Examples of the present disclosure describe systems and methods relating to generating a relevance score on a given natural language answer to a natural language query for ranking the answer among other answers for the query, while generating a summary passage and a likely query to the given passage. For instance, multi-layered, recurrent neural networks may be used to encode the query and the passage, along with a multi-layered neural network for information retrieval features, to generate a relevant score for the passage. A multi-layered, recurrent neural network with soft attention and sequence-to-sequence learning task may be used as a decoder to generate a summary passage. A common encoding neural network may be employed to encode the passage for the ranking and the summarizing, in order to present concise and accurate natural language answers to the query.
|
11. A computer-implemented method comprising:
generating a combined semantic vector expression based on at least one dimension of each of the first semantic vector and the second semantic vector using one or more multi-layered recurrent neural networks, wherein the combined semantic vector expression represents semantic characteristics of the paired natural language query and the natural language candidate answers;
generating a textual vector expression based on a pair of the natural language query and the natural language candidate answer using a multi-layered neural network as textual analyzer, wherein the textual vector expression represents textual characteristics of the pair of the natural language query and the natural language candidate answer, wherein the textual characteristics comprise a degree of matching between the pair based on appearance of words;
generating a relevance score based on the combined semantic vector expression and the textual vector expression using a relevance score generator; and
providing the relevance score for ranking the natural language candidate answer to the natural language query.
7. A system comprising:
at least one processor; and
a memory encoding computer executable instructions that, when executed by the at least one processor, perform a method for generating a relevance score on a natural language candidate answer to a natural language query for one or more electronic files, the method comprising:
receiving a natural language query;
generating a first semantic vector expression based on a natural language query using a first encoder;
generating a second semantic vector expression based on the natural language candidate answer using a second encoder;
generating a textual vector expression based on a pair of the natural language query and the natural language candidate answer using a textual analysis system, wherein the textual vector expression represents textual characteristics of a pair of the natural language query and the natural language candidate answer, wherein the textual characteristics comprise a degree of matching between the pair based on appearance of words;
generating a third semantic vector expression based on the first semantic vector expression and the second semantic vector expression using a comparator;
generating a relevance score based on the third semantic vector expression and the textual vector expression using a relevance score generator; and
providing the relevance score for ranking the natural language candidate answer to the natural language query.
1. A system comprising:
at least one processor; and
a memory encoding computer executable instructions that, when executed by the at least one processor, perform a method for generating a relevance score on a natural language candidate answer to a natural language query for one or more electronic files, the method comprising:
generating a first semantic vector expression, wherein the first semantic vector represents data for semantic features of the natural language query;
generating a second semantic vector expression, wherein the second semantic vector represents data for semantics features of the natural language candidate answer;
generating a combined semantic vector expression based on at least one dimension of each of the first semantic vector expression and the second semantic vector expression using one or more multi-layered recurrent neural networks, wherein the combined semantic vector expression represents a data structure for semantic characteristics of the natural language query and the natural language candidate answer;
generating a textual vector expression based on a pair of the natural language query and the natural language candidate answer using a multi-layered neural network as textual analyzer, wherein the textual vector expression represents textual features of the pair of the natural language query and the natural language candidate answer, wherein the textual features comprise a degree of matching between the pair based on appearance of words;
generating a relevance score based on the combined semantic vector expression and the textual vector expression using a relevance score generator based on a weighted combination of coefficient values of at least one dimension of the combined semantic vector expression and the textual vector expression; and
providing the relevance score for ranking the natural language candidate answer to the natural language query.
2. The system of
generating a natural language summary passage based on a semantic vector expression of the candidate answer using a multi-layered sequence-to-sequence recurrent neural network with soft neural attention as a decoder.
3. The system of
iteratively generating at least in part a set of a natural language summary passage, a natural language question, and a level of perplexity, based on the semantic vector expression of the candidate answer until the level of perplexity is less than a threshold level.
4. The system of
5. The system of
when the level of perplexity is less than the threshold level, providing the natural language summary passage and the natural language question as a pair.
6. The system of
receiving the natural language query;
selecting one or more electronic files;
selecting a natural language passage from at least one of the selected electronic files as a natural language candidate answer before generating a combined semantic vector expression.
8. The system of
9. The system of
receiving the natural language query;
selecting one or more electronic files;
selecting a natural language passage from the each of the selected electronic files as the candidate answers; and
providing a rank of the candidate answer according to the generated relevance score.
10. The system of
generating a natural language summary passage based on the second semantic vector expression using a decoder, wherein the decoder is a summary-question decoder comprising a multi-layered recurrent neural network, and wherein the score generator generates a score based on a weighted combination of the third semantic vector expression and the textual vector expression.
12. The computer-implemented method of
generating a natural language summary passage based on a semantic vector expression of the natural language candidate answer using a multi-layered sequence-to-sequence recurrent neural network with a decoder.
13. The computer-implemented method of
14. A computer-implemented method of
wherein generating the combined semantic vector comprises generating a first semantic vector expression based on the natural language query using a first encoder, and generating a second semantic vector expression based on the natural language candidate answer using a second encoder, and
wherein generating the relevant score comprises generating a third semantic vector expression based on the first semantic vector expression and the second semantic vector expression using a comparator, and generating the relevance score based on the third semantic vector expression and the textual vector expression using a relevance score generator.
15. The computer-implemented method of
16. The computer-implemented method of
17. The computer-implemented method of
18. The computer-implemented method of
19. The computer-implemented method of
providing the generated summary passage; and
providing a rank of the candidate answer according to the generated relative score.
20. The computer-implemented method of
generating a level of perplexity of the natural language summary passage based on the second semantic vector expression using the decoder;
generating a question based on the second semantic vector expression using the decoder; and
identifying the generated summary passage and the generated question as a summary-question pair when the level of perplexity of the natural language summary passage is less than a threshold level.
|
Computer-based question and answer systems have become widely available as use of the Internet with personal computers, mobile handhelds and other devices has become a common in daily lives. The vast amount of information on the Internet, however, may result in difficulties when a user attempts to discover certain information. For example, confusion may result if information is presented in a disorganized manner. As another example, users may become overwhelmed when too much information is presented to them.
It is with respect to these and other general considerations that the aspects disclosed herein have been made. Also, although relatively specific problems may be discussed, it should be understood that the examples should not be limited to solving the specific problems identified in the background or elsewhere in this disclosure.
According to the present disclosure, the above and other issues may be resolved by generating a ranking of a set of natural language answers from electronic files based on relevance to a given natural language query, by using deep-learnt neural networks. Additionally, aspects described herein may generate a pair of a likely natural language question and a natural language answer, based upon a provided natural language passage.
Examples of the present disclosure describe systems and methods related to the processing of a given pair of a natural language query and a candidate answer using recurrent, neural networks with deep learning in conjunction with neural networks designed for traditional information retrieval (IR). Additionally, both a relevance score to a given answer against a query, as well as a pair of a passage summary and a likely query from a given passage, may be generated by integrating the aforementioned neural networks with another multi-layered, recurrent neural network as a summary-question decoder.
According to the present disclosure, a pair of a natural language query and a candidate answer ranked electronic files may be encoded to generate a set of multi-dimensional semantic vector expressions by processing in respective multi-layered, recurrent neural networks. The resulting two multi-dimensional semantic vector expressions may be combined to generate a combined multi-dimensional semantic vector expression. The pair of the natural language query and the natural language candidate answer may be processed through a traditional IR neural network to generate a multi-dimensional textual vector representation of the pair. The combined semantic vector expression and the textual vector expression may be combined to generate a final relevance score of the candidate answer for the query. The final relevance score may be used to rank the candidate answer relative to other candidate answers as the most likely correct answer to the query.
According to the present disclosure, the multi-layered, recurrent neural network used to encode the answer may be employed for generating a summary of the given passage. A resultant semantic vector expression from the answer decoder may be received by a summary-query decoder to generate a natural language summary as well as a likely query for which the summary may provide an answer. For example, a multi-layered, recurrent neural network in combination with soft attention and sequence-sequence learning tasks may be used by the summary-query encoder to generate a summary passage while minimizing perplexity.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. Additional aspects, features, and/or advantages of examples will be set forth in part in the description which follows and, in part, will be apparent from the description, or may be learned by practice of the disclosure.
Non-limiting and non-exhaustive examples are described with reference to the following figures.
Various aspects of the disclosure are described more fully below with reference to the accompanying drawings, which form a part hereof, and which show specific exemplary aspects. However, different aspects of the disclosure may be implemented in many different forms and should not be construed as limited to the aspects set forth herein; rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the aspects to those skilled in the art. Aspects may be practiced as methods, systems or devices. Accordingly, aspects may take the form of a hardware implementation, an entirely software implementation or an implementation combining software and hardware aspects. The following detailed description is, therefore, not to be taken in a limiting sense.
Systems and methods are disclosed to generate relevance scores for natural language answers and for ranking answers to a natural language query given by a user. The systems and methods enable such functionality by using combinations of deep-learnt neural networks and recurrent neural networks. For example, queries and candidate answers may be analyzed from both semantic and textual characteristics to generate ranking scores. In addition, systems and methods are disclosed to generate a natural language passage summary and a likely natural language query to a natural language passage given by a user. Further, system and methods are disclosed to generate both a relevance score to a natural language answer against a natural language query as well as a natural language summary of the natural language answer by using a common neural network to process the natural language answer. For example, a query in a natural language may be received through user interactions on a computing device such as a smartphone or a tablet. The device may display search results by ranking answers based on their relevance to the query. In addition or alternatively, the device may display summaries of documents in the search results.
Aspects of the present disclosure relate to providing a relevance score for a pair of a query and an answer, for ranking a set of passages that are selected as answers to the query. Additional aspects of the present disclosure relates to providing a summary passage to a given passage. Still further aspects of the present disclosure relate to providing a highly efficient and scalable processing environment to leverage deep learning models to generate both relevant scores for ranking answers to a given query, as well as a pair of summary passage and an expected question to a given passage.
At receive operation 102, a query may be received from a user via a user interface, from another application, or from other types of sources. The query may be a request to search for electronic documents. For example, there may be a query window displayed on a computing device such as a smartphone or tablet, where a user may enter the natural language query by various input methods such as, but not limited to, by use of a keyboard, speaking into a microphone that is attached to the device, or the request may be received from an application program or a web information bot, which may be executed locally or remotely on a computer network such as but not limited to the Internet.
At identify operation 104, one or more electronic files may be identified based on the query. For example, the one or more electronic files may be web pages at websites, electronic documents that are stored in a document management server, and/or files that may be used by computer application programs. Links to the identified one or more electronic files may be provided for accessing respective contents of the identified one or more electronic files.
At rank operation 106, one or more electronic files may be ranked based on relevance to the query. For example, the ranking may be determined by various search methods such as, but not limited to, an index search on web contents, a database search, and/or use of a neural network based on IR features. In aspects, the ranking may be in ascending or in descending order.
At extract operation 108, one or more answers may be extracted from at least one of the ranked electronic files. For example, the one or more answers may be extracted from the electronic files at high ranking, such as but not limited to the top 1%, 5%, 10%, and so on. Additionally or alternatively the one or more answers may be extracted from a select number of, such as but not limited to the three, five, ten, twenty and fifty highest ranked electronic files. An answer may consist of one or more complete or partial sentences extracted from an electronic file. The one or more sentences may be consecutive or non-consecutive in the electronic file. In examples, the answer may be a concatenated passage based on file property information, such as but not limited to a title, an author, an abstract, a published date, a last-modified date, and an abstract of the electronic file. Alternatively, the answer may be a copy of a pre-defined segment of the electronic file, such as but not limited to the first fifty words of the electronic file. In aspect, answers may be extracted from a select section under at least one header such as but not limited to abstract, summary, introduction and main topic. In other aspect, answers may be extracted from the ranked electronic file, or one or more number of the ranked electronic files. In yet another aspect, extracted answers may contain one or more words appearing in the query.
At rank operation 110, the one or more answers within each of the ranked electronic documents may be ranked based on the query. The ranking may be based on a relevance score that may be generated for each of the one or more answers against the query. The relevance scores may be generated by processing the pair of an answer and the query through neural networks with deep learning according to the present disclosure. In aspects the relevance scores may be generated based upon relevance in areas such as but not limited to semantic, textual, and lexical relevance between answers and the query.
At provide operation 112, ranked answers from the ranked electronic documents are provided. For example, the ranked answer may be displayed on a computing device such as a smartphone or a tablet along with a ranking of electronic files found based on the search.
As should be appreciated, operations 102-112 are described for purposes of illustrating the present methods and systems and are not intended to limit the disclosure to a particular sequence of steps, e.g., steps may be performed in differing order, additional steps may be performed, and disclosed steps may be excluded without departing from the present disclosure.
As presented, answer encoder 206 may receive the answer 202 as a candidate answer in natural language (thereafter may be called answer) as an input. The answer encoder 206 may encode the answer 202 into a multi-dimensional semantic vector (an answer semantic vector, not shown). The answer semantic vector may represent semantics of the answer 202 in vector expression. The answer encoder 206 may send the answer semantic vector to semantic vector expression aggregator 210. In one example, the answer encoder 206 may comprise a multi-layered recurrent neural network. In other examples, the answer encoder 206 may be implemented as different types of recurrent neural network (RNN) encoders, such as but not limited to, uni-directional gated recurrent units (GRUs), bidirectional GRUs, uni-directional long short-term memory (LSTMs) and bi-directional LSTMs.
Query encoder 208 may receive a natural language query 204, and may encode the query 204 into a multi-dimensional semantic vector (a query semantic vector, not shown). The query semantic vector represents semantics of the query 204 in vector expression. The query encoder 208 may send the query semantic vector to semantic vector expression aggregator 210. In one example, the query encoder 208 may comprise a multi-layered recurrent neural network. In other example, the query encoder 208 may be implemented as different types of recurrent neural network (RNN) encoders, such as but not limited to, uni-directional gated recurrent units (GRUs), bidirectional GRUs, uni-directional long short-term memory (LSTMs) and bi-directional LSTMs. In aspect, answer encoder 206 and the query encoder 208 may each comprise their own multi-layered RNN. Alternatively, answer encoder 206 and the query encoder 208 may comprise the same multi-layered RNN.
Semantic vector expression aggregator 210 may receive respective multi-dimensional semantic vectors on the query 204 (the query semantic vector) and the answer 202 (the answer semantic vector). Semantic vector expression aggregator 210 may combine the received multi-dimensional semantic vectors to generate a combined multi-dimensional semantic vector (a combined semantic vector). For example, the aggregation may include processing the cosine similarity of the two multi-dimensional vectors to generate the combined semantic vector. In another example, the combined semantic vector may be a result of equal or weighted sum or average of the query semantic vector and the answer semantic vector.
As presented, the query 204 and the answer 202 may be received by a textual vector generator 212A. In aspects, textual vector generator 212A may be a multi-layered neural network for information retrieval (IR) based on textual features. A multi-dimensional vector (a combined textual vector) that represents textual characteristics of the query 204 and the answer 202 may be generated. For example, textual vector generator 212A may be a multi-layered neural network, which processes IRbased on textual features. Textual vector generator 212 may process and identify traditional IR features, such as how well the answer 202 matches with the query 204 textually. For example, the multi-layered neural network used in textual vector generator 212A may count a number of words that appear in both the query 204 and in the answer 202. Additionally or alternatively, the multi-layered neural network may measure a frequency-inverse document frequency (TF-IDF) of words in the query 204 and in the answer 202, in order to identify with high accuracy how important a word is to the query 204 and the answer 202.
A final relevance score generator 214 may receive the combined textual vector from textual vector generator 212A and the combined semantic vector from semantic vector expression aggregator 210, and generate a final relevance score of the answer 202 with respect to the query 204. For example the final relevance score 216 may be generated based on a weighted combination of the two multi-dimensional vectors. In another example, the final relevance score may be generated based on an ordinary or weighted average of coefficients of respective vector dimensions. In aspects a final relevance score may be used to rank answers to a query based on relevance from both textual and semantic perspectives.
As should be appreciated, the various methods, devices, components, etc., described with respect to
As presented, answer encoder 206 may receive the answer 202 in natural language (thereafter called answer) as an input. The answer encoder 206 may encode the answer 202 into a multi-dimensional semantic vector (an answer semantic vector, not shown). The answer semantic vector may represent semantics of the answer 202 in vector expression. The answer encoder 206 may send the answer semantic vector to semantic vector expression aggregator 210. In one example, the answer encoder 206 may comprise a multi-layered recurrent neural network. In other example, the answer encoder 206 may be implemented as different types of recurrent neural network (RNN) encoders, such as but not limited to, uni-directional gated recurrent units (GRUs), bidirectional GRUs, uni-directional long short-term memory (LSTMs) and bi-directional LSTMs.
Query encoder 208 may receive a natural language query 204, and may encode the query 204 into a multi-dimensional semantic vector (a query semantic vector, not shown). The query semantic vector represents semantics of the query 204 in vector expression. The query encoder 208 may send the query semantic vector to semantic vector expression aggregator 210. In one example, the query encoder 208 may comprise a multi-dimensional recurrent neural network. In other example, the query encoder 208 may be implemented as different types of recurrent neural network (RNN) encoders, such as but not limited to, uni-directional gated recurrent units (GRUs), bidirectional GRUs, uni-directional long short-term memory (LSTMs) and bi-directional LSTMs. In aspect, answer encoder 206 and the query encoder 208 may each comprise their own multi-layered RNN. Alternatively, answer encoder 206 and the query encoder 208 may comprise the same multi-layered RNN.
Semantic vector expression aggregator 210 may receive respective multi-dimensional semantic vectors on the query 204 (the query semantic vector) and the answer 202 (the answer semantic vector). Semantic vector expression aggregator 210 may combine the received multi-dimensional semantic vectors to generate a combined multi-dimensional semantic vector (a combined semantic vector). For example, the aggregation may include processing the cosine similarity of the two multi-dimensional vectors to generate the combined semantic vector. In another example, the combined semantic vector may be a result of equal or weighted sum or average of the query semantic vector and the answer semantic vector.
As presented, the query 204, the answer 202, and the combined semantic vector may be received by a textual vector generator with a combined semantic vector as input (VG-CSV) 212B. In aspects, VG-CSV 212B may be a multi-layered neural network for IR based on textual features. VG-CSV 212B may generate a multi-dimensional vector that represents textual characteristics of the query 204 and the answer 202 as well as semantic characteristics of the query 204 and the answer 202 as fed by the combined semantic vector. For example, VG-CSV 212B may consist of a multi-layered neural network (NN), which may process and identify traditional IR features, such as how well the answer 202 matches with the query 204 textually, while accommodating the combined semantic vector as among input to the neural network. For example, the multi-layered neural network used in VG-CSV 212B may count a number of words that appear in both the query 204 and in the answer 202. Additionally or alternatively, the multi-layered neural network may measure a frequency-inverse document frequency (TF-IDF) of words in the query 204 and in the answer 202, in order to identify with high accuracy how important a word is to the query 204 and the answer 202.
In the present disclosure, the system to generate a relevance score for ranking answers may be agnostic with respect to the depth of the one or more multi-layered neural networks described herein. Additionally or alternatively, in the present disclosure, the system to generate a relevance score for ranking answers may be agnostic with respect to the depth of dimensions of the vectors in the neural networks.
The multi-layered, recurrent neural networks in the present disclosure may be trained using at least two types of information. The first type of information may be a pair of query and answer labeled by a human, with binary labels (e.g., correct or incorrect) or labels spanning different states (e.g. perfect, excellent, good, fair and bad). A label in “perfect” state may indicate a situation where a human perception indicates that an answer is the precise answer to the query. The states “bad” may indicate the opposite end of the scale. The other states are positioned between the two extreme states as appropriate. The second type of information may be based on query logs from a computer-implemented question and answer system. The second type of information may include different states. One example state is a “good” state, where the answer has satisfied a user according to the log. Another exemplary state may be an “abandonment” state, where the user has abandoned the answer because the user is not satisfied by the answer according to the log. In associating the two types of information, a pair of query and answer with status “perfect” in the first type may be associated with “good” in the second type. A pair of query and answer with status “bad” in the first type may be associated with “abandonment” in the second type.
In aspects of the present disclosure, training the system may include use of pair-wise logistic regression functions, where a difference (or a distance) of states between two pairs of query-answer may be reflected in training relevance scores to respective pairs. A bias may be used such that scores with a greater difference are assigned to a particular two pairs if a difference of states for the two pairs is greater than other pairs.
As should be appreciated, the various methods, devices, components, etc., described with respect to
At encode operation 302, a natural language candidate answer may be encoded into a semantic vector expression of the candidate answer. For example, a multi-layered RNN may be used to receive the candidate answer for encoding by processing with respect to semantics of the candidate answer. For example, a multi-layered RNN used in summary-query decoder 402 may be based on uni-directional GRUs, bidirectional GRUs and uni-directional LSTMs. A common multi-layered RNN may be shared encoding the candidate answer and the query to generate respective semantic vectors. Alternatively, a separate set of multi-layered RNN may be used to generate semantic vector expressions of the candidate answer and the query.
At encode operation 304, a natural language query may be encoded into a semantic vector expression of the query. For example, a multi-layered RNN may be used to receive the query for encoding by processing with respect to semantics of the query. For example, a multi-layered RNN used in summary-query decoder 402 may be based on uni-directional GRUs, bidirectional GRUs and uni-directional LSTMs. A common multi-layered RNN may be shared encoding the candidate answer and the query to generate respective semantic vectors. Alternatively, separate multi-layered RNNs may be used.
At generate operation 306, the answer semantic vector from the encoding operation 302 and the query semantic vector from the encoding operation 304 may be combined to generate a combined semantic vector expression of the two semantic vector expressions. For example, a cosine similarity may be processed for the two semantic vector expressions. In another example, equal or weighted sum or average of the two semantic vector expressions may be used to generate a combined semantic vector expression. In generating the combined semantic vector, at least one dimension or all of the multiple dimensions of the answer semantic vector and the query semantic vector may be combined.
At generate operation 308A, a textual vector expression may be generated from the natural language query and the natural language candidate answer. For example, a multi-layered neural network (NN) may be used to generate traditional IR features based on textual analysis. The textual vector expression may be a multi-dimensional vector. The multi-layered neural network may measure a frequency-inverse document frequency (TF-IDF) of words in the query 204 and in the answer 202, in order to identify with high accuracy how important a word is to the query 204 and the answer 202.
At generate operation 310A, a final relevance score for the answer may be generated from the textual and semantic vector expressions. For instance, the final relevance score is generated by combining the textual vector and the combined semantic vector. The textual vector may be generated at generate operation 308A by using the traditional IR features for the pair of the query and the candidate answer. The combined semantic vector may be generated at generate operation 306, by combining the answer semantic vector from encode operation 302 and the query semantic vector from the encoding operation 303. For example, a high final relevance score for an answer may indicate a high relevance of the answer against the query. The final relevance score may be a weighted combination of the textual vector expression and the combined semantic vector expression.
At rank operation 312, the candidate answer may be ranked among other candidate answers against the query according to respective final relevance scores. For example, there may be a set of multiple candidate answers for a query. There may be a relevance scores for each of the candidate answers. These answers may be ranked in the order of corresponding relevance scores.
As should be appreciated, operations 302-312 in
At encode operation 304, a query in a natural language text may be encoded into a semantic vector expression of the query. For example, a multi-layered RNN may be used to receive the query for encoding by processing with respect to semantics of the query. For example, a multi-layered RNN used in summary-query decoder 402 may be based on uni-directional GRUs, bidirectional GRUs and uni-directional LSTMs. A common multi-layered RNN may be shared encoding the candidate answer and the query to generate respective semantic vectors. Alternatively, a separate multi-layered RNN may be used.
At generate operation 306, the two semantic vector expressions from the encoding operation 302 and the encoding operation 304 may be combined to generate a combined semantic vector expression of the two semantic vector expressions. For example, a cosine similarity may be processed for the two semantic vector expressions. In another example, equal or weighted sum or average of the two semantic vector expressions may be used to generate a combined semantic vector expression.
At generate operation 308B, a textual vector expression may be generated from the natural language query, the natural language answer and the combined semantic vector expression. For example, a multi-layered neural network (NN) may be used to generate traditional IR features based on textual analysis. The combined semantic vector expression may be used as an input vector to the multi-layered NN to be processed along with the query and the answer. The textual vector expression may be a multi-dimensional vector.
At generate operation 310B, a final relevance score for the answer may be generated from the textual vector expression. For example, a higher final relevance score for an answer may indicate a higher relevance of the answer against the query. The final relevance score may be a weighted combination of the textual vector expression and the semantic vector expression.
At rank operation 312, a collection of answers may be ranked according to respective final relevance scores. For example, there may be a set of multiple answers for a query. There may be a relevance scores for each of the answers. These answers may be ranked in the order of corresponding relevance scores.
As should be appreciated, operations 302-312 in
In the certain aspects, summarization subsystem 406 may contain answer encoder 206 and summary-query decoder 402. For example, a natural language summary of an answer 202 may be generated from the answer 202 by the summarization subsystem 406. Additionally, ranking subsystem 408 may contain answer 206, query encoder 208, semantic expression aggregator 210, textual search using multi-layered neural network 212, and final relevance scorer 214. For example, a final relevance score 216 may be generated from a query 204 and an answer 202 by the ranking subsystem 408. In aspects, the answer encoder 206 is shared among the summarization subsystem 406 and the ranking subsystem 408.
In aspects, a natural language summary may be generated based upon a multi-dimensional semantic vector expression of the answer by summary-query decoder 402. Summary-query decoder 402 may consist of a multi-layered recurrent neural network (RNN). Soft neural attention may be used by summary-query decoder 402. For example, a “loose” approximation with attention to general parts within a given answer may be used while decoding the answer, instead of specifically focusing on specific parts of the answer with “hard” attention, in order to minimize perplexity which is the sum of cross entropy errors over all decoded terms.
In aspects, sharing the common answer encoder 206 between the summarization subsystem 406 and the ranking subsystem 408, forming a joint shared neural networks, may synergistically benefit quality of generating both relevance scores and summary passages. A resultant vector from the answer encoder 206 may imply a summary or understanding of the answer in an encoded expression. The rest of deep learnt neural network processing according to the present disclosure relies upon proper understanding of the answer. Training the answer encoder 206 may improve processing through both subsystems.
While not shown in the figures, according to the present disclosure, training the neural networks may include, but is not limited to, alternating the training between the summarization subsystem 406 and the ranking subsystem 408. Training the deep learnt neural networks in the summarization subsystem 406 may minimize perplexity in a sequence-to-sequence task processing, among other benefits. Additionally, training the deep learnt neural networks in the ranking subsystem 408 may maximize a probability of any given pair of answers in the ranking is correct relative to the other pairs, among other benefits. For example, the answer encoder 206, which may be shared by the two subsystems, may receive answers while being trained as a part of the summarization subsystem 406, and may receive answers while being trained as a part of the ranking subsystem 408. According to the present disclosure, the answer encoder 206 may continue to be trained to improve accuracy of generating multi-dimensional semantic vector expression of the answer, regardless of which subsystem is being trained.
In aspects, summary-query decoder 402 may consist of a set of multi-layered RNNs with multiple sequence-to-sequence layers based on different RNN architecture. For example, a multi-layered RNN used in summary-query decoder 402 may be based on uni-directional GRUs, bidirectional GRUs and uni-directional LSTMs. In aspects, all the resultant summaries may be presented as a set of various natural language summaries of the answer 202 to the user, or one summary with the lowest perplexity may be selected for use.
In aspects of the present disclosure, training data sets may comprise various forms, such as but not limited to a <passage, summarized passage> pair and a <passage, question> pair may be used to train the neural networks as represented by answer encoder 206 and summary-query decoder 402 in the summarization subsystem 406.
As should be appreciated, operations in
At encode operation 302, a candidate answer may be encoded into a semantic vector expression of the candidate answer. For instance, the candidate answer may be in a natural language expression. The candidate answer may be obtained as a result of extracting passages from the ranked electronic file. The resulting expression of the answer may be a semantic vector consisting of multiple dimensions, based on the multi-layered recurrent neural network used for the answer encoder 206. In aspects, the encode operation 302 may be a common step before the ranking sub-method 430 and the summarization sub-method 440, sharing the output of the encode operation 302 as input to the respective sub-methods.
At decode operation 420, the semantic vector expression of the answer may be decoded. For instance, the semantic vector expression of the answer may be decoded by using at least one multi-layered recurrent neural network. For example, the multi-layered recurrent neural network (RNN) may be in a variety of architectures, such as but not limited to uni-directional gated recurrent units (GRUs), bidirectional GRUs, uni-directional long short-term memory (LSTMs) and bi-directional LSTMs.
At generate operation 422, a set comprising a summary of the answer, a question, and a level of perplexity of the summary may generated by the multi-layered RNN. Additionally or alternatively, at the generate operation 422, at least one of a summary of the answer, a question and a level of perplexity may be generated. For instance, the generate operation 422 may be processed by a multi-layered RNN with soft neural attention. In aspect, the decode operation 420 and the generate operation 422 may use the same multi-layered RNN with soft neural attention. In another aspect, the level of perplexity may indicate a level of consistency of the decoded summary against the given candidate answer. For instance, perplexity may be generated based on the sum of cross entropy errors over all decoded terms.
At compare operation 424, a level of perplexity is compared against a threshold level. The threshold level may be pre-defined. As should be appreciated, the summary of the candidate answer may need to be simple enough at a low level of perplexity to be useful as a summary of an electronic file. If a level of perplexity is not less than a level of the threshold, then another set of a summary, a question, and a level of perplexity of the summary may be generated at the generate operation 422 using the multi-layered RNN. For instance, sets of summary, a question, and a level of perplexity of the summary may be iteratively generated and compared against the level of threshold until the level of perplexity is below the level of threshold. If a level of perplexity is less than a level of the threshold, then, at identify operation 426, the generated query and the summary of the candidate answer may be identified as a pair.
In examples, a pair of summary of the candidate answer and the generated query may be used to generate a list of Frequently Asked Questions (FAQ) for an electronic file. For instance, the generated query may be a question and the summary of the candidate answer may be its answer in the FAQ. A plurality of passages from a given electronic files may be extracted, and may be processed by the summarization sub-method 440 to generate a pair of a summary and a question for each candidate answer.
As should be appreciated, operations in
As illustrated in
As should be appreciated, the various methods, devices, components, etc., described with respect to
As stated above, a number of program modules and data files may be stored in the system memory 704. While executing on the processing unit 702, the program modules 706 (e.g., application 720) may perform processes including, but not limited to, the aspects, as described herein. Other program modules that may be used in accordance with aspects of the present disclosure may include electronic mail and contacts applications, word processing applications, spreadsheet applications, database applications, slide presentation applications, drawing or computer-aided application programs, etc.
Furthermore, embodiments of the disclosure may be practiced in an electrical circuit comprising discrete electronic elements, packaged or integrated electronic chips containing logic gates, a circuit utilizing a microprocessor, or on a single chip containing electronic elements or microprocessors. For example, embodiments of the disclosure may be practiced via a system-on-a-chip (SOC) where each or many of the components illustrated in
The computing device 700 may also have one or more input device(s) 712 such as a keyboard, a mouse, a pen, a sound or voice input device, a touch or swipe input device, etc. The output device(s) 714 such as a display, speakers, a printer, etc. may also be included. The aforementioned devices are examples and others may be used. The computing device 700 may include one or more communication connections 716 allowing communications with other computing devices 750. Examples of suitable communication connections 716 include, but are not limited to, radio frequency (RF) transmitter, receiver, and/or transceiver circuitry; universal serial bus (USB), parallel, and/or serial ports.
The term computer readable media as used herein may include computer storage media. Computer storage media may include volatile and nonvolatile, removable and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, or program modules. The system memory 704, the removable storage device 709, and the non-removable storage device 710 are all computer storage media examples (e.g., memory storage). Computer storage media may include RAM, ROM, electrically erasable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disks (DVD) or other optical storage, magnetic cassettes, magnetic tape, magnetic disk storage or other magnetic storage devices, or any other article of manufacture which can be used to store information and which can be accessed by the computing device 700. Any such computer storage media may be part of the computing device 700. Computer storage media does not include a carrier wave or other propagated or modulated data signal.
Communication media may be embodied by computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and includes any information delivery media. The term “modulated data signal” may describe a signal that has one or more characteristics set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media may include wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, radio frequency (RF), infrared, and other wireless media.
One or more application programs 866 may be loaded into the memory 862 and run on or in association with the operating system 864. Examples of the application programs include phone dialer programs, e-mail programs, personal information management (PIM) programs, word processing programs, spreadsheet programs, Internet browser programs, messaging programs, and so forth. The system 802 also includes a non-volatile storage area 868 within the memory 862. The non-volatile storage area 868 may be used to store persistent information that should not be lost if the system 802 is powered down. The application programs 866 may use and store information in the non-volatile storage area 868, such as e-mail or other messages used by an e-mail application, and the like. A synchronization application (not shown) also resides on the system 802 and is programmed to interact with a corresponding synchronization application resident on a host computer to keep the information stored in the non-volatile storage area 868 synchronized with corresponding information stored at the host computer. As should be appreciated, other applications may be loaded into the memory 862 and run on the mobile computing device 800 described herein (e.g., search engine, extractor module, relevancy ranking module, answer scoring module, etc.).
The system 802 has a power supply 870, which may be implemented as one or more batteries. The power supply 870 might further include an external power source, such as an AC adapter or a powered docking cradle that supplements or recharges the batteries.
The system 802 may also include a radio interface layer 872 that performs the function of transmitting and receiving radio frequency communications. The radio interface layer 872 facilitates wireless connectivity between the system 802 and the “outside world,” via a communications carrier or service provider. Transmissions to and from the radio interface layer 872 are conducted under control of the operating system 864. In other words, communications received by the radio interface layer 872 may be disseminated to the application programs 866 via the operating system 864, and vice versa.
The visual indicator 820 may be used to provide visual notifications, and/or an audio interface 874 may be used for producing audible notifications via the audio transducer 825. In the illustrated embodiment, the visual indicator 820 is a light emitting diode (LED) and the audio transducer 825 is a speaker. These devices may be directly coupled to the power supply 870 so that when activated, they remain on for a duration dictated by the notification mechanism even though the processor 860 and other components might shut down for conserving battery power. The LED may be programmed to remain on indefinitely until the user takes action to indicate the powered-on status of the device. The audio interface 874 is used to provide audible signals to and receive audible signals from the user. For example, in addition to being coupled to the audio transducer 825, the audio interface 874 may also be coupled to a microphone to receive audible input, such as to facilitate a telephone conversation. In accordance with embodiments of the present disclosure, the microphone may also serve as an audio sensor to facilitate control of notifications, as will be described below. The system 802 may further include a video interface 876 that enables an operation of an on-board camera 830 to record still images, video stream, and the like.
A mobile computing device 800 implementing the system 802 may have additional features or functionality. For example, the mobile computing device 800 may also include additional data storage devices (removable and/or non-removable) such as, magnetic disks, optical disks, or tape. Such additional storage is illustrated in
Data/information generated or captured by the mobile computing device 800 and stored via the system 802 may be stored locally on the mobile computing device 800, as described above, or the data may be stored on any number of storage media that may be accessed by the device via the radio interface layer 872 or via a wired connection between the mobile computing device 800 and a separate computing device associated with the mobile computing device 800, for example, a server computer in a distributed computing network, such as the Internet. As should be appreciated such data/information may be accessed via the mobile computing device 800 via the radio interface layer 872 or via a distributed computing network. Similarly, such data/information may be readily transferred between computing devices for storage and use according to well-known data/information transfer and storage means, including electronic mail and collaborative data/information sharing systems.
Aspects of the present disclosure, for example, are described above with reference to block diagrams and/or operational illustrations of methods, systems, and computer program products according to aspects of the disclosure. The functions/acts noted in the blocks may occur out of the order as shown in any flowchart. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/acts involved.
The description and illustration of one or more aspects provided in this application are not intended to limit or restrict the scope of the disclosure as claimed in any way. The aspects, examples, and details provided in this application are considered sufficient to convey possession and enable others to make and use the best mode of claimed disclosure. The claimed disclosure should not be construed as being limited to any aspect, example, or detail provided in this application. Regardless of whether shown and described in combination or separately, the various features (both structural and methodological) are intended to be selectively included or omitted to produce an embodiment with a particular set of features. Having been provided with the description and illustration of the present application, one skilled in the art may envision variations, modifications, and alternate aspects falling within the spirit of the broader aspects of the general inventive concept embodied in this application that do not depart from the broader scope of the claimed disclosure.
Ke, Qifa, Chakraborty, Doran, Malik, Manish, Tiao, Jonathan R.
Patent | Priority | Assignee | Title |
11409735, | Mar 20 2019 | PROMETHIUM, INC | Selective preprocessing of data stored across heterogeneous data sources |
11538559, | May 14 2020 | MERATIVE US L P | Using machine learning to evaluate patients and control a clinical trial |
11556806, | May 14 2020 | MERATIVE US L P | Using machine learning to facilitate design and implementation of a clinical trial with a high likelihood of success |
11599769, | Nov 12 2018 | Alibaba Group Holding Limited | Question and answer matching method, system and storage medium |
11609903, | Mar 20 2019 | PROMETHIUM, INC | Ranking data assets for processing natural language questions based on data stored across heterogeneous data sources |
11651243, | May 14 2020 | MERATIVE US L P | Using machine learning to evaluate data quality during a clinical trial based on participant queries |
11709827, | Mar 20 2019 | Promethium, Inc. | Using stored execution plans for efficient execution of natural language questions |
11709873, | Jan 13 2020 | Adobe Inc. | Reader-retriever approach for question answering |
Patent | Priority | Assignee | Title |
6189002, | Dec 14 1998 | DTI OF WASHINGTON, LLC | Process and system for retrieval of documents using context-relevant semantic profiles |
7406456, | Jan 27 2000 | Manning & Napier Information Services, LLC. | Construction of trainable semantic vectors and clustering, classification, and searching using trainable semantic vectors |
9400841, | Nov 05 2014 | International Business Machines Corporation | Answer interactions in a question-answering environment |
9535960, | Apr 14 2014 | Microsoft Technology Licensing, LLC | Context-sensitive search using a deep learning model |
20160306798, | |||
20180150743, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 12 2017 | CHAKRABORTY, DORAN | Microsoft Technology Licensing, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 042726 | /0842 | |
Jun 12 2017 | KE, QIFA | Microsoft Technology Licensing, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 042726 | /0842 | |
Jun 12 2017 | TIAO, JONATHAN R | Microsoft Technology Licensing, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 042726 | /0842 | |
Jun 14 2017 | MALIK, MANISH | Microsoft Technology Licensing, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 042726 | /0842 | |
Jun 15 2017 | Microsoft Technology Licensing, LLC | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 21 2022 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 09 2022 | 4 years fee payment window open |
Oct 09 2022 | 6 months grace period start (w surcharge) |
Apr 09 2023 | patent expiry (for year 4) |
Apr 09 2025 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 09 2026 | 8 years fee payment window open |
Oct 09 2026 | 6 months grace period start (w surcharge) |
Apr 09 2027 | patent expiry (for year 8) |
Apr 09 2029 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 09 2030 | 12 years fee payment window open |
Oct 09 2030 | 6 months grace period start (w surcharge) |
Apr 09 2031 | patent expiry (for year 12) |
Apr 09 2033 | 2 years to revive unintentionally abandoned end. (for year 12) |