A control system for a vehicle includes a forward viewing camera having a field of view forward of the vehicle. A control includes an image processor operable to process image data captured by the camera to determine lane boundaries of a lane of travel of the vehicle and to determine road curvature of a curved section of a road being traveled by the vehicle. The control, responsive at least in part to processing of captured image data, determines an end of the curved section where the road straightens. The control, responsive to a determination that the vehicle is at the end of the curved section where the road straightens, determines a wheel angle to adjust a wheel of the vehicle to such that the vehicle travels parallel to a tangent of the road after the vehicle has traversed the curved section and is at a straight section of the road.

Patent
   10202147
Priority
Apr 10 2014
Filed
Nov 07 2016
Issued
Feb 12 2019
Expiry
Aug 07 2035

TERM.DISCL.
Extension
128 days
Assg.orig
Entity
Large
1
326
currently ok
1. A control system for a vehicle, said control system comprising:
a forward viewing camera disposed at an interior-cabin side of a windshield of a vehicle equipped with said control system and having a field of view through the windshield exterior and forward of the equipped vehicle;
said camera comprising at least 1 million photosensor elements arranged in a two-dimensional photosensor array having rows and columns;
a control comprising an image processor operable to process image data captured by said photosensor array of said camera to determine lane boundaries of a lane of travel of the equipped vehicle;
wherein said image processor is operable to process image data captured by said photosensor array of said camera to determine road curvature of a curved section of a road being traveled by the equipped vehicle;
wherein said control, responsive at least in part to processing by said image processor of captured image data, determines an end of the curved section where the road straightens; and
wherein said control, responsive to a determination that the equipped vehicle is at the end of the curved section where the road straightens, determines a wheel angle to adjust a wheel of the equipped vehicle to such that the equipped vehicle travels parallel to a tangent of the road after the equipped vehicle has traversed the curved section and is at a straight section of the road.
15. A control system for a vehicle, said control system comprising:
a forward viewing camera disposed at an interior-cabin side of a windshield of a vehicle equipped with said control system and having a field of view through the windshield exterior and forward of the equipped vehicle;
said camera comprising at least 1 million photosensor elements arranged in a two-dimensional photosensor array having rows and columns;
a control comprising an image processor operable to process image data captured by said photosensor array of said camera to determine lane boundaries of a lane of travel of the equipped vehicle;
wherein said image processor is operable to process image data captured by said photosensor array of said camera to determine road curvature of a curved section of a road being traveled by the equipped vehicle;
wherein said control, responsive at least in part to processing by said image processor of captured image data, determines an end of the curved section where the road straightens;
wherein said control, responsive to a determination that the equipped vehicle is at the end of the curved section where the road straightens, determines a wheel angle to adjust a wheel of the equipped vehicle to such that the equipped vehicle travels parallel to a tangent of the road after the equipped vehicle has traversed the curved section and is at a straight section of the road; and
wherein, when the wheel is adjusted to be parallel to the tangent of the road after the equipped vehicle has traversed the curved section and is at the straight section of the road, the equipped vehicle has generally zero lateral acceleration and generally zero lateral velocity.
19. A control system for a vehicle, said control system comprising:
a forward viewing camera disposed at an interior-cabin side of a windshield of a vehicle equipped with said control system and having a field of view through the windshield exterior and forward of the equipped vehicle;
said camera comprising at least 1 million photosensor elements arranged in a two-dimensional photosensor array having rows and columns;
a control comprising an image processor operable to process image data captured by said photosensor array of said camera to determine lane boundaries of a lane of travel of the equipped vehicle;
wherein said image processor is operable to process image data captured by said photosensor array of said camera to determine road curvature of a curved section of a road being traveled by the equipped vehicle;
wherein said control steers the equipped vehicle along the curved section of the road;
wherein said control, responsive at least in part to processing by said image processor of captured image data, determines an end of the curved section where the road straightens;
wherein said control, responsive to a determination that the equipped vehicle is at the end of the curved section where the road straightens, determines a wheel angle to adjust a wheel of the equipped vehicle to such that the equipped vehicle travels parallel to a tangent of the road after the equipped vehicle has traversed the curved section and is at a straight section of the road; and
wherein said image processor is operable to process captured image data for detecting at least one of (i) an object present in the field of view of said camera, (ii) a vehicle present in the field of view of said camera and (iii) a pedestrian present in the field of view of said camera.
2. The control system of claim 1, wherein, after the equipped vehicle has traversed the curved section and is at the straight section of the road, the equipped vehicle has generally zero lateral acceleration and generally zero lateral velocity.
3. The control system of claim 1, wherein said control steers the equipped vehicle along the curved section of the road.
4. The control system of claim 3, wherein said control adjusts a steering system of the equipped vehicle steering to have a front wheel of the equipped vehicle generally parallel to a tangent of the road after the equipped vehicle has traversed the curved section and is at the straight section of the road, whereby the vehicle is traveling substantially straight along the road following the road curvature.
5. The control system of claim 1, wherein said control adjusts the wheel of the equipped vehicle such that the equipped vehicle is parallel to a tangent of the road curvature.
6. The control system of claim 5, wherein, when the wheel is adjusted to be parallel to the tangent of the road after the equipped vehicle has traversed the curved section and is at the straight section of the road, the equipped vehicle has generally zero lateral acceleration and generally zero lateral velocity.
7. The control system of claim 1, wherein said control controls a front wheel of the equipped vehicle such that the equipped vehicle front wheel is generally parallel to the tangent of the road curvature.
8. The control system of claim 1, wherein said control, at least in part responsive to (i) vehicle velocity, (ii) vehicle yaw rate and (iii) vehicle lateral acceleration, determines lane parameters relative to the equipped vehicle.
9. The control system of claim 8, wherein said determined lane parameters comprise a curvature derivative heading and position relative to the equipped vehicle.
10. The control system of claim 1, wherein said control determines a degree of steering adjustment to apply to the equipped vehicle steering to guide the equipped vehicle along the curved section and within the lane boundaries.
11. The control system of claim 1, wherein said control applies a correction to keep the equipped vehicle within the determined lane boundaries.
12. The control system of claim 11, wherein said correction comprises a torque applied to a steering mechanism of the equipped vehicle.
13. The control system of claim 1, wherein said image processor is operable to process captured image data for detecting at least one of (i) an object present in the field of view of said camera, (ii) a vehicle present in the field of view of said camera and (iii) a pedestrian present in the field of view of said camera.
14. The control system of claim 13, wherein said image processor processes image data captured by said camera for at least one of (i) a vehicle headlamp control system of the equipped vehicle, (ii) a pedestrian detection system of the equipped vehicle. (iii) a collision avoidance system of the equipped vehicle and (iv) a traffic sign recognition system of the equipped vehicle.
16. The control system of claim 15, wherein said image processor is operable to process captured image data for detecting at least one of (i) an object present in the field of view of said camera, (ii) a vehicle present in the field of view of said camera and (iii) a pedestrian present in the field of view of said camera.
17. The control system of claim 16, wherein said control steers the equipped vehicle along the curved section of the road.
18. The control system of claim 16, wherein said image processor processes image data captured by said camera for at least one of (i) a vehicle headlamp control system of the equipped vehicle, (ii) a pedestrian detection system of the equipped vehicle. (iii) a collision avoidance system of the equipped vehicle and (iv) a traffic sign recognition system of the equipped vehicle.
20. The control system of claim 19, wherein said control determines a degree of steering adjustment to apply to the equipped vehicle steering to guide the equipped vehicle along the curved section and within the lane boundaries.
21. The control system of claim 20, wherein said image processor processes captured image data a pedestrian detection system of the equipped vehicle.
22. The control system of claim 20, wherein, when the wheel is adjusted to be parallel to the tangent of the road after the equipped vehicle has traversed the curved section and is at the straight section of the road, the equipped vehicle has generally zero lateral acceleration and generally zero lateral velocity.

The present application is a continuation of U.S. patent application Ser. No. 14/675,928, filed Apr. 1, 2015, now U.S. Pat. No. 9,287,235, which claims the filing benefits of U.S. provisional application Ser. No. 61/977,929, filed Apr. 10, 2014, which is hereby incorporated herein by reference in its entirety.

The present invention relates generally to a vehicle vision system for a vehicle and, more particularly, to a vehicle vision system that utilizes one or more cameras at a vehicle.

Use of imaging sensors in vehicle imaging systems is common and known. Examples of such known systems are described in U.S. Pat. Nos. 5,949,331; 5,670,935 and/or 5,550,677, which are hereby incorporated herein by reference in their entireties.

The present invention provides a vision system or imaging system for a vehicle that utilizes one or more cameras (preferably one or more CMOS cameras) to capture image data representative of images exterior of the vehicle, and provides an adaptive steering or wheel angle correction to guide or maintain the vehicle within its lane boundaries as the vehicle is driven along a road.

The vision system or control system of the present invention uses a sensor disposed at a vehicle and having a field of view exterior of the vehicle (such as an image sensor or camera having a field of view forward of the vehicle), whereby a processor is operable to process data captured by the sensor to determine a curvature of the road being traveled by the vehicle. The processor is operable to determine tangents at locations along the determined curvature and, responsive to a determination of the tangents, the processor generates an output to a vehicle control. The control, responsive to the output, is operable to adjust the vehicle steering to guide the vehicle in a direction that generally corresponds to a determined tangent at respective locations of the vehicle along the curved road. The processor may generate the output at least in part responsive to at least one of a vehicle yaw rate, a vehicle velocity and a vehicle lateral acceleration. The control may adjust the vehicle steering to have a front wheel of the vehicle generally parallel to a tangent of the road at the end of the curvature, whereby the vehicle is traveling substantially straight along the road following the road curvature.

These and other objects, advantages, purposes and features of the present invention will become apparent upon review of the following specification in conjunction with the drawings.

FIG. 1 is a plan view of a vehicle with a vision system that incorporates cameras in accordance with the present invention;

FIG. 2 is a schematic of a vehicle driving direction along a tangent of a curve in accordance with the present invention;

FIG. 3 is a block diagram of the adaptive wheel angle correction system of the present invention; and

FIG. 4 is a block diagram of an adaptive wheel angle correction algorithm used by the system of the present invention.

A vehicle vision system and/or driver assist system and/or object detection system and/or alert system and/or control system operates to capture images exterior of the vehicle and may process the captured image data to display images and to detect objects at or near the vehicle and in the predicted path of the vehicle, such as to assist a driver of the vehicle in maneuvering the vehicle in a rearward or forward direction. The vision system includes an image processor or image processing system that is operable to receive image data from one or more cameras and provide an output to a display device for displaying images representative of the captured image data. Optionally, the vision system may provide a top down or bird's eye or surround view display and may provide a displayed image that is representative of the subject vehicle, and optionally with the displayed image being customized to at least partially correspond to the actual subject vehicle.

Referring now to the drawings and the illustrative embodiments depicted therein, a vehicle 10 includes an imaging system or vision system 12 that includes at least one exterior facing imaging sensor or camera, such as a rearward facing imaging sensor or camera 14a (and the system may optionally include multiple exterior facing imaging sensors or cameras, such as a forwardly facing camera 14b at the front (or at the windshield) of the vehicle, and a sidewardly/rearwardly facing camera 14c, 14d at respective sides of the vehicle), which captures images exterior of the vehicle, with the camera having a lens for focusing images at or onto an imaging array or imaging plane or imager of the camera (FIG. 1). Optionally, a forward viewing camera may be disposed at the windshield of the vehicle and view through the windshield and forward of the vehicle, such as for a machine vision system (such as for traffic sign recognition, headlamp control, pedestrian detection, collision avoidance, lane marker detection and/or the like). The vision system 12 includes a control or electronic control unit (ECU) or processor 18 that is operable to process image data captured by the camera or cameras and may detect objects or the like and/or provide displayed images at a display device 16 for viewing by the driver of the vehicle (although shown in FIG. 1 as being part of or incorporated in or at an interior rearview mirror assembly 20 of the vehicle, the control and/or the display device may be disposed elsewhere at or in the vehicle). The data transfer or signal communication from the camera to the ECU may comprise any suitable data or communication link, such as a vehicle network bus or the like of the equipped vehicle.

The system of the present invention determines a lane of travel ahead of the vehicle (such as be determining lane markers or the like) and adjusts the steering of the vehicle to guide or steer the vehicle along a curvature of the lane. The lane keeping algorithm of the present invention applies a correction (such as a torque to the steering mechanism) to keep the vehicle within the determined lane boundaries. After the correction has been applied (to guide the vehicle along the curvature), there is a residual wheel angle (even after the vehicle has traversed through the curved path and is at a straight or straighter section of road after the curved section of road), which causes the vehicle to cross the center line of the lane. The present invention provides an algorithm that determines a wheel angle correction such that the wheel angle is corrected such that the vehicle is parallel to a tangent of the road curvature (such that, at the end of the maneuver the vehicle has zero lateral acceleration, and zero lateral velocity). For example, FIG. 2 shows the tangents at points along a curved section of road.

As shown in FIG. 3, the system may receive signals pertaining to vehicle velocity, yaw rate and lateral acceleration, and may determine lane parameters, such as curvature, a curvature derivative heading and position with respect to the vehicle. The signals are conditioned and/or filtered and/or validated and then fed to the algorithm, which determines the degree of adjustment or steering to apply to the vehicle to guide or steer the vehicle along the curve and within the lane boundaries. The system may determine the end of a lateral maneuver so the algorithm can determine when to stop the processing. The lane keeping controller, responsive to processing of the algorithm, is operable to adjust the steering or apply a torque to adjust or steer the vehicle.

As shown in FIG. 4, the algorithm compares the lane curvature and heading estimation with the vehicle position estimation to determine a lateral error and a vehicle wheel angle estimation (to steer the vehicle along the curve in the road).

The system and algorithm may determine the lane markers or boundaries and lane curvature and relative vehicle position via any suitable means. For example, the system may determine the lane markers or boundaries and lane curvature and relative vehicle position via image processing of image data captured by a forward viewing camera of the vehicle (and optionally one or more other cameras or sensors of the vehicle, such as a rearward viewing camera and/or sideward viewing cameras or the like). The system may determine the curvature of the lane in which the vehicle is traveling by utilizing aspects of the systems described in U.S. patent application Ser. No. 14/663,502, filed Mar. 20, 2015 and published Sep. 24, 2015 as U.S. Publication No. US-2015-0266422, which is hereby incorporated herein by reference in its entirety.

The camera or sensor may comprise any suitable camera or sensor. Optionally, the camera may comprise a “smart camera” that includes the imaging sensor array and associated circuitry and image processing circuitry and electrical connectors and the like as part of a camera module, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2013/081984 and/or WO 2013/081985, which are hereby incorporated herein by reference in their entireties.

The system includes an image processor operable to process image data captured by the camera or cameras, such as for detecting objects or other vehicles or pedestrians or the like in the field of view of one or more of the cameras. For example, the image processor may comprise an EyeQ2 or EyeQ3 image processing chip available from Mobileye Vision Technologies Ltd. of Jerusalem, Israel, and may include object detection software (such as the types described in U.S. Pat. Nos. 7,855,755; 7,720,580 and/or 7,038,577, which are hereby incorporated herein by reference in their entireties), and may analyze image data to detect vehicles and/or other objects. Responsive to such image processing, and when an object or other vehicle is detected, the system may generate an alert to the driver of the vehicle and/or may generate an overlay at the displayed image to highlight or enhance display of the detected object or vehicle, in order to enhance the driver's awareness of the detected object or vehicle or hazardous condition during a driving maneuver of the equipped vehicle.

The vehicle may include any type of sensor or sensors, such as imaging sensors or radar sensors or lidar sensors or ladar sensors or ultrasonic sensors or the like. The imaging sensor or camera may capture image data for image processing and may comprise any suitable camera or sensing device, such as, for example, a two dimensional array of a plurality of photosensor elements arranged in at least 640 columns and 480 rows (at least a 640×480 imaging array, such as a megapixel imaging array or the like), with a respective lens focusing images onto respective portions of the array. The photosensor array may comprise a plurality of photosensor elements arranged in a photosensor array having rows and columns. Preferably, the imaging array has at least 300,000 photosensor elements or pixels, more preferably at least 500,000 photosensor elements or pixels and more preferably at least 1 million photosensor elements or pixels. The imaging array may capture color image data, such as via spectral filtering at the array, such as via an RGB (red, green and blue) filter or via a red/red complement filter or such as via an RCC (red, clear, clear) filter or the like. The logic and control circuit of the imaging sensor may function in any known manner, and the image processing and algorithmic processing may comprise any suitable means for processing the images and/or image data.

For example, the vision system and/or processing and/or camera and/or circuitry may utilize aspects described in U.S. Pat. Nos. 7,005,974; 5,760,962; 5,877,897; 5,796,094; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978; 7,859,565; 5,550,677; 5,670,935; 6,636,258; 7,145,519; 7,161,616; 7,230,640; 7,248,283; 7,295,229; 7,301,466; 7,592,928; 7,881,496; 7,720,580; 7,038,577; 6,882,287; 5,929,786 and/or 5,786,772, and/or International Publication Nos. WO 2011/028686; WO 2010/099416; WO 2012/061567; WO 2012/068331; WO 2012/075250; WO 2012/103193; WO 2012/0116043; WO 2012/0145313; WO 2012/0145501; WO 2012/145818; WO 2012/145822; WO 2012/158167; WO 2012/075250; WO 2012/0116043; WO 2012/0145501; WO 2012/154919; WO 2013/019707; WO 2013/016409; WO 2013/019795; WO 2013/067083; WO 2013/070539; WO 2013/043661; WO 2013/048994; WO 2013/063014, WO 2013/081984; WO 2013/081985; WO 2013/074604; WO 2013/086249; WO 2013/103548; WO 2013/109869; WO 2013/123161; WO 2013/126715; WO 2013/043661 and/or WO 2013/158592, which are all hereby incorporated herein by reference in their entireties. The system may communicate with other communication systems via any suitable means, such as by utilizing aspects of the systems described in International Publication Nos. WO/2010/144900; WO 2013/043661 and/or WO 2013/081985, and/or U.S. Publication No. US-2012-0062743, which are hereby incorporated herein by reference in their entireties.

The imaging device and control and image processor and any associated illumination source, if applicable, may comprise any suitable components, and may utilize aspects of the cameras and vision systems described in U.S. Pat. Nos. 5,550,677; 5,877,897; 6,498,620; 5,670,935; 5,796,094; 6,396,397; 6,806,452; 6,690,268; 7,005,974; 7,937,667; 7,123,168; 7,004,606; 6,946,978; 7,038,577; 6,353,392; 6,320,176; 6,313,454 and/or 6,824,281, and/or International Publication Nos. WO 2010/099416; WO 2011/028686 and/or WO 2013/016409, and/or U.S. Pat. Publication No. US 2010-0020170, which are all hereby incorporated herein by reference in their entireties. The camera or cameras may comprise any suitable cameras or imaging sensors or camera modules, and may utilize aspects of the cameras or sensors described in U.S. Publication No. US-2009-0244361 and/or U.S. Pat. Nos. 8,542,451; 7,965,336 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties. The imaging array sensor may comprise any suitable sensor, and may utilize various imaging sensors or imaging array sensors or cameras or the like, such as a CMOS imaging array sensor, a CCD sensor or other sensors or the like, such as the types described in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,715,093; 5,877,897; 6,922,292; 6,757,109; 6,717,610; 6,590,719; 6,201,642; 6,498,620; 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 6,806,452; 6,396,397; 6,822,563; 6,946,978; 7,339,149; 7,038,577; 7,004,606; 7,720,580 and/or 7,965,336, and/or International Publication Nos. WO/2009/036176 and/or WO/2009/046268, which are all hereby incorporated herein by reference in their entireties.

The camera module and circuit chip or board and imaging sensor may be implemented and operated in connection with various vehicular vision-based systems, and/or may be operable utilizing the principles of such other vehicular systems, such as a vehicle headlamp control system, such as the type disclosed in U.S. Pat. Nos. 5,796,094; 6,097,023; 6,320,176; 6,559,435; 6,831,261; 7,004,606; 7,339,149 and/or 7,526,103, which are all hereby incorporated herein by reference in their entireties, a rain sensor, such as the types disclosed in commonly assigned U.S. Pat. Nos. 6,353,392; 6,313,454; 6,320,176 and/or 7,480,149, which are hereby incorporated herein by reference in their entireties, a vehicle vision system, such as a forwardly, sidewardly or rearwardly directed vehicle vision system utilizing principles disclosed in U.S. Pat. Nos. 5,550,677; 5,670,935; 5,760,962; 5,877,897; 5,949,331; 6,222,447; 6,302,545; 6,396,397; 6,498,620; 6,523,964; 6,611,202; 6,201,642; 6,690,268; 6,717,610; 6,757,109; 6,802,617; 6,806,452; 6,822,563; 6,891,563; 6,946,978 and/or 7,859,565, which are all hereby incorporated herein by reference in their entireties, a trailer hitching aid or tow check system, such as the type disclosed in U.S. Pat. No. 7,005,974, which is hereby incorporated herein by reference in its entirety, a reverse or sideward imaging system, such as for a lane change assistance system or lane departure warning system or for a blind spot or object detection system, such as imaging or detection systems of the types disclosed in U.S. Pat. Nos. 7,881,496; 7,720,580; 7,038,577; 5,929,786 and/or 5,786,772, which are hereby incorporated herein by reference in their entireties, a video device for internal cabin surveillance and/or video telephone function, such as disclosed in U.S. Pat. Nos. 5,760,962; 5,877,897; 6,690,268 and/or 7,370,983, and/or U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties, a traffic sign recognition system, a system for determining a distance to a leading or trailing vehicle or object, such as a system utilizing the principles disclosed in U.S. Pat. Nos. 6,396,397 and/or 7,123,168, which are hereby incorporated herein by reference in their entireties, and/or the like.

Optionally, the circuit board or chip may include circuitry for the imaging array sensor and or other electronic accessories or features, such as by utilizing compass-on-a-chip or EC driver-on-a-chip technology and aspects such as described in U.S. Pat. Nos. 7,255,451 and/or 7,480,149, and/or U.S. Publication No. US-2006-0061008, which are hereby incorporated herein by reference in their entireties.

Optionally, the vision system may include a display for displaying images captured by one or more of the imaging sensors for viewing by the driver of the vehicle while the driver is normally operating the vehicle. Optionally, for example, the vision system may include a video display device disposed at or in the interior rearview mirror assembly of the vehicle, such as by utilizing aspects of the video mirror display systems described in U.S. Pat. No. 6,690,268 and/or U.S. Publication No. US-2012-0162427, which are hereby incorporated herein by reference in their entireties. The video mirror display may comprise any suitable devices and systems and optionally may utilize aspects of the compass display systems described in U.S. Pat. Nos. 7,370,983; 7,329,013; 7,308,341; 7,289,037; 7,249,860; 7,004,593; 4,546,551; 5,699,044; 4,953,305; 5,576,687; 5,632,092; 5,677,851; 5,708,410; 5,737,226; 5,802,727; 5,878,370; 6,087,953; 6,173,508; 6,222,460; 6,513,252 and/or 6,642,851, and/or European patent application, published Oct. 11, 2000 under Publication No. EP 0 1043566, and/or U.S. Publication No. US-2006-0061008, which are all hereby incorporated herein by reference in their entireties. Optionally, the video mirror display screen or device may be operable to display images captured by a rearward viewing camera of the vehicle during a reversing maneuver of the vehicle (such as responsive to the vehicle gear actuator being placed in a reverse gear position or the like) to assist the driver in backing up the vehicle, and optionally may be operable to display the compass heading or directional heading character or icon when the vehicle is not undertaking a reversing maneuver, such as when the vehicle is being driven in a forward direction along a road (such as by utilizing aspects of the display system described in International Publication No. WO 2012/051500, which is hereby incorporated herein by reference in its entirety).

Optionally, the vision system (utilizing the forward facing camera and a rearward facing camera and other cameras disposed at the vehicle with exterior fields of view) may be part of or may provide a display of a top-down view or birds-eye view system of the vehicle or a surround view at the vehicle, such as by utilizing aspects of the vision systems described in International Publication Nos. WO 2010/099416; WO 2011/028686; WO 2012/075250; WO 2013/019795; WO 2012/075250; WO 2012/145822; WO 2013/081985; WO 2013/086249 and/or WO 2013/109869, and/or U.S. Publication No. US-2012-0162427, which are hereby incorporated herein by reference in their entireties.

Optionally, a video mirror display may be disposed rearward of and behind the reflective element assembly and may comprise a display such as the types disclosed in U.S. Pat. Nos. 5,530,240; 6,329,925; 7,855,755; 7,626,749; 7,581,859; 7,446,650; 7,370,983; 7,338,177; 7,274,501; 7,255,451; 7,195,381; 7,184,190; 5,668,663; 5,724,187 and/or 6,690,268, and/or in U.S. Publication Nos. US-2006-0061008 and/or US-2006-0050018, which are all hereby incorporated herein by reference in their entireties. The display is viewable through the reflective element when the display is activated to display information. The display element may be any type of display element, such as a vacuum fluorescent (VF) display element, a light emitting diode (LED) display element, such as an organic light emitting diode (OLED) or an inorganic light emitting diode, an electroluminescent (EL) display element, a liquid crystal display (LCD) element, a video screen display element or backlit thin film transistor (TFT) display element or the like, and may be operable to display various information (as discrete characters, icons or the like, or in a multi-pixel manner) to the driver of the vehicle, such as passenger side inflatable restraint (PSIR) information, tire pressure status, and/or the like. The mirror assembly and/or display may utilize aspects described in U.S. Pat. Nos. 7,184,190; 7,255,451; 7,446,924 and/or 7,338,177, which are all hereby incorporated herein by reference in their entireties. The thicknesses and materials of the coatings on the substrates of the reflective element may be selected to provide a desired color or tint to the mirror reflective element, such as a blue colored reflector, such as is known in the art and such as described in U.S. Pat. Nos. 5,910,854; 6,420,036 and/or 7,274,501, which are hereby incorporated herein by reference in their entireties.

Optionally, the display or displays and any associated user inputs may be associated with various accessories or systems, such as, for example, a tire pressure monitoring system or a passenger air bag status or a garage door opening system or a telematics system or any other accessory or system of the mirror assembly or of the vehicle or of an accessory module or console of the vehicle, such as an accessory module or console of the types described in U.S. Pat. Nos. 7,289,037; 6,877,888; 6,824,281; 6,690,268; 6,672,744; 6,386,742 and/or 6,124,886, and/or U.S. Publication No. US-2006-0050018, which are hereby incorporated herein by reference in their entireties.

Changes and modifications in the specifically described embodiments can be carried out without departing from the principles of the invention, which is intended to be limited only by the scope of the appended claims, as interpreted according to the principles of patent law including the doctrine of equivalents.

Bajpai, Devendra, Tan, Honghao

Patent Priority Assignee Title
10994774, Apr 10 2014 MAGNA ELECTRONICS INC. Vehicular control system with steering adjustment
Patent Priority Assignee Title
5289182, Oct 16 1991 II BC-SYS Electronic anti-collison device carried on board a vehicle
5289321, Feb 12 1993 SECOR VIEW TECHNOLOGIES LLC Consolidated rear view camera and display system for motor vehicle
5313072, Feb 16 1993 Rockwell International Corporation Optical detector for windshield wiper control
5331312, Aug 23 1991 Matsushita Electric Industrial Co., Ltd. Obstacle-detecting apparatus
5336980, Dec 10 1992 LEOPOLD KOSTAL GMBH & CO KG Apparatus and method for controlling a windshield wiping system
5341437, Dec 22 1989 Honda Giken Kogyo Kabushiki Kaisha Method of determining the configuration of a path for motor vehicle
5351044, Aug 12 1992 Bendix Commercial Vehicle Systems LLC Vehicle lane position detection system
5355118, Jul 11 1991 Nissan Motor Co., Ltd. Vehicle collision alert system
5406395, Nov 01 1993 Hughes Electronics Corporation Holographic parking assistance device
5408346, Oct 20 1993 Kaiser Electro-Optics, Inc. Optical collimating device employing cholesteric liquid crystal and a non-transmissive reflector
5410346, Mar 23 1992 Fuji Jukogyo Kabushiki Kaisha System for monitoring condition outside vehicle using imaged picture by a plurality of television cameras
5414257, Apr 23 1991 Introlab Pty Limited Moisture sensor for detecting moisture on a windshield
5414461, Nov 15 1991 Nissan Motor Co., Ltd. Vehicle navigation apparatus providing simultaneous forward and rearward views
5416478, Mar 12 1992 Funai Electric Co., Ltd. Car navigation system
5424952, Mar 26 1993 Mitsubishi Denki Kabushiki Kaisha Vehicle-surroundings monitoring apparatus
5426294, May 27 1992 KOITO MANUFACTURING CO , LTD Glare sensor for a vehicle
5430431, Jan 19 1994 Vehicle protection system and method
5434407, Aug 23 1993 Gentex Corporation Automatic rearview mirror incorporating light pipe
5440428, Sep 30 1993 Delphi Technologies Inc Automotive instrument 3-D virtual image display
5444478, Dec 29 1992 U S PHILIPS CORPORATION Image processing method and device for constructing an image from adjacent images
5451822, Mar 15 1991 Gentex Corporation Electronic control system
5457493, Sep 15 1993 Texas Instruments Incorporated Digital micro-mirror based image simulation system
5461357, Jan 29 1992 Mazda Motor Corporation Obstacle detection device for vehicle
5461361, Mar 11 1994 NEW CARCO ACQUISITION LLC; Chrysler Group LLC Automotive instrument panel apparatus
5469298, Aug 14 1991 Prince Corporation Reflective display at infinity
5471515, Jan 28 1994 California Institute of Technology Active pixel sensor with intra-pixel charge transfer
5475494, Dec 22 1992 Mitsubishi Denki Kabushiki Kaisha Driving environment surveillance apparatus
5498866, Dec 07 1993 LEOPOLD KOSTAL GMBH & CO KG Optoelectronic sensor for detecting moisture on a windshield with means to compensate for a metallic layer in the windshield
5500766, May 04 1995 Blind spot side mirror
5510983, Nov 13 1992 Yazaki Corporation On-vehicle display
5515448, Jul 28 1992 Yazaki Corporation Distance measuring apparatus of a target tracking type
5521633, Sep 25 1992 Yazaki Corporation Motor vehicle obstacle monitoring system using optical flow processing
5528698, Mar 27 1995 Bendix Commercial Vehicle Systems LLC Automotive occupant sensing device
5529138, Jan 22 1993 Vehicle collision avoidance system
5530420, Dec 27 1993 Fuji Jukogyo Kabushiki Kaisha Running guide apparatus for vehicle capable of keeping safety at passing through narrow path and the method thereof
5535144, Mar 24 1993 Fuji Jukogyo Kabushiki Kaisha Distance detection method and system using a stereoscopical imaging apparatus
5535314, Nov 04 1991 Raytheon Company Video image processor and method for detecting vehicles
5537003, Apr 08 1994 Gentex Corporation Control system for automotive vehicle headlamps and other vehicle equipment
5539397, Mar 26 1993 Honda Giken Kogyo Kabushiki Kaisha Driving control system for vehicle
5541590, Aug 04 1992 Takata Corporation Vehicle crash predictive and evasive operation system by neural networks
5550677, Feb 26 1993 Donnelly Corporation Automatic rearview mirror system using a photosensor array
5555555, Jan 19 1993 Aisin Seiki Kabushiki Kaisha Apparatus which detects lines approximating an image by repeatedly narrowing an area of the image to be analyzed and increasing the resolution in the analyzed area
5568027, May 19 1995 Libbey-Owens-Ford Co. Smooth rain-responsive wiper control
5574443, Jun 22 1994 PHOTIC ELECTRONICS CO , LTD Vehicle monitoring apparatus with broadly and reliably rearward viewing
5581464, Aug 14 1992 Vorad Safety Systems, Inc. Recording of operational events in an automotive vehicle
5614788, Jan 31 1995 BENEDICT, CHARLES E Automated ambient condition responsive daytime running light system
5619370, Mar 28 1994 Optical system for viewing a remote location
5634709, Dec 27 1994 Murakami Corporation Inner mirror of a vehicle having a display device
5642299, Sep 01 1993 HARDIN, LARRY C Electro-optical range finding and speed detection system
5648835, Sep 22 1992 Olympus Optical Co., Ltd. Optical system for monitor cameras to be mounted on vehicles
5650944, Mar 24 1993 Fuji Jukogyo Kabushiki Kaisha Shutter speed control method and system
5660454, Aug 28 1992 Toyota Jidosha Kabushiki Kaisha Apparatus and method for controlling light distribution of headlamp
5661303, May 24 1996 Libbey-Owens-Ford Co. Compact moisture sensor with collimator lenses and prismatic coupler
5666028, Apr 06 1994 Gentex Corporation Automobile headlamp and running light control system
5670935, Feb 26 1993 MAGNA ELECTRONICS INC Rearview vision system for vehicle including panoramic view
5677851, Dec 15 1994 EMC Corporaton Method and apparatus to secure digital directory object changes
5699044, Dec 05 1988 Gentex Corporation Electrical control system for vehicle options
5724316, Sep 26 1995 VALUE STREET CONSULTING GROUP LLC GPS based time determining system and method
5732379, Nov 25 1994 ITT Automotive Europe GmbH Brake system for a motor vehicle with yaw moment control
5737226, Jun 05 1995 Johnson Controls Technology Company Vehicle compass system with automatic calibration
5757949, Jan 27 1995 Fuji Jukogyo Kabushiki Kaisha Warning system for vehicle
5760826, May 10 1996 TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK, THE Omnidirectional imaging apparatus
5760828, Jun 03 1994 Idesa Accesorios, S.A. Back-vision system for vehicles
5760931, Dec 14 1992 Nippondenso Co., Ltd. Image display unit
5760962, Feb 26 1993 Donnelly Corporation Automatic rearview mirror system using a photosensor array
5761094, Jan 18 1996 Visteon Global Technologies, Inc Vehicle compass system
5765116, Aug 28 1993 Lucas Industries public limited company Driver assistance system for a vehicle
5765118, Mar 30 1995 Toyota Jidosha Kabushiki Kaisha Estimation method of movement state variable in turning of automotive vehicle
5781437, Apr 21 1992 IBP Pietzsch GmbH Control system for controlling vehicles
5790403, Jul 12 1994 Honda Giken Kogyo Kabushiki Kaisha Lane image processing system for vehicle
5790973, Dec 19 1995 Prince Corporation Last exit warning system
5793308, Jul 02 1992 SENSOR VISION TECHNOLOGIES, INC Vehicular position monitoring system with integral mirror video display
5793420, Oct 28 1994 Video recording system for vehicle
5796094, Feb 26 1993 MAGNA ELECTRONICS INC Vehicle headlight control using imaging sensor
5835255, Apr 23 1986 SNAPTRACK, INC Visible spectrum modulator arrays
5837994, Apr 02 1997 Gentex Corporation Control system to automatically dim vehicle head lamps
5844505, Apr 01 1997 Sony Corporation; Sony Electronics, INC Automobile navigation system
5844682, Mar 25 1994 Omron Corporation Optical sensor device
5845000, May 05 1992 AMERICAN VEHICULAR SCIENCES LLC Optical identification and monitoring system using pattern recognition for use with vehicles
5848802, May 05 1992 Automotive Technologies International, Inc Vehicle occupant position and velocity sensor
5850176, Jul 10 1996 Subaru Corporation Drive assist system for vehicle
5850254, Jul 05 1994 Hitachi, Ltd. Imaging system for a vehicle which compares a reference image which includes a mark which is fixed to said vehicle to subsequent images
5867591, Apr 21 1995 Matsushita Electric Industrial Co., Ltd. Method of matching stereo images and method of measuring disparity between these image
5877707, Jan 17 1997 KOWALICK, THOMAS MICHAEL, MR GPS based seat belt monitoring system & method for using same
5877897, Feb 26 1993 Donnelly Corporation Automatic rearview mirror, vehicle lighting control and vehicle interior monitoring system using a photosensor array
5878357, Sep 03 1996 Ford Global Technologies, Inc Method and apparatus for vehicle yaw rate estimation
5878370, Dec 01 1995 Visteon Global Technologies, Inc Vehicle compass system with variable resolution
5883739, Oct 04 1993 Honda Giken Kogyo Kabushiki Kaisha Information display device for vehicle
5884212, Apr 15 1994 Thomson-CSF Process for monitoring traffic for automatic vehicle incident detection
5890021, Dec 05 1996 Canon Kabushiki Kaisha Distance detecting device, focus state detecting device and camera having same
5896085, Sep 07 1995 Toyota Jidosha Kabushiki Kaisha Apparatus for controlling light distributions of head lamps
5899956, Mar 31 1998 Advanced Future Technologies, Inc.; ADVANCED FUTURE TECHNOLOGIES, INC Vehicle mounted navigation device
5915800, Jun 19 1995 Fuji Jukogyo Kabushiki Kaisha System for controlling braking of an automotive vehicle
5920367, Nov 12 1996 Sharp Kabushiki Kaisha Liquid crystal display device
5923027, Sep 16 1997 Gentex Corporation Moisture sensor and windshield fog detector using an image sensor
5924212, Oct 09 1996 Donnelly Corporation Electronic compass
5959555, Aug 20 1997 Apparatus for checking blind spots of vehicle
5963247, May 31 1995 Visual display systems and a system for producing recordings for visualization thereon and methods therefor
5986796, Mar 17 1993 SNAPTRACK, INC Visible spectrum modulator arrays
5990469, Apr 02 1997 Gentex Corporation Control circuit for image array sensors
5990649, Jul 01 1997 Murakami Corporation Control device for quick angle adjustment of rearview mirror
6020704, Dec 02 1997 VALEO ELECTRICAL SYSTEMS, INC Windscreen sensing and wiper control system
6049171, Sep 18 1998 Gentex Corporation Continuously variable headlamp control
6052124, Feb 03 1997 YISSUM RESEARCH DEVELOPMENT COMPANY System and method for directly estimating three-dimensional structure of objects in a scene and camera motion from three two-dimensional views of the scene
6066933, Oct 02 1998 Rain sensing system and method having automatically registered and oriented rain sensor
6084519, May 07 1993 CONTROL DEVICES, INC Multi-function light sensor for vehicle
6091833, Aug 28 1996 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Local positioning apparatus, and a method therefor
6097024, Sep 16 1997 Gentex Corporation Moisture sensor and windshield fog detector
6100811, Dec 22 1997 Northrop Grumman Systems Corporation Fingerprint actuation of customized vehicle features
6144022, Mar 15 1999 Valeo Electrical Systems, Inc.; VALEO ELECTRICAL SYSTEMS, INC Rain sensor using statistical analysis
6175300, Sep 03 1998 Blind spot viewing system
6178034, Apr 10 1996 Donnelly Corporation Electrochromic devices
6198409, Mar 22 1996 Donnelly Corporation Vehicle rearview mirror display system
6223114, Mar 20 1998 21ST CENTURY GARAGE LLC Process for controlling driving dynamics of a street vehicle
6226061, Mar 25 1997 Sharp Kabushiki Kaisha Liquid crystal display device having phase different plates
6227689, Sep 28 1999 Donnelly Corporation Illumination device for exterior mirror
6256561, Oct 12 1998 Honda Giken Kogyo Kabushiki Kaisha Vehicle steering control system
6266082, Dec 19 1995 Canon Kabushiki Kaisha Communication apparatus image processing apparatus communication method and image processing method
6266442, Oct 23 1998 GOOGLE LLC Method and apparatus for identifying objects depicted in a videostream
6285393, Sep 08 1993 Toyota Jidosha Kabushiki Kaisha Object recognition apparatus and method
6297781, Feb 16 1999 Gentex Corporation Rearview mirror with integrated microwave receiver
6310611, Dec 10 1996 TouchSensor Technologies LLC Differential touch sensor and control circuit therefor
6317057, Apr 03 2000 Hyundai Motor Company Method for detecting lane deviation of vehicle
6320176, Feb 26 1993 Donnelly Corporation Vehicle rain sensor using imaging sensor
6320282, Jan 19 1999 TouchSensor Technologies LLC Touch switch with integral control circuit
6333759, Mar 16 1999 360 ° automobile video camera system
6370329, Jan 20 1999 Zeiss Optronik GmbH Stabilized camera
6392315, Apr 05 1999 DELPHI TECHNOLOGIES IP LIMITED Compensation circuit for an automotive ignition sensing system
6396397, Feb 26 1993 MAGNA ELECTRONICS INC Vehicle imaging system with stereo imaging
6411204, Nov 15 1999 Donnelly Corporation Deceleration based anti-collision safety light control for vehicle
6424273, Mar 30 2001 Koninklijke Philips Electronics N V System to aid a driver to determine whether to change lanes
6430303, Mar 31 1993 Fujitsu Limited Image processing apparatus
6442465, May 05 1992 AMERICAN VEHICULAR SCIENCES LLC Vehicular component control systems and methods
6497503, Jun 21 2001 Ford Global Technologies, Inc. Headlamp system with selectable beam pattern
6539306, Jun 15 2001 Gentex Corporation Automotive mirror with integrated Loran components
6547133, Apr 08 1998 Donnelly Corporation Vehicle mounted remote transaction interface system
6553130, Aug 11 1993 Motor vehicle warning and control system and method
6570998, Jul 22 1998 HONDA ELESYS CO , LTD Vehicle area detecting apparatus and vehicle area determining method
6574033, Feb 27 2002 SNAPTRACK, INC Microelectromechanical systems device and method for fabricating same
6578017, Feb 26 1999 Information Decision Technologies, LLC Method to aid object detection in images by incorporating contextual information
6587573, Mar 20 2000 Gentex Corporation System for controlling exterior vehicle lights
6589625, Aug 01 2001 SNAPTRACK, INC Hermetic seal and method to create the same
6593011, Jul 24 2001 Lite-On Technology Corporation Light emitting diode and method for making the same
6593698, Sep 18 1998 Gentex Corporation Continuously variable headlamp control
6594583, Jan 31 2000 Yazaki Corporation Side-monitoring apparatus for motor vehicle
6611610, Apr 02 1997 Gentex Corporation Vehicle lamp control
6631316, Mar 05 2001 Gentex Corporation Image processing system to control vehicle headlamps or other vehicle equipment
6631994, May 10 2000 Mitsubishi Denki Kabushiki Kaisha Image display device and adjustment for alignment
6636258, Oct 19 2001 Ford Global Technologies, LLC 360°C vision system for a vehicle
6650455, May 05 1994 SNAPTRACK, INC Photonic mems and structures
6672731, Nov 20 2000 Donnelly Corporation Vehicular rearview mirror with blind spot viewing system
6674562, May 05 1994 SNAPTRACK, INC Interferometric modulation of radiation
6678056, Jul 27 2000 QIOPTIQ PHOTONICS LIMITED Jamin-type interferometers and components therefor
6680792, May 05 1994 SNAPTRACK, INC Interferometric modulation of radiation
6690268, Mar 02 2000 Donnelly Corporation Video mirror systems incorporating an accessory module
6700605, May 15 1998 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Apparatus for monitoring
6704621, Nov 26 1999 MOBILEYE VISION TECHNOLOGIES LTD System and method for estimating ego-motion of a moving vehicle using successive images recorded along the vehicle's path of motion
6710908, May 05 1994 SNAPTRACK, INC Controlling micro-electro-mechanical cavities
6711474, Jan 24 2000 21ST CENTURY GARAGE LLC Automobile personal computer systems
6714331, Apr 20 2001 Microvision, Inc. Scanned imaging apparatus with switched feeds
6735506, May 05 1992 AMERICAN VEHICULAR SCIENCES LLC Telematics system
6741377, Jul 02 2002 SNAPTRACK, INC Device having a light-absorbing mask and a method for fabricating same
6744353, Dec 15 1999 Blind spot detector
6762867, Aug 05 1999 Microvision, Inc. Scanned display with plurality of scanning assemblies
6794119, Feb 12 2002 SNAPTRACK, INC Method for fabricating a structure for a microelectromechanical systems (MEMS) device
6795221, Aug 05 1999 Microvision, Inc.; Microvision, Inc Scanned display with switched feeds and distortion correction
6807287, Feb 27 1998 TRW AUTOMOTIVE U S LLC Road profile prediction
6819231, Feb 05 2002 Donnelly Hohe GmbH & Co. KG Parking and/or maneuvering assistance device
6823241, Oct 02 2000 Nissan Motor Co., Ltd. Lane recognition apparatus for vehicle
6864930, Apr 01 1998 Yazaki Corporation Liquid crystal display device
6882287, Jul 31 2001 MAGNA ELECTRONICS INC Automotive lane change aid
6889161, Apr 12 2001 Robert Bosch GmbH Method for recognizing a change in lane of a vehicle
6909753, Dec 05 2001 Koninklijke Philips Electronics, N.V. Combined MPEG-4 FGS and modulation algorithm for wireless video transmission
6946978, Apr 25 2002 Donnelly Corporation Imaging system for vehicle
6975775, Mar 06 2002 Radiant ZEMAX, LLC Stray light correction method for imaging light and color measurement system
6989736, Sep 25 2002 Donnelly Hohe GmbH & Co. KG Monitoring device for a motor vehicle
7038577, May 03 2002 MAGNA ELECTRONICS INC Object detection system for vehicle
7062300, Nov 09 2000 Cellular phone holder with charger mounted to vehicle dashboard
7065432, Oct 02 2003 AI-CORE TECHNOLOGIES, LLC Device for improving the visibility conditions in a motor vehicle
7079017, Apr 23 2001 Lang-Mekra North America, LLC Warning device in motor vehicles
7085637, Oct 22 1997 AMERICAN VEHICULAR SCIENCES LLC Method and system for controlling a vehicle
7092548, Oct 23 1998 GOOGLE LLC Method and apparatus for identifying objects depicted in a videostream
7111968, Sep 15 1998 Gentex Corporation Systems and components for enhancing rear vision from a vehicle
7113867, Nov 26 2000 MOBILEYE VISION TECHNOLOGIES LTD System and method for detecting obstacles to vehicle motion and determining time to contact therewith using sequences of images
7116246, Oct 03 2001 Apparatus and method for sensing the occupancy status of parking spaces in a parking lot
7133661, Feb 19 2001 HITACHI KOKUSAI ELECTRIC INC. Emergency information notifying system, and apparatus, method and moving object utilizing the emergency information notifying system
7145519, Apr 18 2002 Nissan Motor Co., Ltd. Image display apparatus, method, and program for automotive vehicle
7149613, Mar 05 2001 Gentex Corporation Image processing system to control vehicle headlamps or other vehicle equipment
7151996, Apr 14 2001 MOBILEYE VISION TECHNOLOGIES LTD System and method for generating a model of the path of a roadway from an image recorded by a camera
7161616, Apr 16 1999 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Image processing device and monitoring system
7202776, Oct 22 1997 AMERICAN VEHICULAR SCIENCES LLC Method and system for detecting objects external to a vehicle
7216023, Jul 20 2004 Aisin Seiki Kabushiki Kaisha Lane keeping assist device for vehicle
7227611, Aug 23 2004 The Boeing Company Adaptive and interactive scene illumination
7355526, Oct 07 2004 Alerting system of a vehicle deviating from its traffic lane
7375803, May 18 2006 Microsoft Technology Licensing, LLC RGBZ (red, green, blue, z-depth) filter system usable with sensor systems, including sensor systems with synthetic mirror enhanced three-dimensional imaging
7400236, Oct 21 2005 GM Global Technology Operations LLC Vehicular lane monitoring system utilizing front and rear cameras
7423821, Mar 24 2006 HL KLEMOVE CORPORATION Vision system
7424364, Jun 02 2004 Daimler AG Method and device for warning a driver of lane departure
7460951, Sep 26 2005 GM Global Technology Operations LLC System and method of target tracking using sensor fusion
7510038, Jun 11 2003 Steering Solutions IP Holding Corporation Steering system with lane keeping integration
7532109, Aug 02 2005 Nissan Motor Co., Ltd. Vehicle obstacle verification system
7541743, Dec 13 2002 Ford Global Technologies, LLC Adaptive vehicle communication controlled lighting system
7557732, May 31 2005 Toyota Jidosha Kabushiki Kaisha Vehicle deviation preventing control device
7561032, Sep 26 2005 GM Global Technology Operations LLC Selectable lane-departure warning system and method
7565006, Aug 21 2002 Gentex Corporation Image acquisition and processing methods for automatic vehicular exterior lighting control
7566851, Mar 24 2006 MOBILEYE VISION TECHNOLOGIES LTD Headlight, taillight and streetlight detection
7592928, Jun 07 2005 Nissan Motor Co., Ltd. Image display device and method
7605856, Sep 08 2003 Autonetworks Technologies, Ltd; Sumitomo Wiring Systems, Ltd; SUMITOMO ELECTRIC INDUSTRIES, LTD Camera unit and apparatus for monitoring vehicle periphery
7639149, May 09 2006 Denso Corporation Automatic lighting device and method for controlling light
7681960, Oct 28 2003 Continental Teves AG & Co. oHG Method and system for improving the driving behavior of a vehicle
7720580, Dec 23 2004 MAGNA ELECTRONICS INC Object detection system for vehicle
7777611, Nov 06 2006 Donnelly Corporation Display device for exterior rearview mirror
7786898, May 31 2006 MOBILEYE VISION TECHNOLOGIES LTD Fusion of far infrared and visible images in enhanced obstacle detection in automotive applications
7809483, Oct 13 2006 Toyota Jidosha Kabushiki Kaisha Vehicle steering control device and vehicle steering control method
7843451, May 25 2007 GOOGLE LLC Efficient rendering of panoramic images, and applications thereof
7855778, Apr 27 2007 Robert Bosch Company Limited Method and apparatus for locating and measuring the distance to a target
7881496, Sep 30 2004 Donnelly Corporation Vision system for vehicle
7885730, Jan 26 2007 Steering Solutions IP Holding Corporation Systems, methods and computer program products for lane change detection and handling of lane keeping torque
7930160, Dec 29 2006 The MathWorks, Inc Electronic markup of executable models
7949486, Oct 28 2005 Connaught Electronics Limited Method and apparatus for calibrating an image capturing device, and a method and apparatus for outputting image frames from sequentially captured image frames with compensation for image capture device offset
8017898, Aug 17 2007 MAGNA ELECTRONICS INC. Vehicular imaging system in an automatic headlamp control system
8027029, Nov 07 2007 MAGNA ELECTRONICS INC Object detection and tracking system
8058977, Oct 24 2006 Magna Mirrors of America, Inc Exterior mirror having a display that can be viewed by a host driver or drivers of other vehicles
8064643, Dec 06 2006 MOBILEYE VISION TECHNOLOGIES LTD Detecting and recognizing traffic signs
8082101, Apr 08 2004 MOBILEYE VISION TECHNOLOGIES LTD Collision warning system
8095310, Mar 02 2000 Donnelly Corporation Video mirror system for a vehicle
8164628, Jan 04 2006 MOBILEYE VISION TECHNOLOGIES LTD Estimating distance to an object using a sequence of images recorded by a monocular camera
8224031, Apr 26 2005 Subaru Corporation Road line recognition apparatus
8233045, Jul 16 2007 TRW AUTOMOTIVE U S LLC Method and apparatus for distortion correction and image enhancing of a vehicle rear viewing system
8254635, Dec 06 2007 MOBILEYE VISION TECHNOLOGIES LTD Bundling of driver assistance systems
8300886, Dec 23 2004 CARIAD SE Method and device for determining a calibrating parameter of a stereo camera
8378851, May 31 2006 MOBILEYE VISION TECHNOLOGIES LTD Fusion of images in enhanced obstacle detection
8421865, Oct 24 2008 Magna Electronics Europe GmbH & Co. KG Method for calibrating a vehicular camera system
8452055, Apr 08 2004 MOBILEYE VISION TECHNOLOGIES LTD Collision warning system
8534887, Aug 25 1997 MAGNA ELECTRONICS INC Interior rearview mirror assembly for a vehicle
8553088, Nov 23 2005 MOBILEYE VISION TECHNOLOGIES LTD Systems and methods for detecting obstructions in a camera field of view
8694224, Mar 01 2012 MAGNA ELECTRONICS INC Vehicle yaw rate correction
8977464, Sep 30 2013 HITACHI ASTEMO, LTD Method and apparatus for performing driving assistance
9205776, May 21 2013 MAGNA ELECTRONICS INC Vehicle vision system using kinematic model of vehicle motion
9487235, Apr 10 2014 MAGNA ELECTRONICS INC Vehicle control system with adaptive wheel angle correction
20020005778,
20020011611,
20020015153,
20020041229,
20020113873,
20020169531,
20030103142,
20030137586,
20030222982,
20040114381,
20040164228,
20040262063,
20050125125,
20050219852,
20050237385,
20050273234,
20050273261,
20050278096,
20060018511,
20060018512,
20060030987,
20060047388,
20060091813,
20060103727,
20060164514,
20060250501,
20070024724,
20070100551,
20070104476,
20070225914,
20070233343,
20070233386,
20070242339,
20080043099,
20080061952,
20080080740,
20080147321,
20080192132,
20080266396,
20080278349,
20090024279,
20090085913,
20090113509,
20090153360,
20090160987,
20090190015,
20090256938,
20090284360,
20090290032,
20100097469,
20100114431,
20100145575,
20100182139,
20100191421,
20110216201,
20110231062,
20120045112,
20120062743,
20120069185,
20120200707,
20120209489,
20120314071,
20120320209,
20120320210,
20130093888,
20130141580,
20130147957,
20130169812,
20130231825,
20130231830,
20130286193,
20130293717,
20130314503,
20140012469,
20140043473,
20140052340,
20140063254,
20140098229,
20140229073,
20140247352,
20140247354,
20140320658,
20140333729,
20140347486,
20150002670,
20150266422,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Nov 07 2016MAGNA ELECTRONICS INC.(assignment on the face of the patent)
Date Maintenance Fee Events
Jul 27 2022M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Feb 12 20224 years fee payment window open
Aug 12 20226 months grace period start (w surcharge)
Feb 12 2023patent expiry (for year 4)
Feb 12 20252 years to revive unintentionally abandoned end. (for year 4)
Feb 12 20268 years fee payment window open
Aug 12 20266 months grace period start (w surcharge)
Feb 12 2027patent expiry (for year 8)
Feb 12 20292 years to revive unintentionally abandoned end. (for year 8)
Feb 12 203012 years fee payment window open
Aug 12 20306 months grace period start (w surcharge)
Feb 12 2031patent expiry (for year 12)
Feb 12 20332 years to revive unintentionally abandoned end. (for year 12)