A haptic device in an electronic device includes a feedback surface, one or more actuators, and a connection member connected between the feedback surface and each actuator. At least one actuator produces an attracting or repelling force that creates movement in the connection member and the feedback surface. An acoustic and a haptic output of the haptic device can be adjusted at least in part by producing an out of plane movement in the feedback surface, by changing a cross-sectional area of at least a portion of the connection member, by changing dynamically one or more biasing supports disposed below the feedback surface, and/or by changing at least one waveform characteristic of a haptic input signal received by at least one actuator.

Patent
   10261585
Priority
Mar 27 2014
Filed
Sep 13 2016
Issued
Apr 16 2019
Expiry
Mar 27 2034
Assg.orig
Entity
Large
6
261
currently ok
8. A haptic device for an electronic device, comprising:
an input member defining a planar input surface of a touch-sensitive device;
a first actuator coupled to the input member and configured to produce in-plane movement of the input member at a first frequency to produce a haptic output; and
a second actuator coupled to the input member and configured to produce out-of-plane movement of the input member at a second frequency, different from the first frequency, to produce an audio output.
15. A method for producing a haptic and acoustic output via an electronic device, comprising:
sending a first signal to a first actuator that is coupled to a planar input member of a touch-sensitive input device and configured to produce in-plane movement of the planar input member, thereby producing a haptic output corresponding to the first signal;
sending a second signal to a second actuator that is coupled to the planar input member and configured to produce out-of-plane movement of the planar input member, thereby producing an audio output corresponding to the second signal; wherein
the second signal has a different frequency than the first signal.
1. An electronic device comprising:
a component defining a planar feedback surface along an exterior of the electronic device; and
an actuator system operably coupled to the component and configured to move the component to simultaneously produce a haptic output of a first frequency and an audio output of a second frequency that is different than the first frequency, the actuator system comprising:
a first actuator configured to produce in-plane movement of the component at the first frequency to produce the haptic output; and
a second actuator configured to produce out-of-plane movement of the component at the second frequency to produce the audio output.
2. The electronic device of claim 1, wherein:
the electronic device is a notebook computer, comprising:
a housing;
a display within the housing;
a keyboard within the housing; and
a trackpad; and
the component is an input member of the trackpad.
3. The electronic device of claim 1, wherein:
the electronic device is a mobile phone, comprising:
a housing;
a display within the housing; and
a button; and
the component is an input member of the button.
4. The electronic device of claim 1, wherein the second frequency is higher than the first frequency.
5. The electronic device of claim 1, wherein at least one of the first actuator or the second actuator is movable relative to the component.
6. The electronic device of claim 1, wherein the haptic output is produced by providing a half sine wave to the first actuator.
7. The electronic device of claim 1, wherein the second actuator is positioned below the component.
9. The haptic device of claim 8, wherein the second actuator comprises a solenoid.
10. The haptic device of claim 8, wherein the second frequency is greater than the first frequency.
11. The haptic device of claim 10, wherein:
the input member defines an exterior surface and an interior surface opposite the exterior surface;
the haptic device comprises a connection member rigidly coupled to the input member and extending below the input member along a direction oblique to a plane defined by the exterior surface; and
the connection member couples the first actuator to the input member.
12. The haptic device of claim 10, wherein the audio output is produced by providing a sinusoidal wave to the second actuator.
13. The haptic device of claim 10, wherein the haptic output is produced by providing a half sine wave input signal to the first actuator.
14. The haptic device of claim 10, wherein the haptic output is produced by providing a square wave input signal to the first actuator.
16. The method of claim 15, wherein:
the haptic output is a first haptic output; and
the method further comprises, after sending the first and second signals:
moving the first actuator relative to the planar input member; and
sending the first signal to the first actuator, thereby producing a second haptic output that is different than the first haptic output.
17. The method of claim 15, wherein the second signal has a higher frequency than the first signal.
18. The method of claim 15, further comprising:
sending a third signal to the first actuator to produce an additional haptic output; and
sending a fourth signal to the second actuator to produce an additional audio output.
19. The method of claim 18, wherein
the third signal is different than the first signal; and
the fourth signal is different than the second signal.
20. The method of claim 18, wherein the fourth signal has a higher frequency than the third signal.

This application is a continuation patent application of U.S. patent application Ser. No. 14/227,149, filed Mar. 27, 2014 and titled “Adjusting the Level of Acoustic and Haptic Output in Haptic Devices,” the disclosure of which is hereby incorporated by reference herein in its entirety.

The present invention relates generally to electronic devices, and more particularly to haptic feedback in electronic devices.

Electronic devices may employ haptics to provide the user with a tactile output, for example in response to a particular input by the user, a system state, or an application instruction. As a specific example, some electronic devices such as a laptop computer include a track pad or button that may move or vibrate to provide a haptic output to the user. In some situations, the track pad or button can also produce a sound or an acoustic output that is based on the movement of the track pad or button. The mix of the haptic and acoustic output may be unacceptable to user, and typically the haptic and acoustic output cannot be varied.

Embodiments described herein permit the haptic and acoustic output of a haptic device to be changed. In one aspect, an electronic device can include a feedback surface and one or more actuators operably connected to the feedback surface. In some embodiments, a connection member may be operably connected between the feedback surface and each actuator. At least one actuator produces an attracting and/or repelling force that moves the connection member and the feedback surface. The movement can produce a haptic and acoustic output in the haptic device. An output adjustment mechanism may adjust the haptic and acoustic output of the haptic device. In one example, the output adjustment mechanism can be the positioning of at least one actuator so that the attracting and/or repelling force produced by the at least one actuator produces an out of plane movement in the feedback surface. The attracting and/or repelling force can also produce an in-plane movement. In another example, the output adjustment mechanism may be a material that is attached to at least a portion of an exterior surface of the connection member to change a cross-sectional area of the connection member. In yet another example, the output adjustment mechanism can be a connection member that has a different cross-sectional area in at least a portion of the connection member. In another example, the output adjustment mechanism may be one or more biasing supports that are adapted to change dynamically to adjust a haptic and acoustic output of the haptic device. For example, the one or more biasing supports can be made of a piezoelectric material that changes shape based on an input signal. These examples can be used in a haptic device individually or in various combinations.

In another aspect, one or more different haptic input signals can be received by at least one actuator to adjust the attracting and/or repelling force produced by the at least one actuator to change the haptic and acoustic output of the haptic device.

In another aspect, method for adjusting a haptic and acoustic output of a haptic device can include applying an attracting and/or repelling force to a feedback surface to produce a particular out of plane movement in the feedback surface. In some embodiments, a different haptic input signal can be received by at least one actuator to adjust the attracting and/or repelling force to change the haptic and acoustic output of the haptic device.

In another aspect, a method for adjusting a haptic and acoustic output of a haptic device can include producing by an actuator an attracting and/or repelling force to move a connection member and a feedback surface. An amount of the attracting and/or repelling force produced by the actuator is based on the haptic and acoustic output produced at least in part by a material attached to at least the portion of the exterior surface of the connection member, and/or by a shape of a cross-sectional area of at least a portion of the connection member.

Embodiments of the invention are better understood with reference to the following drawings. The elements of the drawings are not necessarily to scale relative to each other. Identical reference numerals have been used, where possible, to designate identical features that are common to the figures

FIG. 1 is a perspective view of one example of an electronic device that incorporates a haptic device;

FIG. 2 is a perspective view of another example of an electronic device that incorporates a haptic device;

FIG. 3 is an example block diagram of the electronic device of FIG. 1;

FIG. 4 is an enlarged top plan view of the haptic device of FIG. 1;

FIG. 5 is a cross-sectional view of a first example of the haptic device 102 taken along line 5-5 in FIG. 4;

FIG. 6 is a cross-sectional view of a second example of the haptic device 102 taken along line 5-5 in FIG. 4;

FIG. 7 is a cross-sectional view of a third example of the haptic device 102 taken along line 5-5 in FIG. 4;

FIGS. 8-10 are flowcharts of methods for adjusting an acoustic and a haptic output of a haptic device;

FIG. 11 illustrates a first graph of two examples of a haptic input signal;

FIG. 12 depicts an example fundamental frequency associated with the haptic input signal 1100 shown in FIG. 11;

FIG. 13 illustrates an example fundamental and harmonics frequencies associated with the haptic input signal 1102 shown in FIG. 11;

FIG. 14 depicts an example graph of an output response of the feedback surface that is produced by the haptic input signal 1102 shown in FIG. 11;

FIG. 15 illustrates a second graph of an example of a haptic input signal; and

FIG. 16 depicts a cross-sectional view of a fourth example of the haptic device 102 taken along line 5-5 in FIG. 4.

A haptic device in an electronic device includes a feedback surface and one or more actuators operably connected to the feedback surface. At least one actuator produces an attracting and/or a repelling force that creates movement in the feedback surface. An acoustic and haptic output of the haptic device can be adjusted at least in part by producing an out of plane movement in the feedback surface, by changing a cross-sectional area of at least a portion of the connection member, by changing dynamically one or more biasing supports disposed below the feedback surface, and/or by changing at least one waveform characteristic of a haptic input signal received by at least one actuator.

The methods and devices described herein may be used with substantially any type of apparatus or device where haptic feedback may be desired. FIGS. 1 and 2 are perspective views of exemplary electronic devices that can incorporate a haptic device. As shown in FIG. 1, the electronic device 100 may be a laptop computer. Alternatively, as depicted in FIG. 2, the electronic device 100 can be a smart telephone or mobile electronic device. It should be noted that the electronic devices illustrated in FIGS. 1 and 2 are illustrative only and substantially any other type of electronic device, such as but not limited to, a computer, a mobile phone, a digital music player, a digital camera, a calculator, a personal digital assistant, a tablet computing device, and so on may include one or more haptic devices.

With reference to FIGS. 1 and 2, the electronic device 100 may include a haptic device 102, a display 104, an input/output member 108, and an input/output port 110. The display 104 may provide an image or video output for the electronic device 100. The display 104 can be substantially any size and may be positioned substantially anywhere on the electronic device 100. In some embodiments, the display 104 can be a liquid display screen, a plasma screen, a light emitting diode screen, and so on. The display 104 may also function as an input device in addition to displaying output from the electronic device 100. For example, the display 104 can include capacitive touch sensors, infrared touch sensors, or the like that may capture a user's input to the display 104. In these embodiments, a user may press on the display 104 in order to provide input to the electronic device 100. In other embodiments, the display 104 may be separate from or otherwise external to the electronic device but in communication therewith to provide a visual output for the electronic device.

The input/output member 108 allows a user to interact with the electronic device 100. The input/output member 108 can be a switch, a capacitive sensor, a button, speakers, or another input/output mechanism. For example, the input/output member 108 may be a button or switch to power on/off the device 100, alter the volume of a speaker, return to a home screen, and the like. The electronic device 100 can include one or more input/output members 108, and each input/output member 108 may have one or more input/output functions. Furthermore, as briefly mentioned above, in some embodiments, the input/output member 108 can be incorporated into the display 104, e.g., a capacitive touch screen as the display 104.

The enclosure 106 may form a portion of an exterior of the electronic device 100 and may at least partially surround all or select components, such as the display 104, the haptic device 102, the input/output member 108, the input/output port 110, a processor, memory, and so on, of the electronic device 100. The enclosure 106 may be removable from the device 100, or may be substantially secured around the select components.

The input/output port 110 may be formed within or defined by the enclosure 106 and may electrically connect an external device to one or more internal components of the electronic device 100. Example external devices include, but are not limited to, headphones, speakers, communication networks such as the Internet, and removable memory storage. The input/output port 110 can be configured to receive an electrical connector for the electronic device 100. For example, the input/output port 110 may be configured to receive a power cord, a data cable (e.g., universal serial bus, fiber optic, tip ring sleeve connector, and the like), or a combination data and power cable. The electronic device 100 can include more than one input/output port 110 and each input/output port 110 may be positioned substantially anywhere on the electronic device 100.

With respect to FIG. 1, the electronic device 100, via an input/output port 110, may also be in communication with one or more external devices 112. In some embodiments, the haptic device 102 may be incorporated into an external device 112, such as a mouse, a track pad, a joystick, or other input device.

FIG. 3 is an example block diagram of the electronic device of FIG. 1. The electronic device 100 can include the haptic device 102, the display 104, a keyboard 300, a processing device 302, a power source 304, a memory or storage device 306, a sensor 308, and an input/output device and/or input/output (I/O) port 310. The processing device 302 can control some or all of the operations of the electronic device 100. The processing device 302 can communicate, either directly or indirectly, with substantially all of the components of the electronic device 100. For example, a system bus or signal line 312 or other communication mechanism can provide communication between the processing device 302, the haptic device 102, the power source 304, the memory 306, the sensor 308, and/or the I/O device and/or I/O port 310. The processing device 302 may communicate with the haptic device 102 to control one or more actuators 314 and/or an output adjustment mechanism 316 of the haptic device 102. As will be described in more detail later, the output adjustment mechanism can position at least one actuator so that the attracting and/or repelling force produced by the at least one actuator produces an out of plane movement in the feedback surface. Additionally or alternatively, the output adjustment mechanism may include a cross-sectional area of at least one connection member. Additionally or alternatively, the output adjustment mechanism can be one or more biasing supports that are adapted to change dynamically to adjust a haptic and acoustic output of the haptic device. Additionally or alternatively, the output adjustment mechanism can produce a different haptic input signal that is received by the at least one actuator to adjust a haptic and acoustic output of the haptic device.

The processing device 302 can be implemented as any electronic device capable of processing, receiving, or transmitting data or instructions. For example, the processing device 302 can be a microprocessor, a central processing unit (CPU), an application-specific integrated circuit (ASIC), a digital signal processor (DSP), or combinations of such devices. As described herein, the term “processing device” is meant to encompass a single processor or processing unit, multiple processors, multiple processing units, or other suitably configured computing element or elements.

It should be noted that the components of the electronic device can be controlled by multiple processing devices. For example, select components of the electronic device 100 may be controlled by a first processing device and other components of the electronic device 100 may be controlled by a second processing device where the first and second processing devices may or may not be in communication with each other.

The power source 304 can be implemented with any device capable of providing energy to the electronic device 100. For example, the power source 304 may be one or more batteries or rechargeable batteries, or a connection cable that connects the remote control device to another power source such as a wall outlet.

The memory 306 can store electronic data that can be used by the electronic device 100. For example, a memory can store electrical data or content such as, for example, audio and video files, documents and applications, device settings and user preferences, timing signals, haptic input signals, data structures or databases, and so on. In some embodiments, the memory 306 may store user settings with respect to the haptic device 102. The memory 202 can be configured as any type of memory. By way of example only, the memory can be implemented as random access memory, read-only memory, Flash memory, removable memory, or other types of storage elements, or combinations of such devices.

The electronic device 100 may also include one or more sensors 308 positioned substantially anywhere on the electronic device 100. The sensor or sensors 308 can be configured to sense substantially any type of characteristic, such as but not limited to, images, pressure, light, touch, heat, movement, relative motion, fingerprint data, and so on. For example, the sensor(s) 308 may be an image sensor, a heat sensor, a force sensor, a position sensor, a light or optical sensor, an accelerometer, a pressure transducer, a gyroscope, a magnet, a health monitoring sensor, a biometric sensor, and so on. Additionally, the one or more sensors 308 can utilize any suitable sensing technology, including, but not limited to, capacitive, ultrasonic, resistive, optical, ultrasound, piezoelectric, and thermal sensing technology.

The I/O device and/or I/O port 310 can transmit and/or receive data to and from a user or another electronic device. The I/O device(s) can include a display, a touch sensing input surface such as a trackpad, one or more buttons, one or more microphones or speakers, one or more ports such as a microphone port, and/or a keyboard. Additionally or alternatively, an I/O device or port can transmit electronic signals via a communications network, such as a wireless and/or wired network connection. Examples of wireless and wired network connections include, but are not limited to, cellular, Wi-Fi, Bluetooth, IR, and Ethernet.

It should be noted that FIGS. 1-3 are exemplary only. In other examples, the electronic device may include fewer or more components than those shown in FIGS. 1-3. Additionally, the illustrated electronic devices are only exemplary devices that can include a haptic device 102. In other embodiments, a haptic device may be incorporated into substantially any type of device that provides haptic feedback to a user. Additionally or alternatively, a haptic device can be included in any type of component within, or connected to an electronic device. For example, one or more haptic devices can be included in an enclosure or button of an electronic device, or in a component operatively connected to an electronic device (e.g., mouse or keyboard).

Referring now to FIGS. 4 and 5, there is shown an enlarged plan view and a cross-sectional view of a first example of the haptic device 102, respectively. The haptic device 102 selectively provides output or feedback to a user by moving, vibrating, or otherwise alternating a feedback surface 400. In the illustrated embodiment, the feedback surface 400 is substantially co-planar with an exterior surface of the enclosure 106 of the electronic device. Although shown in a rectangular shape, the feedback surface 400 may have any suitable shape and dimensions.

Additionally, the haptic device 102 can include one more force sensors 402A, 402B, 402C, 402D. In some embodiments, the haptic device can include other types of sensors, such as a position sensor (not shown) that may be disposed below the feedback surface 400 and an acceleration sensor (not shown) configured to detect an acceleration of a user input. The force sensor(s) can be any suitable type of sensor capable of detecting an exerted force. For example, in some embodiments each force sensor may be a strain gauge.

As shown in FIG. 5, the haptic device 102 may also include one or more biasing supports 502A, 502B to secure and support the haptic device 102 to the electronic device 100 and/or to support the feedback surface 400 above a substrate 504. In some embodiments, a haptic device may include four biasing supports that each may be operably connected to the feedback surface 400 below or at a location substantially adjacent to the location of the force sensors 402A, 402B, 402C, 402D. The biasing supports 502A, 502B provide a biasing force to the feedback surface 400 to return the feedback surface 400 to a normal or first position. The biasing supports may be substantially any member capable of providing a biasing or return force to the feedback surface 400. In some embodiments, the biasing supports may be a relatively flexible and resilient member, such as a gel. In this example, the gel may be a silicon based gel that may be positioned around the sides of the feedback surface 400. In other embodiments, the biasing supports can be one or more springs spanning between the substrate 504 and the feedback surface 400. And in yet other embodiments, the haptic device 102 may use a magnetic force from one or more magnets to return the feedback surface 400 to the first position.

The haptic device 102 may include one or more actuators 500A, 500B, 500C operably connected to the feedback surface 400 by one or more connection members 506A, 506B, 506C. At least one actuator 500A, 500B, 500C can receive one or more haptic input signals from a processing device (e.g., processing device 302 in FIG. 3) or other controlling element, and those signals may be converted into mechanical movement by the actuator. Any suitable type of actuator can be included in the haptic device 102. For example, an actuator may be a solenoid actuator including a wire wound around a moveable iron core, and as a current passes through the wire coil, the iron core may move correspondingly. Specifically, the electric current through the wire may create a magnetic field. The magnetic field may then apply a force to the core or plunger, to either attract or repel the core. In these embodiments, the actuator may also include a spring or biasing member which may return the core to its original position after the magnetic field is removed. In other embodiments, an actuator may be an electromagnet, or a series of magnets that are selectively energized to attract or repel the feedback surface 400. As a specific example, the actuator may be a series of bar electromagnets with alternating poles that may be used to mechanically move the feedback surface 400.

Each actuator may selectively move the feedback surface 400 in a horizontal or linear direction, e.g., along the X axis and/or the Y axis illustrated in FIG. 4. In other words, the feedback surface 400 may translate horizontally but may not move vertically with respect to the enclosure 106. In other embodiments, the actuator or actuators may move the feedback surface 400 in a vertical direction (along a Z axis) or in a combination of vertical and linear directions. In some embodiments, a haptic device may produce an acoustic response when providing a haptic response to a user. With respect to the haptic device 102, the sound can be created by vibrations in the feedback surface (e.g., top surface) of the haptic device. The motion in the z-direction of the feedback surface can move the air and produce sound. Additionally or alternatively, movement in a connection member operably connected to the feedback surface may produce an acoustic output based on the movement.

Embodiments described herein adjust or change the levels of an acoustic and haptic output in a haptic device. As will be described in more detail later, the acoustic and haptic output can be adjusted in one embodiment by varying a haptic input signal that is received by one or more actuators. Another embodiment may alter the position of an actuator and/or a connection member with respect to a feedback surface of the haptic device. And in yet another embodiment, a cross-sectional area of a connecting member operatively connected to a feedback surface of the haptic device can vary or be different to adjust the acoustic and haptic output of the haptic device. These embodiments can be utilized individually or in various combinations.

For example, as shown in FIG. 5, the actuators move the feedback surface through a respective connection member 506A, 506B, 506C. The first actuator 500A is positioned to produce a horizontal attracting and/or repelling force on the feedback surface 400, while the second actuator 500B is situated to generate a vertical attracting and/or repelling force on the feedback surface 400. The third actuator 500C produces a horizontal and a vertical attracting and/or repelling force on the feedback surface through the connection member 506C. The repelling and/or attracting force produced by the actuator 500C is applied at an angle to the feedback surface 400, so movement of the feedback surface can occur in both a linear (x and/or y) direction and in a vertical (z) direction. In some embodiments, the actuator and/or the connection member can be positioned with respect to the feedback surface so that the attracting and/or repelling force is applied to the feedback surface 400 at an angle. Additionally or alternatively, the shape of the connection member can be configured to apply the attracting and/or repelling force to the feedback surface at an angle (e.g., see connection member 506C).

In other words, the repelling and/or attracting force produced by an actuator can produce out-of-plane movement (z direction) in the feedback surface 400, and may also produce in-plane movement (x direction and/or y direction) in the feedback surface. The in-plane movement produces a haptic response, and in some embodiments, a haptic and an acoustic response. The out-of-plane movement generates a haptic and an acoustic response. The acoustic and haptic responses may be adjusted based on the angle at which the attracting and/or repelling force is applied to the feedback surface. Some angles may produce a greater haptic output and a smaller acoustic output in the feedback surface, while other angles can produce a greater acoustic output and a smaller haptic output in the feedback surface.

In some embodiments, a different sound may be produced when a single actuator 500A, 500B, or 500C moves the feedback surface compared to when two or more actuators move the feedback surface. Additionally, a different sound may be produced when the actuator 500A moves the feedback surface compared to when the actuator 500B or 500C moves the feedback surface. Thus, the acoustic and haptic output of the haptic device can be adjusted based on the positioning and selective activation of one or more actuators.

FIG. 6 is a cross-sectional view of a second example of the haptic device 102 taken along line 5-5 in FIG. 4. As discussed earlier, movement in a connection member operably connected to the feedback surface may produce an acoustic or haptic output. As will now be described in conjunction with FIG. 6, the haptic and acoustic output of the haptic device may be adjusted based on the cross-sectional area of one or more connection members.

As shown in FIG. 6, an actuator 600 is operatively connected to the feedback surface 400 through a connection member 602A. A material is attached to, or may surround at least a portion of the exterior surface of the connection member to adjust the haptic and acoustic output produced in the feedback surface. In the illustrated embodiment, the material is positioned at a location that is substantially adjacent to a location of the actuator 600, but other embodiments can position the material at a different location or at one or more locations. In one embodiment, the material is a lightweight but rigid material, such as a synthetic fiber. The material 604 modifies the cross-sectional areas of the connection member 602A, which may produce a different acoustic and haptic output when the actuator 600 moves the feedback surface 400.

In some embodiments, the connection member 602A may extend to another side of the feedback surface 400. In the illustrated embodiment, the other side of the feedback surface is the side that opposes the side adjacent to the actuator 600. When the actuator 600 moves the connection member 602A to move the feedback surface 400, the connection member 602B may also move. The connection member 602B is fabricated so that a cross-sectional area of at least a portion of the connection member 602B varies or is different from another portion of the connection member. The different cross-sectional area of the connection member 602B may result in a different acoustic and haptic output when the actuator 600 moves the feedback surface 400.

Additionally or alternatively, a separate and distinct connection member operably attached to the feedback surface can be fabricated to have a different or varying cross-sectional area in at least a portion of the connection member (e.g., see 602B) and/or can have a material attached to at least a portion of an exterior surface of the connection member (e.g., see 602A). The connection member may or may not be operatively connected to an actuator. The cross-sectional area of the connection member may result in a different acoustic and haptic output when the connection member is moved. Some cross-sectional areas may produce a greater haptic output and a smaller acoustic output in the feedback surface, while other cross-sectional areas can produce a greater acoustic output and a smaller haptic output in the feedback surface.

Changing the position of the actuator is another way to adjust the acoustic and haptic output of a haptic device. As shown in FIG. 7, the actuator 700 can be raised or lowered to different positions (represented by arrow 702), thereby changing the position where the attracting and/or repelling force is applied to the feedback surface 400 via the connection member 704.

Other embodiments can adjust the position of one or more connection members. For example, a position of a connection member can be adjusted in the vertical or z direction (e.g., raised or lowered), the horizontal direction (x and/or y direction) or rotated to produce a different haptic and acoustic output.

In some embodiments, the actuator or actuators can be configured to respond to one or more haptic input signals that may vary the mechanical output of at least one actuator in the haptic device. For example, if an actuator is a solenoid actuator, the various waveforms of the haptic input signals may vary the current through the wire, and thus may vary the magnetic field created. By changing the magnetic field, different types of mechanical movements may be created. Example different waveforms for the actuator will be discussed in more detail with respect to FIGS. 11 and 15. The haptic input signal or signals can be stored in a memory, such as the memory 306 in FIG. 3.

The haptic input signal can be, for example, a sinusoidal wave, a half sinusoidal wave, a half elliptical wave, a saw-tooth wave, a pulse, a ramp down or ramp up wave, a square wave, and various combinations of such waveforms. As the actuator receives the haptic input signal, the mechanical movement output by the actuator may vary, such that one type of waveform may have a different acoustic and haptic output compared to another waveform. In other words, the displacement direction or directions and/or speed of the feedback surface may be varied by changing the shape, frequency, amplitude, phase, and/or duration of the haptic input signal. Thus, by changing the haptic input signal the haptic and acoustic output experienced by a user may be changed.

FIGS. 8-10 are flowcharts of methods for adjusting an acoustic and a haptic output of a haptic device. In FIG. 8, one or more actuators and/or one or more connection members can be positioned with respect to the feedback surface 400 so that an attracting and/or repelling force produced by at least one actuator produces out-of-plane movement in the feedback surface. As described previously, in-plane movement can also be produced in the feedback surface. A haptic input signal can then be received by at least one actuator and a determination may be made as to whether or not the acoustic and haptic output is acceptable (blocks 802 and 804). If so, the method ends. If the acoustic and haptic output is not acceptable, the process passes to block 806 where the haptic input signal is changed and then received by one or more actuators. The method then returns to block 804.

In FIG. 9, at least a portion of at least one connection member varies or is different from another portion of the connection member and/or from another connection member in the haptic device (block 900). A haptic input signal can then be received by at least one actuator and a determination may be made as to whether or not the acoustic and haptic output is acceptable (blocks 902 and 904). If so, the method ends. If the acoustic and haptic output is not acceptable, the process passes to block 906 where the haptic input signal is changed and then received by one or more actuators. The method then returns to block 904.

With respect to FIG. 10, a haptic input signal is received by one or more actuators at block 1000. The haptic input signal can be, for example, a sinusoidal wave, a half sinusoidal wave, a half elliptical wave, a saw-tooth wave, a pulse, a ramp down or ramp up wave, a square wave, and various combinations of such waveforms. As each actuator receives the haptic input signal, the mechanical movement output by the actuator may vary, such that one type of waveform may have a different acoustic and haptic output compared to another waveform. In other words, the displacement direction or directions and/or speed of the feedback surface may be varied by changing the shape, frequency, amplitude, phase, and/or duration of the haptic input signal. Thus, by changing the input waveform the haptic and acoustic output experienced by a user may be changed.

Next, as shown in block 1002, a determination is made as to whether or not the acoustic and haptic output is acceptable. If so, the method ends. If the acoustic and haptic output is not acceptable, the process passes to block 1004 where the haptic input signal is adjusted and then input into the actuator(s). Next, the method returns to block 1002 and repeats until the haptic and acoustic output is acceptable.

As described earlier, a haptic input signal can be changed by adjusting one or more waveform characteristics of a haptic input signal. The different waveform can have a different shape as the previous waveform, or one or more characteristics of the waveform can be changed. By way of example only, the magnitude, frequency, phase, and/or duration of a haptic input signal may vary. A different haptic input signal can be selected by a user at block 806, block 906, and block 1004, or a processing device may select a different haptic input signal. As one example, the user can select a different waveform through a menu or control panel.

The illustrative methods shown in FIGS. 8-10 may be performed by a manufacturer at the time the haptic device is fabricated. Additionally or alternatively, the method can be performed by a user when a user wishes to change the haptic and acoustic output of a haptic device. In some embodiments, a user can customize the haptic and acoustic output for select applications or functions.

Other embodiments can perform the methods shown in FIGS. 8-10 differently. Additionally, each method can be used for a single actuator or for multiple actuators in a haptic device. In embodiments that have multiple actuators, a different haptic input signal can be input into each actuator, or all of the actuators can receive the same haptic input signal.

In some instances, movement of the feedback surface in response to a particular haptic input signal may be a damped response, in that the feedback surface may be actuated by an actuator and then may oscillate at reduced levels towards the normal position. In other words, the feedback surface may have an initial displacement and then a series of smaller displacements as the feedback surface is acted upon by the biasing members (e.g., biasing members 502A, 502B). FIG. 11 depicts a graph of two examples of haptic input signals. Input signal 1100 is a half sine wave and input signal 1102 a square wave. In some embodiments, a half sine wave may produce a frequency pulse as an output, as shown in FIG. 12. The half sine wave can produce a single movement in a feedback surface. In a haptic device, the half sine wave can result in an increased haptic output compared to the acoustic output (or vice versa depending on the feedback surface and/or the haptic device).

Alternatively, a square wave can produce frequency spectrum pulses 1300, 1302, 1304, 1306 (see FIG. 13). In a haptic device, the sharp corners of the square wave can produce frequency pulses that can result in an increased acoustic output compared to the haptic output. In a feedback surface, the frequency pulse 1300 can cause the feedback surface to have an initial displacement or movement impulse, and the other frequency pulses 1302, 1304, 1306 may cause a series of smaller displacements as the feedback surface returns to the normal or first position.

FIG. 14 depicts an example graph of an output response of the feedback surface that is produced by the haptic input signal 1102 shown in FIG. 11. After the initial pulse or output 1400, the displacement of the feedback surface has additional oscillations or ring down waves 1402. Thus, although an actuator may provide only a single movement impulse for force, the feedback surface may oscillate slightly after the original movement. The initial and ring down waves can produce a different acoustic and haptic output in the haptic device.

Referring now to FIG. 15, there is shown a second graph of an example of a haptic input signal. The input signal 1500 is shaped similarly to a half sine wave 1500 in the illustrated, but imposed on top of or over the half sine wave is another signal 1502. The half sine wave 1500 combined with the other signal 1502 can produce a different acoustic and haptic output in a haptic device. The other signal 1502 can be implemented with any suitable signal or waveform. For example, in one embodiment the other signal can be a higher frequency half sine wave.

FIG. 16 illustrates a cross-sectional view of a fourth example of the haptic device 102 taken along line 5-5 in FIG. 4. An actuator 1600 is operably connected to the feedback surface 400 through connection member 1602. One or more biasing supports 1604A, 1604B are disposed below the feedback surface 400 to secure and support the haptic device 102 to the electronic device 100 and/or to support the feedback surface 400 above a substrate 1606. The biasing supports may be made of a compliant material that can change dynamically to adjust the haptic and acoustic output of the haptic device. For example, in one embodiment the biasing supports may be made of a piezoelectric material that changes shape based on an input signal 1608. The haptic and acoustic output can vary based on the different shapes of the piezoelectric material assumed by the biasing supports in response to different input signals. The input signals can be transmitted by a processing device, such as the processing device 302 in FIG. 3. Other embodiments can utilize a different type of material that can change dynamically. For example, a compliant material that changes density or compliance can be used to adjust the haptic and acoustic output of a haptic device.

Various embodiments have been described in detail with particular reference to certain features thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the disclosure. And even though specific embodiments have been described herein, it should be noted that the application is not limited to these embodiments. In particular, any features described with respect to one embodiment may also be used in other embodiments, where compatible. Likewise, the features of the different embodiments may be exchanged, where compatible.

Wiederhold, Curtis P., Bard, Benjamin A.

Patent Priority Assignee Title
10890978, May 10 2016 Apple Inc. Electronic device with an input device having a haptic engine
11024135, Jun 17 2020 Apple Inc Portable electronic device having a haptic button assembly
11460946, Sep 06 2017 Apple Inc. Electronic device having a touch sensor, force sensor, and haptic actuator in an integrated module
11756392, Jun 17 2020 Apple Inc. Portable electronic device having a haptic button assembly
11762470, May 10 2016 Apple Inc. Electronic device with an input device having a haptic engine
11805345, Sep 25 2018 Apple Inc. Haptic output system
Patent Priority Assignee Title
5196745, Aug 16 1991 Massachusetts Institute of Technology Magnetic positioning device
5293161, Jun 18 1990 Motorola, Inc. Selective call receiver having a variable frequency vibrator
5424756, May 14 1993 Track pad cursor positioning device and method
5434549, Nov 12 1992 TDK Corporation Moving magnet-type actuator
5436622, Jul 06 1993 Motorola Mobility LLC Variable frequency vibratory alert method and structure
5668423, Mar 21 1996 MICROTECH CO , LTD Exciter for generating vibration in a pager
5739759, Feb 04 1993 Toshiba Corporation Melody paging apparatus
5842967, Aug 07 1996 Envoy Medical Corporation Contactless transducer stimulation and sensing of ossicular chain
6084319, Oct 16 1996 Canon Kabushiki Kaisha Linear motor, and stage device and exposure apparatus provided with the same
6342880, Sep 27 1995 Immersion Corporation Force feedback system including multiple force processors
6373465, Nov 10 1998 Lord Corporation Magnetically-controllable, semi-active haptic interface system and apparatus
6388789, Sep 19 2000 The Charles Stark Draper Laboratory, Inc. Multi-axis magnetically actuated device
6438393, Jun 25 1998 WSOU Investments, LLC Integrated motion detector in a mobile communications device
6445093, Jun 26 2000 Nikon Corporation Planar motor with linear coil arrays
6493612, Dec 18 1998 Dyson Technology Limited Sensors arrangement
6693622, Aug 18 2000 Immersion Corporation Vibrotactile haptic feedback devices
6777895, Nov 22 2001 MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Vibrating linear actuator
6822635, Jan 19 2000 Immersion Corporation Haptic interface for laptop computers and other portable devices
6864877, Sep 28 2000 Immersion Corporation Directional tactile feedback for haptic feedback interface devices
6952203, Jan 08 2002 International Business Machines Corporation Touchscreen user interface: Bluetoothâ„¢ stylus for performing right mouse clicks
6988414, Apr 29 2003 Stiftung Caesar Center of Advanced European Studies and Research; Infineon Technologies AG; CAESAR, STIFTUNG Sensor device having a magnetostrictive force sensor
7068168, Nov 12 2004 GIRSHOVICH, SIMON; KORMAN, DAVID Wireless anti-theft system for computer and other electronic and electrical equipment
7080271, Feb 14 2003 Intel Corporation Non main CPU/OS based operational environment
7126254, Jul 22 2003 NGK Insulators, Ltd Actuator element and device including the actuator element
7130664, Jun 12 2003 User-based signal indicator for telecommunications device and method of remotely notifying a user of an incoming communications signal incorporating the same
7196688, May 24 2000 Immersion Corporation Haptic devices using electroactive polymers
7202851, May 04 2001 IMMERSION MEDICAL, INC Haptic interface for palpation simulation
7234379, Jun 28 2005 Device and a method for preventing or reducing vibrations in a cutting tool
7253350, Oct 22 1999 Yamaha Corporation Vibration source driving device
7276907, Mar 07 2003 GE Medical Systems Global Technology Company, LLC Magnetic resonance imaging system
7323959, Mar 17 2005 Matsushita Electric Industrial Co., Ltd. Trackball device
7339572, May 24 2000 Immersion Corporation Haptic devices using electroactive polymers
7355305, Dec 08 2003 Shen-Etsu Chemical Co., Ltd. Small-size direct-acting actuator
7360446, May 31 2006 Google Technology Holdings LLC Ceramic oscillation flow meter having cofired piezoresistive sensors
7370289, Mar 07 2001 GOOGLE LLC Method and apparatus for notification on an electronic handheld device using an attention manager
7392066, Jun 17 2004 IXI Mobile (R&D), Ltd. Volume control system and method for a mobile communication device
7423631, Jun 23 1998 Immersion Corporation Low-cost haptic mouse implementations
7508382, Apr 28 2004 Fuji Xerox Co., Ltd. Force-feedback stylus and applications to freeform ink
7570254, Nov 09 2004 FUKOKU CO , LTD Haptic feedback controller, method of controlling the same, and method of transmitting messages that uses a haptic feedback controller
7656388, Jul 01 1999 Immersion Corporation Controlling vibrotactile sensations for haptic feedback devices
7667691, Jan 19 2006 TWITTER, INC System, computer program product and method of preventing recordation of true keyboard acoustic emanations
7675414, Aug 10 2006 Qualcomm Incorporated Methods and apparatus for an environmental and behavioral adaptive wireless communication device
7710397, Jun 03 2005 Apple Inc Mouse with improved input mechanisms using touch sensors
7710399, Jun 23 1998 Immersion Corporation Haptic trackball device
7741938, Jun 02 2005 PREH GmbH Rotary actuator with programmable tactile feedback
7755605, May 18 2004 Spherical display and control device
7798982, Nov 08 2002 Engineering Acoustics, Inc Method and apparatus for generating a vibrational stimulus
7825903, May 12 2005 Immersion Corporation Method and apparatus for providing haptic effects to a touch panel
7855657, Jan 13 2005 Siemens Aktiengesellschaft Device for communicating environmental information to a visually impaired person
7890863, Oct 04 2006 Immersion Corporation Haptic effects with proximity sensing
7893922, Jan 15 2007 Sony Ericsson Mobile Communications AB Touch sensor with tactile feedback
7904210, Mar 18 2008 Visteon Global Technologies, Inc. Vibration control system
7919945, Jun 27 2005 General Vibration Corporation Synchronized vibration device for haptic feedback
7952261, Jun 29 2007 Parker Intangibles, LLC Electroactive polymer transducers for sensory feedback applications
7952566, Jul 31 2006 Sony Corporation Apparatus and method for touch screen interaction based on tactile feedback and pressure measurement
7956770, Jun 28 2007 Sony Corporation Data input device and portable electronic device
7976230, Apr 13 2006 Nokia Corporation Actuator mechanism and a shutter mechanism
8002089, Sep 10 2004 Immersion Corporation Systems and methods for providing a haptic device
8020266, Oct 02 2006 Robert Bosch GmbH Method of producing a device
8040224, Aug 22 2007 Samsung Electronics Co., Ltd. Apparatus and method for controlling vibration in mobile terminal
8053688, Jun 07 2006 International Business Machines Corporation Method and apparatus for masking keystroke sounds from computer keyboards
8063892, Jan 19 2000 Elckon Limited Haptic interface for touch screen embodiments
8081156, Nov 20 2003 PREH GmbH Control element with programmable haptics
8125453, Oct 20 2002 Immersion Corporation System and method for providing rotational haptic feedback
8154537, Aug 16 2007 Immersion Corporation Resistive actuator with dynamic variations of frictional forces
8169402, Jun 30 2000 Immersion Corporation Vibrotactile haptic feedback devices
8174495, Oct 28 2005 Sony Corporation Electronic apparatus
8174512, Jun 02 2006 Immersion Corporation Hybrid haptic device utilizing mechanical and programmable haptic effects
8217892, May 06 2008 Dell Products L.P. Tactile feedback input device
8217910, Dec 19 2008 Verizon Patent and Licensing Inc Morphing touch screen layout
8232494, Dec 16 2005 KEENTON INTERNATIONAL LIMITED Keyboard
8248386, Jan 21 2008 Sony Interactive Entertainment LLC Hand-held device with touchscreen and digital tactile pixels
8253686, Nov 26 2007 Electronics and Telecommunications Research Institute Pointing apparatus capable of providing haptic feedback, and haptic interaction system and method using the same
8262480, Nov 12 2009 IGT Touch screen displays with physical buttons for gaming devices
8265292, Jun 30 2010 GOOGLE LLC Removing noise from audio
8265308, Dec 07 2007 Google Technology Holdings LLC Apparatus including two housings and a piezoelectric transducer
8344834, Jan 15 2010 Hosiden Corporation Input apparatus
8345025, Jun 05 2008 Dell Products, LP Computation device incorporating motion detection and method thereof
8351104, Mar 06 2008 Nanomotion Ltd Controllably coupled piezoelectric motors
8378797, Jul 17 2009 Apple Inc. Method and apparatus for localization of haptic feedback
8378965, Apr 10 2007 Immersion Corporation Vibration actuator with a unidirectional drive
8384316, Jun 27 2005 General Vibration Corporation Synchronized vibration device for haptic feedback
8390218, Jun 27 2005 General Vibration Corporation Synchronized vibration device for haptic feedback
8390594, Aug 18 2009 TDK ELECTRONICS AG Haptic feedback using composite piezoelectric actuator
8400027, Oct 19 2009 AAC TECHNOLOGIES PTE LTD Flat linear vibrating motor
8421609, Aug 13 2010 Samsung Electro-Mechanics Co., Ltd. Haptic feedback device and electronic device having the same
8469806, Jul 22 2009 Immersion Corporation System and method for providing complex haptic stimulation during input of control gestures, and relating to control of virtual equipment
8471690, Mar 30 2010 PI Ceramic GmbH Device for producing a haptic feedback from a keyless input unit
8493177, Jan 29 2010 Immersion Corporation System and method of haptically communicating vehicle information from a vehicle to a keyless entry device
8493189, Dec 25 2006 FUKOKU CO , LTD Haptic feedback controller
8576171, Aug 13 2010 Immersion Corporation Systems and methods for providing haptic feedback to touch-sensitive input devices
8598750, Apr 16 2010 EM-TECH CO , LTD Broadband linear vibrator and mobile terminal
8598972, Aug 22 2008 Korea Advanced Institute of Science and Technology Electromagnetic multi-axis actuator
8604670, May 30 2008 The Trustees of the University of Pennsylvania Piezoelectric ALN RF MEM switches monolithically integrated with ALN contour-mode resonators
8605141, Feb 24 2010 NANT HOLDINGS IP, LLC Augmented reality panorama supporting visually impaired individuals
8614431, Sep 30 2005 Apple Inc. Automated response to and sensing of user activity in portable devices
8619031, May 30 2003 Immersion Corporation System and method for low power haptic feedback
8624448, Nov 18 2008 INSTITUT FUER LUFT- UND KAELTETECHNIK GEMEINNUETZIGE GMBH Electrodynamic linear oscillating motor
8633916, Dec 10 2009 Apple, Inc.; Apple Inc Touch pad with force sensors and actuator feedback
8639485, Nov 14 2005 Immersion Corporation Systems and methods for editing a model of a physical system for a simulation
8648829, Oct 20 2002 Immersion Corporation System and method for providing rotational haptic feedback
8654524, Aug 17 2009 Apple Inc. Housing as an I/O device
8681130, May 20 2011 Sony Corporation Stylus based haptic peripheral for touch screen and tablet devices
8717151, May 13 2011 Qualcomm Incorporated Devices and methods for presenting information to a user on a tactile output surface of a mobile device
8730182, Jul 30 2009 Immersion Corporation Systems and methods for piezo-based haptic feedback
8749495, Sep 24 2008 Immersion Corporation Multiple actuation handheld device
8754759, Dec 31 2007 Apple Inc. Tactile feedback in an electronic device
8760037, Dec 02 2006 Nanomotion Ltd Controllable coupling force
8773247, Dec 15 2009 Immersion Corporation Haptic feedback device using standing waves
8780074, Jul 06 2011 Sharp Kabushiki Kaisha Dual-function transducer for a touch panel
8797153, Sep 16 2009 DAV Rotary control device with haptic feedback
8803670, Sep 05 2008 LISA DRAEXLMAIER GMBH Operating control having specific feedback
8834390, Jun 21 2002 Boston Scientific Scimed, Inc. Electronically activated capture device
8836502, Dec 28 2007 Apple Inc Personal media device input and output control based on associated conditions
8836643, Jun 10 2010 Qualcomm Incorporated Auto-morphing adaptive user interface device and methods
8867757, Jun 28 2013 GOOGLE LLC Microphone under keyboard to assist in noise cancellation
8872448, Feb 24 2012 RPX Corporation Apparatus and method for reorientation during sensed drop
8878401, Nov 10 2010 EM-TECH CO , LTD Linear vibrator having a trembler with a magnet and a weight
8907661, Mar 22 2010 Fm marketing gmbh Input apparatus with haptic feedback
8976139, Jan 20 2012 PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO , LTD Electronic device
8981682, Jun 27 2005 General Vibration Corporation Asymmetric and general vibration waveforms from multiple synchronized vibration actuators
8987951, Oct 27 2010 EM-TECH CO , LTD Linear vibrator
9008730, Apr 21 2009 LG Electronics Inc Mobile terminal capable of providing multi-haptic effect and method of controlling the mobile terminal
9024738, Feb 01 2013 Malikie Innovations Limited Apparatus, systems and methods for mitigating vibration of an electronic device
9052785, Jun 06 2011 Wacom Co., Ltd. Position detecting device, display apparatus, and portable apparatus
9054605, Nov 19 2010 HYSONIC CO , LTD Haptic module using piezoelectric element
9058077, Nov 16 2007 Malikie Innovations Limited Tactile touch screen for electronic device
9086727, Jun 22 2010 Microsoft Technology Licensing, LLC Free space directional force feedback apparatus
9092056, Feb 22 2010 Panasonic Corporation of North America Keyboard having selectively viewable glyphs
9104285, Mar 24 2006 Northwestern University Haptic device with indirect haptic feedback
9122330, Nov 19 2012 Disney Enterprises, Inc. Controlling a user's tactile perception in a dynamic physical environment
9134796, Apr 15 2009 Koninklijke Philips Electronics N V Foldable tactile display
9172669, Oct 14 2009 AT&T MOBILITY II LLC Apparatus, methods and computer-readable storage media for security provisioning at a communication device
9218727, May 12 2011 Apple Inc.; Apple Inc Vibration in portable devices
9245704, Oct 08 2013 19th Space Electronics Piezoelectric multiplexer
9256287, Aug 30 2011 Kyocera Corporation Tactile sensation providing apparatus
9274601, Apr 24 2008 Malikie Innovations Limited System and method for generating a feedback signal in response to an input signal provided to an electronic device
9280205, Dec 17 1999 Immersion Corporation Haptic feedback for touchpads and other touch controls
9286907, Nov 23 2011 CREATIVE TECHNOLOGY LTD Smart rejecter for keyboard click noise
9304587, Feb 13 2013 Apple Inc.; Apple Inc Force sensing mouse
9319150, Oct 29 2012 Dell Products, LP Reduction of haptic noise feedback in system
9361018, Mar 01 2010 Malikie Innovations Limited Method of providing tactile feedback and apparatus
9396629, Feb 21 2014 Apple Inc. Haptic modules with independently controllable vertical and horizontal mass movements
9430042, Dec 27 2006 Immersion Corporation Virtual detents through vibrotactile feedback
9436280, Jan 07 2010 Qualcomm Incorporated Simulation of three-dimensional touch sensation using haptics
9442570, Mar 13 2013 Google Technology Holdings LLC Method and system for gesture recognition
9448713, Apr 22 2011 Immersion Corporation Electro-vibrotactile display
9449476, Nov 18 2011 SENTONS INC Localized haptic feedback
9466783, Jul 26 2012 Immersion Corporation Suspension element having integrated piezo material for providing haptic effects to a touch screen
9489049, Aug 26 2014 Samsung Electronics Co., Ltd. Force simulation finger sleeve using orthogonal uniform magnetic field
9496777, Jul 19 2012 M2SYS CO , LTD Haptic actuator
9501149, Aug 29 2012 Immersion Corporation System for haptically representing sensor input
9513704, Mar 12 2008 Immersion Corporation Haptically enabled user interface
9535500, Mar 01 2010 Malikie Innovations Limited Method of providing tactile feedback and apparatus
9539164, Mar 20 2012 Xerox Corporation System for indoor guidance with mobility assistance
9557830, Mar 15 2013 Immersion Corporation Programmable haptic peripheral
9557857, Apr 26 2011 Synaptics Incorporated Input device with force sensing and haptic response
9600037, Aug 17 2009 Apple Inc. Housing as an I/O device
9632583, Jan 21 2014 PIXART IMAGING INC Controlling output current for electrosensory vibration
9829981, May 26 2016 Apple Inc.; Apple Inc Haptic output device
9904393, Jun 11 2010 3M Innovative Properties Company Positional touch sensor with force measurement
9927902, Jan 06 2013 Intel Corporation Method, apparatus, and system for distributed pre-processing of touch data and display region control
9940013, Dec 06 2012 SAMSUNG ELECTRONICS CO , LTD Display device for controlling displaying of a window and method of controlling the same
20030117132,
20050036603,
20050230594,
20060017691,
20060209037,
20060223547,
20060252463,
20070106457,
20070152974,
20070236450,
20080062145,
20080084384,
20080111791,
20090072662,
20090085879,
20090115734,
20090128306,
20090166098,
20090167702,
20090167704,
20090174672,
20090207129,
20090225046,
20090243404,
20090267892,
20090313542,
20100116629,
20100225600,
20100231508,
20100313425,
20100328229,
20110115754,
20110128239,
20110132114,
20110141052,
20110205038,
20110261021,
20120038471,
20120056825,
20120062491,
20120113008,
20120127071,
20120127088,
20120223824,
20120235942,
20120319827,
20120327006,
20130016042,
20130044049,
20130207793,
20130278401,
20140062948,
20140125470,
20140168175,
20150097800,
20150116205,
20150126070,
20150130730,
20150135121,
20150234493,
20150277562,
20150293592,
20150338919,
20150349619,
20160011664,
20160098107,
20160171767,
20160209979,
20160293829,
20160328930,
20160379776,
20170024010,
20170249024,
20170285843,
20170337025,
20180014096,
20180029078,
CN101036105,
CN101409164,
CN101663104,
CN101872257,
EP1686776,
EP2743798,
JP2004129120,
JP2004236202,
JP2010537279,
JP2010540320,
KR20050033909,
TW2010035805,
WO2002073587,
WO2006091494,
WO2007049253,
WO2007114631,
WO2009038862,
WO2010129892,
WO2013169303,
WO2014066516,
WO2016091944,
/
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 13 2016Apple Inc.(assignment on the face of the patent)
Date Maintenance Fee Events
Sep 28 2022M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Apr 16 20224 years fee payment window open
Oct 16 20226 months grace period start (w surcharge)
Apr 16 2023patent expiry (for year 4)
Apr 16 20252 years to revive unintentionally abandoned end. (for year 4)
Apr 16 20268 years fee payment window open
Oct 16 20266 months grace period start (w surcharge)
Apr 16 2027patent expiry (for year 8)
Apr 16 20292 years to revive unintentionally abandoned end. (for year 8)
Apr 16 203012 years fee payment window open
Oct 16 20306 months grace period start (w surcharge)
Apr 16 2031patent expiry (for year 12)
Apr 16 20332 years to revive unintentionally abandoned end. (for year 12)