A remote control having at least one multifunction button, to which force is applied in one direction by magnets and counter-magnets or mechanical springs, and to which journals with thickened heads are attached, wherein the thickened heads through interaction with bearing shells of a supporting plate serve as centering, guide, and movement stop of the multifunction button.
|
1. A remote control comprising a housing and a multifunction button which has a plurality of button areas which are arranged radially offset relative to a center and which are movable relative to the housing;
wherein a plurality of journals with thickened head are fastened to the multifunction button;
wherein a housing-stable supporting plate comprises bearing shells which are adapted for receiving the thickened heads;
wherein the journals extend through openings of the supporting plate;
wherein the thickened heads protrude above a flat surface of the supporting plate in a direction away from the multifunction button;
and wherein the bearing shells and the thickened heads are configured as limitation stop for a movement of the multifunction button against a first direction.
2. remote control according to
3. remote control according to
4. remote control according to
5. remote control according to
6. remote control according to
7. remote control according to
wherein the plurality of journals with thickened head fastened to the multifunction button have thickened sphere heads;
wherein the housing-stable supporting plate comprises bearing shells are adapted for receiving the sphere heads;
wherein the journals extend through openings of the supporting plate;
and wherein the bearing shells and the thickened sphere heads are configured as limitation stop for a movement of the multifunction button against a first direction.
8. remote control according to
9. remote control according to
10. remote control according to
11. remote control according to
wherein the plurality of journals with thickened head fastened to the multifunction button have thickened sphere heads;
wherein the housing-stable supporting plate comprises bearing shells are adapted for receiving the sphere heads;
wherein the journals extend through openings of the supporting plate;
and wherein the bearing shells and the thickened sphere heads are configured as limitation stop for a movement of the multifunction button against a first direction.
12. remote control according to
13. remote control according to
14. remote control according to
15. remote control according to
16. remote control according to
17. remote control according to
|
This application claims priority to German application 10 2016 112 318.8 filed Jul. 5, 2016, the entire disclosure of which is expressly incorporated herein by reference.
The invention relates to a remote control.
Remote controls, in which magnets with haptically perceptible forces are applied to input elements, such as buttons, are, for example known from DE 10 2011 014763 A1, DE 10 2010 019596 A1, EP 2568369 A1, or WO 2010/119348 A1.
In the older, unpublished DE 10 2015 119485, a remote control is described, which comprises a pushbutton that can be pressed by a user for inputting information in that the user applies a pressure in a direction, a sensor magnet arranged on the underside of the pushbutton, when viewed in the pressure application direction; and an armature magnet arranged below the pushbutton, when viewed in the pressure application direction, and fixed relative to the pushbutton, wherein the magnetic poles of the sensor magnet and of the armature magnet are arranged in such a way that the pushbutton is pressed by the sensor magnet away from the armature magnet, against the pressure application direction.
Document U.S. Pat. No. 5,579,002 discloses that a pushbutton field is held by means of locking hooks on a housing of a remote control. Document German patent publication 2516171 A1 discloses a button which is held by a guide and has a movement limitation stop in the guide.
With the present invention, a remote control is supposed to be created, in which at least one of the buttons is held, aligned, and guided with precision on the housing of the remote control. This is supposed to take place particularly to the greatest extent without play.
Briefly, therefore, the invention is directed to a remote control comprising a housing and a multifunction button which has a plurality of button areas which are arranged radially offset relative to a center and which are movable relative to the housing; wherein a plurality of journals with thickened head are fastened to the multifunction button; wherein a housing-stable supporting plate comprises bearing shells which are adjusted to the thickened heads; wherein the journals extend through openings of the supporting plate; and wherein the bearing shells and the thickened heads are configured as limitation stop for a movement of the multifunction button against a first direction.
Other advantages and features will be in part apparent and in part pointed out hereinafter.
The basic idea of the invention is that of pressing a multifunction button with a plurality of button areas in a first direction toward the outer side of the housing. For mounting, guiding, centering, and aligning the multifunction button, a plurality of journals with a thickened head are attached to it, wherein a housing-stable supporting plate comprises bearing shells, and the thickened heads are adjusted to said bearing shells. The journals extend through the opening of the supporting plate, and the bearing shells in combination with the thickened heads are configured as guide and limitation stop for a movement of the multifunction button.
Preferably, the multifunction button comprises a plurality of button areas, which are arranged radially offset with regard to the center, said button areas having a plurality of magnets with counter-magnets, which are connected to the housing and associated with the magnets. The magnets and counter-magnets are polarized and arranged such that the multifunction button is pressed in a first direction toward the outer side of the housing.
Preferably, the multifunction button is configured as annulus. However, it can also be configured as a cross or a triangle.
The thickened heads are preferably shaped like a spherical segment. Preferably, the journals are attached in sleeves to the multifunction button, i.e. preferably glued to the multifunction button.
Furthermore, the magnets and journals are each arranged on the radially outer area of the multifunction button and each arranged at equidistant distances tangentially offset toward one another, wherein the magnets and journals themselves are also arranged offset toward one another.
According to a development of the invention, the supporting plate is attached to a conducting path board, wherein the conducting path board is held in the housing of the remote control.
The remote control of
Between the two button fields 4 and 6, a multifunction button 7 is arranged, in this case having four button areas 8, 9, 10, and 11, which, when being pressed down, through interaction with sensors or switches trigger specific signals, with which a multimedia device (not depicted), e.g. a television set, can be operated. It must be noted that the multifunction button can be pressed anywhere and not only at the aforementioned four button areas 8-11. As a result, a corresponding x,y-value is returned or also an r/phi-value in the polar coordinate system. This indicates in which direction and how deep the button was pressed. Here, the multifunction button 7 is depicted as annulus, wherein the button areas 8-11 are arranged radially with regard to the center of the annulus and tangentially at equidistant distances. The four button areas depicted herein are tangentially offset to one another by 90°. However, configurations with more than four button areas are possible, or also configurations with only three button areas.
Instead of an annulus, the multifunction button 7 can also be configured as directional pad having, for example, four arms. If one of the button areas 8-11 or any other point of the multifunction button is pressed down by the user, i.e. in the direction of the interior of the housing 1, this is detected and analyzed by sensors and electronics arranged in the interior of the housing.
In the depicted embodiment, in which the multifunction button 7 is configured as annulus, a circular actuation button 12 can be arranged inside the annulus.
In addition, display means, for example small lights, can be present on the remote control, with which a functional state of the remote control is displayed for a user of the remote control.
In the following, the invention is described in more detail using the area A of
The present invention mainly refers to the mounting of the multifunction button 7, which will be described in connection with the further
Generally, the multifunction button 7 together with the actuation button 12 is held on a supporting plate 16. The actuation button 12 is connected to the multifunction button 7 but for actuation can be moved to a limited extent relative to the multifunction button 7. The supporting plate 16 itself can be permanently connected to the conducting path board 13, for example, by means of gluing. However, the supporting plate 16 can also be immovably held relative to the conducting path board 13 in a different manner. The unit consisting of multifunction button 7 and actuation button 12 is slidable relative to the supporting plate 16, i.e. substantially perpendicularly to the plane of the conducting path board 13.
The supporting plate 16 has essentially the shape of an annulus (with recesses,
On the multifunction button 7, a plurality of magnets 17 are attached which are arranged in circumferential direction at equidistant distances and are located near the outer circumference of the multifunction button 7. The magnets can be arranged near the button areas 8-11. However, other arrangements of the magnets are also possible. These magnets 17 are connected to the multifunction button 7 and fastened in sleeves 19 of the multifunction button 7. The magnets 17 are thus slidable together with the multifunction button 7.
Counter-magnets 18, which are associated with the magnets 17, are attached in sleeves 21 of the bottom cover 3 on the bottom cover 3 (
At each of the areas of the magnets 17, the conducting path board 13 has an opening 22, through which the magnet 17 is moved closer to the counter-magnet 18, when an area of the multifunction buttons 7 is pressed down. Closely near each opening 22, a sensor 23 is arranged which detects the position of the magnets, e.g. by detecting the magnetic field lines of the magnets 17 and the counter-magnets 18 and forwarding them to evaluation electronics (not depicted) arranged on the conducting path board 13. The sensors 23 can, for example, be coils. It is obvious that the magnetic flux of the pairs of magnet 17 and counter-magnet 18 changes, when the button is pressed down, and so the signal detected by the sensor 23 allows for the detecting of the distance between magnet 17 and counter-magnet 18 as well as the speed, with which the multifunction button 7 is pressed down.
The conducting path board 13 is held at a distance from the bottom cover 3 by a multiplicity of ribs 29. The distance can be constant. However, a non-constant distance is also possible. The ribs 29 are molded integrally to the bottom cover 3 and also serve as stiffening of the lower part of the housing.
In the following, the fastening, centering, and mounting of the multifunction button 7 shall be described in more detail with reference to
For guiding, mounting, and aligning the multifunction button 7, a plurality of sleeves 30 are provided on the underside of the multifunction button 7 which faces the conducting path board 13, wherein journals 31 are inserted in said sleeves 30 and permanently connected to the sleeves 30, for example, by means of gluing. Each of the journals 31 has a thickened head 32 which preferably has the shape of a spherical segment. The height h of the spherical segment is greater than the radius r of the sphere. (cf.
The supporting plate 16 has openings 35 which are associated with the journals 31, said openings 35 having bearing shells 33 which are formed on the side facing away from the multifunction button 7, said bearing shells 33 being adjusted to the shape of the thickened head 32 and having an enlarging funnel-shaped opening 34.
If the multifunction button 7 is pressed away from the conducting path board 13 by the magnetic forces, the heads 32 and the bearing shells 33 act as limitation stop and simultaneously as centering for the alignment of the multifunction button 7. In the opposite direction, i.e. when pressed down by a user, the movement of the multifunction button 7 in the direction toward the conducting path board 13 is delimited by the underside of the multifunction button 7 bumping against the supporting plate 16. The possible travel of the multifunction button 7 is indicated in
As is shown particularly clearly in
As is shown particularly clearly in
The thus assembled multifunction button is subsequently fastened in place relative to the conducting path board 13, e.g. by gluing the supporting plate 16 to the conducting path board 13.
Here is a convenient list of the components and reference numbers discussed above:
When introducing elements of the present invention or the preferred embodiments(s) thereof, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of the elements. The terms “comprising”, “including” and “having” are intended intended to be inclusive and mean that there may be additional elements other than the listed elements.
In view of the above, it will be seen that the several objects of the invention are achieved and other advantageous results attained.
As various changes could be made in the above products and methods without departing from the scope of the invention, it is intended that all matter contained in the above description shall be interpreted as illustrative and not in a limiting sense.
Fischer, Thomas, Maier, Ferdinand
Patent | Priority | Assignee | Title |
11742852, | Nov 28 2017 | Self-powered wireless switch with micro generator and applications thereof | |
D901450, | May 07 2019 | Remote control |
Patent | Priority | Assignee | Title |
5579002, | May 21 1993 | IGGULDEN, JERRY | User-configurable control device |
8643480, | Mar 22 2011 | Fm marketing gmbh | Input device with haptic feedback |
8695797, | Sep 21 2010 | Fm marketing gmbh | Plastic housing for electronic devices, in particular for remote controls |
20040233159, | |||
20080073993, | |||
20100265176, | |||
20130063339, | |||
DE102010019596, | |||
DE102015119485, | |||
DE2516171, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 05 2017 | Fm marketing gmbh | (assignment on the face of the patent) | / | |||
Aug 17 2017 | MAIER, FERDINAND | Fm marketing gmbh | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043318 | /0033 | |
Aug 17 2017 | FISCHER, THOMAS | Fm marketing gmbh | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043318 | /0033 |
Date | Maintenance Fee Events |
Jan 09 2023 | REM: Maintenance Fee Reminder Mailed. |
Jun 26 2023 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
May 21 2022 | 4 years fee payment window open |
Nov 21 2022 | 6 months grace period start (w surcharge) |
May 21 2023 | patent expiry (for year 4) |
May 21 2025 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 21 2026 | 8 years fee payment window open |
Nov 21 2026 | 6 months grace period start (w surcharge) |
May 21 2027 | patent expiry (for year 8) |
May 21 2029 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 21 2030 | 12 years fee payment window open |
Nov 21 2030 | 6 months grace period start (w surcharge) |
May 21 2031 | patent expiry (for year 12) |
May 21 2033 | 2 years to revive unintentionally abandoned end. (for year 12) |