/memory 706, one or more hardware components coupled to the processor 704, or some combination thereof. The processing system 714 may be a component of the eNB 310 and may include the memory 376 and/or at least one of the TX processor 316, the RX processor 370, and the controller/processor 375.
In one configuration, the apparatus 602/602′ for wireless communication includes means for transmitting a group-specific RNTI to a first group of UEs. In an aspect, the first group of UEs may include a plurality of UEs receiving an SC-PTM transmission. In another configuration, the apparatus 602/602′ for wireless communication includes means for transmitting interference cancellation information to a second group of UEs. In a further configuration, the apparatus 602/602′ for wireless communication includes means for transmitting a different C-RNTI to each UE in the second group of UEs. In an aspect, the second group of UEs may include one or more UEs receiving a unicast transmission. In yet another configuration, the apparatus 602/602′ for wireless communication includes means for generating a first data transmission for the first group of UEs. In still a further aspect, the apparatus 602/602′ for wireless communication includes means for generating a second data transmission for the second group of UEs. In an aspect, the first data transmission may be a base layer of the combined signal and the second data transmission may be an enhancement layer of the combined signal. In another aspect, the base layer may include one or more layers. In a further aspect, the enhancement layer may include one or more layers. In an additional aspect, the first data transmission and the second data transmission may be non-orthogonal. In yet another aspect, the first data transmission may be an SC-PTM transmission. Additionally, the second data transmission may include one or more unicast transmissions to the second group of UEs. Still further, the first data transmission may include a first reference signal type and the second data transmission may include a second reference signal type. In one aspect, the first reference signal type and the second reference signal type may be the same. In another aspect, the first reference signal type and the second reference signal type may be different. Furthermore, the first reference signal type and the second reference signal type each includes one of a DM-RS, a UE-RS, or a CRS. In another aspect, the first data transmission and the second data transmission may include a same precoding or a different precoding. Additionally, the first data transmission and the second data transmission may include a same cyclic prefix. Still further, a first set of RBs and/or symbols associated with the first data transmission partially overlap with a second set of RBs associated with the second signal. In a further configuration, the apparatus 602/602′ for wireless communication includes means for combining the first signal and the second signal into a combined signal. In another configuration, the apparatus 602/602′ for wireless communication includes means for transmitting the combined signal to the first group of UEs and the second group of UEs. In one aspect, the first data transmission and the second data transmission may include at least one overlapping resource element. In another aspect, the first set of symbols and the second set of symbols may differ by at least one symbol. In a further aspect, a starting symbol of the first data transmission may be different than a starting symbol of second data transmission. The aforementioned means may be one or more of the aforementioned components of the apparatus 602 and/or the processing system 714 of the apparatus 602′ configured to perform the functions recited by the aforementioned means. As described supra, the processing system 714 may include the TX Processor 316, the RX Processor 370, and the controller/processor 375. As such, in one configuration, the aforementioned means may be the TX Processor 316, the RX Processor 370, and the controller/processor 375 configured to perform the functions recited by the aforementioned means.
At 802, the UE may receive interference cancellation information. For example, referring to
At 804, the UE may receive a UE-specific C-RNTI. For example, referring to
At 806, the UE may receive a group-specific RNTI associated with a group of UEs. For example, referring to
At 808, the UE may receive a combined signal including a first data transmission intended for a first group of UEs and a second data transmission intended for a second group of UEs. For example, referring to
At 810, the UE may determine a first set of symbols for the first data transmission intended for the first UE. For example, referring to
At 812, the UE may determine a second set of symbols for the second data transmission intended for a second UE. For example, referring to
At 814, the UE may decode the first data transmission, based at least in part on the determined first set of symbols and the determined second set of symbols For example, referring to
The apparatus may include additional components that perform each of the blocks of the algorithm in the aforementioned flowchart of
The processing system 1014 may be coupled to a transceiver 1010. The transceiver 1010 is coupled to one or more antennas 1020. The transceiver 1010 provides a means for communicating with various other apparatus over a transmission medium. The transceiver 1010 receives a signal from the one or more antennas 1020, extracts information from the received signal, and provides the extracted information to the processing system 1014, specifically the reception component 904. In addition, the transceiver 1010 receives information from the processing system 1014, specifically the transmission component 912, and based on the received information, generates a signal to be applied to the one or more antennas 1020. The processing system 1014 includes a processor 1004 coupled to a computer-readable medium/memory 1006. The processor 1004 is responsible for general processing, including the execution of software stored on the computer-readable medium/memory 1006. The software, when executed by the processor 1004, causes the processing system 1014 to perform the various functions described supra for any particular apparatus. The computer-readable medium/memory 1006 may also be used for storing data that is manipulated by the processor 1004 when executing software. The processing system 1014 further includes at least one of the components 904, 906, 908, 910, 912. The components may be software components running in the processor 1004, resident/stored in the computer readable medium/memory 1006, one or more hardware components coupled to the processor 1004, or some combination thereof. The processing system 1014 may be a component of the UE 350 and may include the memory 360 and/or at least one of the TX processor 368, the RX processor 356, and the controller/processor 359.
In one configuration, the apparatus 902/902′ for wireless communication includes means for receiving, at a first UE, a combined signal including a first data transmission and a second data transmission. In another configuration, the apparatus 902/902′ for wireless communication includes means for determining, at the first UE, a first set of symbols for the first data transmission intended for the first UE. In a further configuration, the apparatus 902/902′ for wireless communication includes means for determining, at the first UE, a second set of symbols for the second data transmission intended for a second UE. In an aspect, the first data transmission and the second data transmission may include at least one overlapping resource element. In another aspect, the first set of symbols and the second set of symbols may differ by at least one symbol. In a further aspect, a starting symbol of the first data transmission may be different than a starting symbol of second data transmission. In yet another configuration, the apparatus 902/902′ for wireless communication includes means for decoding, at the first UE, the first data transmission, based at least in part on the determined first set of symbols and the determined second set of symbols. In one configuration, the apparatus 902/902′ for wireless communication includes means for receiving a UE-specific RNTI. In an aspect, the means for decoding may be configured to decode at least one of the first data transmission or the second data transmission based at least in part on the group-specific RNTI. In another configuration, the apparatus 902/902′ for wireless communication includes means for receiving a UE-specific RNTI associated with the first UE. In a further configuration, the apparatus 902/902′ for wireless communication includes means for receiving interference cancellation information. In an aspect, the means for decoding may be configured to decode at least one of the first data transmission or the second data transmission based at least in part on the UE-specific RNTI and the interference cancellation information. In an aspect, the first data transmission and the second data transmission are non-orthogonal. In another aspect, the first data transmission may be a SC-PTM transmission. In yet a further aspect, the second data transmission comprises one or more unicast transmissions. In one aspect, the second data transmission may be a base layer of the combined signal and the first data transmission may be an enhancement layer of the combined signal. In another aspect, the base layer includes one or more layers. In a further aspect, the enhancement layer may include one or more layers. In addition, the first data transmission and the second data transmission are non-orthogonal. Furthermore, at least one of the first data transmission or the second data transmission is a SC-PTM transmission. In another aspect, at least one of the first data transmission or the second data transmission comprises one or more unicast transmissions. In a further aspect, the first data transmission may include a first reference signal type and the second data transmission may include a second reference signal type. In yet another aspect, the first reference signal type and the second reference signal type may be a same type. In a different aspect, the first reference signal type and the second reference signal type may be a different type. In a further aspect, the first reference signal type and the second reference signal type each include one of a DM-RS, a UE-RS, or a CRS. In another aspect, wherein the first data transmission and the second data transmission may include a same precoding. Additionally, a first precoding associated with the first data transmission may be different than a second precoding associated with the second data transmission. Moreover, the first data transmission and the second data transmission may include a same cyclic prefix. The aforementioned means may be one or more of the aforementioned components of the apparatus 902 and/or the processing system 1014 of the apparatus 902′ configured to perform the functions recited by the aforementioned means. As described supra, the processing system 1014 may include the TX Processor 368, the RX Processor 356, and the controller/processor 359. As such, in one configuration, the aforementioned means may be the TX Processor 368, the RX Processor 356, and the controller/processor 359 configured to perform the functions recited by the aforementioned means.
It is understood that the specific order or hierarchy of blocks in the processes/flowcharts disclosed is an illustration of exemplary approaches. Based upon design preferences, it is understood that the specific order or hierarchy of blocks in the processes/flowcharts may be rearranged. Further, some blocks may be combined or omitted. The accompanying method claims present elements of the various blocks in a sample order, and are not meant to be limited to the specific order or hierarchy presented.
The previous description is provided to enable any person skilled in the art to practice the various aspects described herein. Various modifications to these aspects will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other aspects. Thus, the claims are not intended to be limited to the aspects shown herein, but is to be accorded the full scope consistent with the language claims, wherein reference to an element in the singular is not intended to mean “one and only one” unless specifically so stated, but rather “one or more.” The word “exemplary” is used herein to mean “serving as an example, instance, or illustration.” Any aspect described herein as “exemplary” is not necessarily to be construed as preferred or advantageous over other aspects. Unless specifically stated otherwise, the term “some” refers to one or more. Combinations such as “at least one of A, B, or C,” “one or more of A, B, or C,” “at least one of A, B, and C,” “one or more of A, B, and C,” and “A, B, C, or any combination thereof” include any combination of A, B, and/or C, and may include multiples of A, multiples of B, or multiples of C. Specifically, combinations such as “at least one of A, B, or C,” “one or more of A, B, or C,” “at least one of A, B, and C,” “one or more of A, B, and C,” and “A, B, C, or any combination thereof” may be A only, B only, C only, A and B, A and C, B and C, or A and B and C, where any such combinations may contain one or more member or members of A, B, or C. All structural and functional equivalents to the elements of the various aspects described throughout this disclosure that are known or later come to be known to those of ordinary skill in the art are expressly incorporated herein by reference and are intended to be encompassed by the claims. Moreover, nothing disclosed herein is intended to be dedicated to the public regardless of whether such disclosure is explicitly recited in the claims. The words “module,” “mechanism,” “element,” “device,” and the like may not be a substitute for the word “means.” As such, no claim element is to be construed as a means plus function unless the element is expressly recited using the phrase “means for.”
Patent | Priority | Assignee | Title |
11115160, | May 26 2019 | Tybalt, LLC | Non-orthogonal multiple access |
Patent | Priority | Assignee | Title |
8170160, | Nov 19 2008 | Qualcomm Incorporated | Multi-symbol phase offset estimation |
8879470, | Feb 27 2009 | Alcatel Lucent | Cooperative beam forming method, apparatus and base station |
20070250638, | |||
20080176593, | |||
20090175214, | |||
20090262699, | |||
20100246711, | |||
20100254352, | |||
20100272004, | |||
20110149824, | |||
20110206170, | |||
20110235562, | |||
20120213130, | |||
20130003573, | |||
20140153472, | |||
20150156657, | |||
20150326360, | |||
20160013897, | |||
20160261380, | |||
20160337018, | |||
20170150419, | |||
20170187493, | |||
CN101584228, | |||
CN104010199, | |||
CN104081697, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 02 2016 | Qualcomm Incorporated | (assignment on the face of the patent) | / | |||
May 31 2016 | GAAL, PETER | Qualcomm Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 038903 | /0352 | |
Jun 01 2016 | CHEN, WANSHI | Qualcomm Incorporated | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 038903 | /0352 |
Date | Maintenance Fee Events |
Jun 08 2022 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 15 2022 | 4 years fee payment window open |
Jul 15 2022 | 6 months grace period start (w surcharge) |
Jan 15 2023 | patent expiry (for year 4) |
Jan 15 2025 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 15 2026 | 8 years fee payment window open |
Jul 15 2026 | 6 months grace period start (w surcharge) |
Jan 15 2027 | patent expiry (for year 8) |
Jan 15 2029 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 15 2030 | 12 years fee payment window open |
Jul 15 2030 | 6 months grace period start (w surcharge) |
Jan 15 2031 | patent expiry (for year 12) |
Jan 15 2033 | 2 years to revive unintentionally abandoned end. (for year 12) |