In one embodiment, a display device includes a pair of substrates including a display area in which pixels are arranged, pixel electrodes and a memories provided in the pixels, signal lines supplied with digital signals, switching elements connecting the memories and the signal lines, scanning lines supplied with scanning signals, and first and second driver units. The first and second driver units are provided in a peripheral area. The first driver unit includes first circuit units connected to the signal lines. The first circuit units include first and second circuits. The first and second circuits are arranged in a second direction intersecting with a first direction, and are out of alignment in the first direction.
|
1. A display device comprising:
a pair of substrates comprising a display area in which a plurality of pixels are arranged;
an optical element layer provided between the pair of substrates;
pixel electrodes provided in the respective pixels;
memories provided in the respective pixels;
signal lines supplied with digital signals to be stored in the memories;
switching elements connecting the memories and the signal lines;
scanning lines supplied with scanning signals for controlling the switching elements;
a first driver unit which is provided in a peripheral area around the display area and is configured to supply the digital signals to the signal lines; and
a second driver unit which is provided in the peripheral area and is configured to supply the scanning signals to the scanning lines, wherein
the first driver unit comprises a plurality of first circuit units,
the corresponding signal lines are connected to the first circuit units,
the first circuit unit includes a first circuit, a second circuit, and a first connective line connecting the first circuit and the second circuit,
the scanning lines extend in a first direction in the display area,
the first circuit and the second circuit are arranged in a second direction intersecting with the first direction, and are out of alignment in the first direction,
the first circuit includes a first shift register, and
the second circuit includes a first latch circuit configured to store the digital signal supplied to the signal line.
2. The display device of
in a planar view, the scanning line intersects with the first connective line and extends between the first circuit and the second circuit.
3. The display device of
in a planar view, the data bus further intersects with the first connective line and extends between the first circuit and the second circuit.
4. The display device of
in a planar view, the power line further intersects with the first connective line and extends between the first circuit and the second circuit.
5. The display device of
the first circuit units further include a third circuit, and a second connective line connecting the first circuit or the second circuit and the third circuit, and
the first circuit, the second circuit and the third circuit are arranged in the second direction, and are out of alignment in the first direction.
6. The display device of
the second connective line extends in a direction intersecting with both the first direction and the second direction.
7. The display device of
the third circuit includes a second latch circuit configured to store the digital signal output from the first latch circuit.
8. The display device of
the third circuit further comprises a first buffer circuit, and a third connective line connecting the second latch circuit and the first buffer circuit, and
the first buffer circuit is configured to supply the digital signal stored in the second latch circuit to the signal line.
9. The display device of
the second driver unit comprises a plurality of second circuit units,
the corresponding scanning lines are connected to the second circuit units,
the second circuit unit includes a fourth circuit, a fifth circuit, and a fourth connective line connecting the fourth circuit and the fifth circuit,
the signal lines extend in the second direction in the display area, and
the fourth circuit and the fifth circuit are out of alignment in the second direction.
10. The display device of
the signal line extends in the second direction in the display area, and
the lead line extends in a direction intersecting with both the first direction and the second direction in the peripheral area.
11. The display device of
a first line supplied with a display signal for an image;
a second line supplied with a non-display signal for an image; and
a select control circuit configured to supply the display signal or the non-display signal to the pixel electrode in accordance with the digital signal stored in the memory, wherein
at least one of the first line and the second line extends between the display area and the first driver unit, and intersects with the lead lines in a planar view.
12. The display device of
at least one of the first line and the second line is bent in a stepwise pattern including a first stage and a second stage, and
the number of first circuit units corresponding to the first stage is different from the number of first circuit units corresponding to the second stage.
13. The display device of
the lead line comprises a first portion intersecting with a line formed in a first layer in a planar view, and a second portion intersecting with a line formed in a second layer in a planar view, and
the first portion is connected to the second portion via a contact hole.
14. The display device of
the second driver unit comprises a plurality of second circuit units,
the peripheral area comprises a first area in which at least one of the first circuit units and at least one of the second circuit units are formed, and a second area in which at least one of the second circuit units are formed and the first circuit units are not formed,
a distance between the second circuit unit and the display area in the first area is a first distance,
a distance between the second circuit unit and the display area in the second area is a second distance, and
the second distance is less than the first distance.
15. The display device of
the first circuit units are connected to the respective signal lines, and the number of the dummy pixels connected to each signal line differs.
16. The display device of
the display area is circular, and
the first driver unit and the second driver unit have an arc-shape along a marginal portion of the display area.
|
This application is based upon and claims the benefit of priority from Japanese Patent Application No. 2016-016116, filed Jan. 29, 2016, the entire contents of which are incorporated herein by reference.
Embodiments described herein relate generally to a display device.
Display devices such as liquid crystal display devices in which a memory is provided for each pixel in a display area are known. This type of display device writes a digital signal to each memory in accordance with the image to be displayed, and sets the drive potential of each pixel to potential corresponding to the digital signal stored in the memory. In this way, the display device displays the image in the display area. The system for driving the pixels based on the digital signals stored in the memories in the above manner is called a digital mode or a digital driving system.
The display device is required to minimize the peripheral area around the display area (in other words, to minimize the width of the frame). In the display device in digital mode, various lines and circuits need to be provided in the peripheral area to control the memories. Thus, the circuit layout of the peripheral area must be designed in some way to reduce the width of the frame.
In general, according to one embodiment, a display device comprises a pair of substrates, an optical element layer, pixel electrodes, memories, signal lines, switching elements, scanning lines, a first driver unit and a second driver unit. The pair of substrates comprises a display area in which a plurality of pixels are arranged. The optical element layer is provided between the pair of substrates. The pixel electrodes and the memories are provided in the respective pixels. The signal lines are supplied with a digital signal to be stored in the memories. The switching elements connect the memories and the signal lines. The scanning lines are supplied with a scanning signal for controlling the switching elements. The first driver unit is provided in a peripheral area around the display area, and supplies the digital signals to the signal lines. The second driver unit is provided in the peripheral area, and supplies the scanning signals to the scanning lines. The first driver unit comprises a plurality of first circuit units. The corresponding signal lines are connected to the first circuit units. The first circuit unit include a first circuit, a second circuit, and a first connective line connecting the first circuit and the second circuit. The scanning lines extend in a first direction in the display area. The first circuit and the second circuit are arranged in a second direction intersecting with the first direction, and are out of alignment in the first direction.
One embodiment will be described hereinafter with reference to the accompanying drawings.
The disclosure is merely an example, and proper changes in keeping with the spirit of the invention, which are easily conceivable by a person of ordinary skill in the art, come within the scope of the invention as a matter of course. In addition, in some cases, in order to make the description clearer, the drawings show schematic illustration rather than as an accurate representation of what is implemented. However, such schematic illustration is merely exemplary, and in no way restricts the interpretation of the invention. In the drawings, reference numbers of continuously arranged elements equivalent or similar to each other are omitted in some cases. Further, in the specification and drawings, structural elements which function in the same or a similar manner to those described in connection with preceding drawings are denoted by like reference numbers, detailed description thereof being omitted unless necessary.
In the present embodiment, as an example of a display device, a liquid crystal display device having the function of the above digital mode is disclosed. However, the present embodiment does not prevent application of individual technical ideas disclosed in the embodiment to other types of display devices. Other types of display devices are assumed to be, for example, a self-luminous display device such as an organic electroluminescent display (OELD) device, or an electronic paper display device having a cataphoresis element.
This specification explains the basic structure and operation of a display device with reference to
The display device 1 comprises a display area DA, and a peripheral area SA surrounding the display area DA. In the overlapping area of the first and second substrates SUB1 and SUB2, the display area DA is equivalent to an area in which an image is displayed. Pixels PX are provided in the display area DA. Specifically, a large number of pixels PX are arranged in matrix in a first direction X and a second direction Y in the display area DA. The first direction X is, for example, perpendicular to the second direction Y. In the overlapping area of the first and second substrates SUB1 and SUB2, the peripheral area SA is equivalent to an area outside the display area DA.
In the example of
The display device 1 further comprises a control device 2, a first driver unit 3 and a second driver unit 4. The control device 2 is, for example, an integrated circuit mounted on the first substrate SUB1, and functions as a signal supply portion which outputs various signals necessary for displaying an image based on the image data input from outside. The control device 2 may not be mounted on the first or second substrate SUB1 or SUB2, and may be connected to the first and second substrates SUB1 and SUB2 via a flexible wiring board.
For example, the first driver unit 3 and the second driver unit 4 are formed on the first substrate SUB1 in the peripheral area SA. In the example of
For example, the peripheral area SA is shielded against light by a light-shielding layer formed on the second substrate SUB2. The light-shielding layer can prevent light leak from the peripheral area SA and light reflection on the circuits or lines formed in the peripheral area SA.
The first driver unit 3 comprises a plurality of first circuit units 30. The second driver unit 4 comprises a plurality of second circuit units 40.
The peripheral area SA comprises a first area A1 and a second area A2. In the first area A1, a part of the first driver unit 3 (in other words, at least one of the first circuit units 30) is located between the second driver unit 4 and the display area DA. In the second area A2, the first driver unit 3 is not located between the second driver unit 4 and the display area DA. In other words, the first area A1 includes the second circuit units 40 and at least one of the first circuit units 30. The second area A2 includes the second circuit units 40 and does not include any first circuit unit 30.
In the example of
The display device 1 comprises a plurality of signal lines S and a plurality of scanning lines GD. The signal lines S and the scanning lines GD are formed in the first substrate SUB1. The signal lines S are connected to respective first circuit units 30. The scanning lines GD are connected to respective second circuit units 40. The signal lines S extend in the display area DA in the second direction Y, and are arranged in the first direction X. The scanning lines GD extend in the display area DA in the first direction X, and are arranged in the second direction Y.
Each subpixel SP comprises a memory 10 and a pixel electrode PE in the first substrate SUB1. The memory 10 stores a digital signal supplied via the signal line S. The pixel electrode PE faces a common electrode CE formed in the second substrate SUB2. The common electrode CE may be formed in the first substrate SUB1. The pixel electrode PE and the common electrode CE may be formed of a transparent conductive material such as indium tin oxide (ITO). The common electrode CE is formed over a plurality of subpixels SP, and is connected to an AC drive circuit 20 provided in the control device 2 via a common electrode line LCM.
The display device 1 comprises a color filter facing a corresponding subpixel SP. The colors of the color filters correspond to the display colors of their respective opposite subpixels SP. The color filters are formed in, for example, the second substrate SUB2.
The display device 1 may be, for example, a reflective type display device. In this case, a reflective layer for reflecting outside light is formed in the display area DA. An image is displayed using the light reflected on the reflective layer. A front light may be provided on the external side of the second substrate SUB2 such that an image is displayed using the light emitted from the front light.
The display device 1 may be a transmissive type display device. In this case, a backlight is provided on the rear side of the first substrate SUB1 such that an image is displayed using the light emitted from the backlight. The display device 1 may have both the reflective function and the transmissive function.
The select control circuit 11 comprises a switching element Q1 whose input terminal is connected to a first drive line DL1, and a switching element Q2 whose input terminal is connected to a second drive line DL2. For example, a first drive signal xFRP which is the display signal of an image is supplied from the control device 2 to the first drive line DL1. A second drive signal FRP which is the non-display signal of an image is supplied from the AC drive circuit 20 to the second drive line DL2.
The select control circuit 11 further comprises a select signal line 12a connecting the output terminals of switching elements Q1 and Q2 and the pixel electrode PE.
In
The memory 10 comprises switching elements Q3 to Q6. A first power line LP1 is connected to the input terminals of switching elements Q3 and Q5. Power source voltage VRAM is applied to the first power line LP1 from the second circuit unit 40. A second power line LP2 to which voltage VSS is applied is connected to the input terminals of switching elements Q4 and Q6. The output terminals of switching elements Q3 and Q4 are connected to the control terminal of switching element Q2 to structure a first inverter. The output terminals of switching elements Q5 and Q6 are connected to the control terminal of switching element Q1 to structure a second inverter. These inverters are parallely connected in opposite directions, and selectively turn on one of switching elements Q1 and Q2.
The first circuit unit 30 supplies a digital signal SIG to the signal line S. The storage control circuit 12 is a circuit for storing a digital signal SIG supplied to the signal line S in the memory 10, and comprises a switching element Q7. The input terminal of switching element Q7 is connected to the signal line S. The output terminal of switching element Q7 is connected to the control terminals of switching elements Q3 and Q4. The scanning line GD is connected to the control terminal of switching element Q7. A scanning signal GATED is supplied from the second circuit unit 40 to the scanning line GD.
All of switching elements Q1 to Q7 are, for example, thin-film transistors, and are formed in the first substrate SUB1. The first drive line DL1, the second drive line DL2, the first power line LP1, the second power line LP2 and the scanning line GD are also formed in the first substrate SUB1, and are connected to the subpixels SP arranged in the first direction X.
The display device 1 having the above structure is allowed to drive each subpixel SP in digital mode. The digital mode is a system for controlling the luminance of each subpixel SP in monochrome by simply applying on and off based on the digital signal stored in the memory 10. In the following explanation, it is assumed that the display device 1 is a display device in normally-black mode. It is assumed that, when the memory 10 is made high (high potential), the subpixel SP is on (white display). It is assumed that, when the memory 10 is made low (low potential), the subpixel SP is off (black display).
In digital mode, a storage period and a display period are repeated. In a storage period, a digital signal SIG supplied to each signal line S is stored in the memories 10. In a display period, the first or second drive signal xFRP or FRP is selectively supplied to each pixel electrode PE in accordance with the digital signal (a high or low digital signal) stored in the memory 10.
In the following explanation, a group of subpixels SP arranged in the first direction X in the display area DA is called a horizontal line. In a storage period, a scanning pulse is supplied to each scanning line GD in series. The digital signal SIG of a horizontal line corresponding to each scanning line GD supplied with the scanning pulse is supplied to each signal line S in series. In this way, the digital signal SIG is written to each memory 10 in series in accordance with image data based on each horizontal line.
In the following explanation, a period for writing a digital signal SIG to one horizontal line is defined as a horizontal period TH. In a horizontal period TH, the digital signal SIG of the signal line S is set to the potential to be written to each memory 10. It is assumed that high voltage VDD corresponds to white display, and low voltage VSS corresponds to black display. The power source voltage VRAM of the first power line LP1 is decreased from VDD2 to VDD1. Subsequently, the scanning signal GATED of the scanning line GD is increased from VSS2 to VDD2. Thus, switching element Q7 is turned on, and the memory 10 is connected to the signal line S. At this time, as shown by the arrow in the figure, the level of the digital signal SIG supplied to the signal line S is written to the memory 10.
Subsequently, the scanning signal GATED is decreased to VSS2. Thus, switching element Q7 is turned off, and the power source voltage VRAM is increased to VDD2 which is the voltage for turning switching elements Q1 and Q2 on. At this time, the voltage of the memory 10 is also increased from VDD1 to VDD2. In this way, the memory 10 connects the first power line LP1 and switching element Q1, and turns switching element Q1 on by the power source voltage VRAM. The memory 10 connects the second power line LP2 and switching element Q2, and turns switching element Q2 off by voltage VSS. Since switching element Q1 is turned on, the first drive signal xFRP of the first drive line DL1 is supplied to the select signal line 12a.
When the potential applied to the memory 10 is low so as to correspond to black display, the memory 10 connects the second power line LP2 and switching element Q1, and turns switching element Q1 off by voltage VSS. The memory 10 connects the first power line LP1 and switching element Q2, and turns switching element Q2 on by power source voltage VRAM. Since switching element Q2 is turned on, the second drive signal FRP of the second drive line DL2 is supplied to the select signal line 12a. The memory 10 exclusively turns one of switching elements Q1 and Q2 on by the stored voltage, and selects one of the first and second drive lines DL1 and DL2 as the connection destination of the select signal line 12a.
In the display period, when switching element Q1 is turned on by the memory 10, the first drive line DL1 is connected to the pixel electrode PE. When switching element Q2 is turned on by the memory 10, the second drive line DL2 is connected to the pixel electrode PE.
By the above operation, white display or black display is applied to each subpixel SP. In this way, an image is displayed in the display area DA.
Now, this specification explains the first circuit units 30 and the second circuit units 40 with reference to
The first circuit unit 30 comprises a first shift register 31, a first latch circuit 32, a second latch circuit 33 and a first buffer circuit 34. The first latch circuit 32 comprises memory elements MA1 to MA6. The second latch circuit 33 comprises memory elements MB1 to MB6. The first buffer circuit 34 comprises buffer elements BA1 to BA6.
The first shift register 31 is connected to the first latch circuit 32 via two first connective lines CL1. Memory elements MA1 to MA6 are connected to memory elements MB1 to MB6 via respective second connective lines CL2. Memory elements MB1 to MB6 are connected to buffer elements BA1 to BA6 via respective third connective lines CL3. Buffer elements BA1 to BA6 are connected to the signal lines S extending to subpixels SPR1, SPG1, SPB1, SPR2, SPG2 and SPB2, respectively.
The first shift register 31, the first latch circuit 32, the second latch circuit 33 and the first buffer circuit 34 operate with voltages VDD1 and VSS as the drive power supply. When a reset signal xRST is input, the first shift register 31 clears outputs OUT and xOUT so as to be off-potential. When clock HCK is input, the first shift register 31 loads and latches the output data DI of the first shift register 31 of the first circuit unit 30 in the preceding stage (hereinafter, referred to as a preceding register). At this time, when the output data DI of the preceding register is high, output OUT of the first shift register 31 is made high, and output xOUT is made low. When the output data of the preceding register is low, output OUT of the first shift register 31 is made low, and output xOUT is made high.
Output OUT of the first shift register 31 is output to the first shift register 31 of the first circuit unit 30 in the next stage. Further, outputs OUT and xOUT of the first shift register 31 are supplied to memory elements MA1 to MA6 as latch pulses.
In the example of
When high output data DI is input to the first shift register 31, for example, video data items R1, G1, B1, R2, G2 and B2 supplied to the data buses DBL are latched by memory elements MA1 to MA6.
Timing pulses Ds and xDs are input to memory elements MB1 to MB6. Using timing pulses Ds and xDs, memory elements MB1 to MB6 latches the video data items latched by memory elements MA1 to MA6 at the same time. In this way, the time when video data items are transmitted from the first latch circuit 32 to the second latch circuit 33 is the same in, for example, all the first circuit units 30. Thus, the video data items of subpixels SP arranged in the first direction X (in a horizontal line) are provided in the second latch circuit 33 of each first circuit unit 30.
Buffer elements BA1 to BA6 output a digital signal SIG corresponding to the video data items latched by memory elements MB1 to MB6 to the signal lines S. In this way, a digital signal SIG is concurrently supplied to the signal lines S in accordance with the video data items latched by the second latch circuit 33 of each first circuit unit 30. Thus, data is written to the memory 10 of each subpixel SP. While a digital signal SIG is supplied, video data items R1, G1, B1, R2, G2 and B2 in the next horizontal line are latched by the first latch circuit 32.
According to the above structure, the video data items of two pixels PX can be processed by one first circuit unit 30. Thus, the drive frequency of the first driver unit 3 can be reduced. In addition, the video data items in the next horizontal line can be latched by the first latch circuit 32 while the video data items of the second latch circuit 33 are supplied to the signal lines S. Thus, the processing efficiency can be improved.
The first circuit unit 30 may include only one latch circuit. The first circuit unit 30 may supply a digital signal SIG to only the subpixels SP included in one pixel PX, or may supply a digital signal SIG to the subpixels SP included in three or more pixels PX.
The second shift register 41 and second buffer circuits 42A and 42B operate with voltages VDD2 and VSS as the drive power supply. The power supply circuit 43 operates with voltages VDD1 and VDD2 as the drive power supply. When a reset signal xRST is input, the second shift register 41 clears outputs OUT and xOUT so as to be, for example, off-potential. When clock VCK is input, the second shift register 41 loads and latches the output data DI of the second shift register 41 of the second circuit unit 40 in the preceding stage (hereinafter, referred to as a preceding register). For example, when the output data DI of the preceding register is high, output OUT of the second shift register 41 is made high, and output xOUT is made low. When the output data DI of the preceding register is low, output OUT of the second shift register 41 is made low, and output xOUT is made high.
Outputs OUT and xOUT of the second shift register 41 are supplied to second buffer circuits 42A and 42B, and are output to the second shift register 41 of the second circuit unit 40 in the next stage. Outputs OUT and xOUT are supplied to the power supply circuit 43. The power supply circuit 43 sets the above power source voltage VRAM so as to be high or low in accordance with the state of output OUT or xOUT.
Enable signal xENB1 is supplied to second buffer circuit 42A. Enable signal xENB2 is supplied to second buffer circuit 42B. For example, when outputs OUT and xOUT are high and low, respectively, and further when enable signal xENB1 is input, second buffer circuit 42A supplies a high scanning signal GATED to the scanning line GD connected to second buffer circuit 42A. For example, when outputs OUT and xOUT are high and low, respectively, and further when enable signal xENB2 is supplied, second buffer circuit 42B supplies a high scanning signal GATED to the scanning line GD connected to second buffer circuit 42B. In the subpixel SP connected to each scanning line GD supplied with a high scanning signal GATED, switching element Q7 is turned on. In this way, in these subpixels SP, a digital signal SIG supplied to the signal lines S can be written to the memories 10.
In the second circuit unit 40 having the above structure, when the second shift register 41 in a stage latches the data for driving, two scanning lines GD can be driven in order by enable signals xENB1 and xENB2. Thus, there is no need to prepare the second shift register 41 for each scanning line GD. In this manner, the driving frequency of the second shift register 41 can be reduced.
In a common display device, the display area DA is a rectangle having sides in the first direction X and sides in the second direction Y. In this case, normally, the first driver unit 3 is linearly provided in the first direction X, and the second driver unit 4 is linearly provided in the second direction Y. Since each of the first and second driver units 3 and 4 is provided along the display area DA, the first and second driver units 3 and 4 can be close to the display area DA over the entire length.
In the circular display area DA as shown in
However, in the first area A1, lines such as the scanning lines GD extending from the second driver unit 4 to the display area DA must pass through the area of the first driver unit 3. When the first and second driver units 3 and 4 have an arc-shape, the lines in these driver units must be bent where necessary. In consideration of this factor, the circuit layout of the first and second driver units 3 and 4 needs to be designed such that the efficiency is improved.
The first driver unit 3 comprises the first circuit units 30 arranged in an arc-form along the display area DA. In
The second driver unit 4 comprises the second circuit units 40 arranged in an arc-form along the first driver unit 3 and the display area DA. In
Each first circuit unit 30 is divided into two circuits. In the following explanation, one of the two circuits is called horizontal circuit H1, and the other one is called horizontal circuit H2. For example, at least one of the first shift register 31, the first latch circuit 32, the second latch circuit 33 and the first buffer circuit 34 shown in
In the example of
If each first circuit unit 30 is not divided into a plurality of horizontal circuits, the scanning lines GD must be bent so as to avoid the first circuit units 30. Thus, there is a need to define a space around the first circuit units 30 such that the scanning lines GD avoid the first circuit units 30. In the example of
For example, at least one of the second shift register 41, second buffer circuits 42A and 42B and the power supply circuit 43 shown in
In the example of
When horizontal circuits H1 and H2 are out of alignment in the above manner, the layout of the peripheral area SA can be further improved in terms of efficiency. In the example of
Vertical circuits V1 and V2 are arranged in the first direction X. Vertical circuits V1 and V2 are out of alignment in the second direction Y. Specifically, vertical circuits V1 shift to the lower side in comparison with respective vertical circuits V2 in the figure. When two circuits are out of alignment in the second direction Y, for example, the line segment connecting the center of one of the two circuits in the second direction Y and the center of the other one in the second direction Y is not parallel to the first direction X.
Now, this specification explains the circuit layout in the second area A2.
In the second area A2, no first driver unit 3 is provided between the second driver unit 4 and the display area DA. Thus, the second driver unit 4 is allowed to be close to the display area DA in comparison with
Now, this specification explains a specific example of a circuit layout applicable to the first area A1 with reference to
For example, a guard ring 60 supplied with a common signal VCOM is provided in the peripheral area SA in a circular pattern along the outer circumferential edge of the peripheral area SA. The guard ring 60 functions to prevent the static electricity, etc., supplied from outside from having an influence on each circuit of the peripheral area SA. The first and second circuit units 30 and 40 are provided between the guard ring 60 and the display area DA.
Dummy pixels DSP are arranged along the outline of the display area DA between the first line WL1 and the display area DA. For example, in a planar view, the dummy pixels DSP have the same shape as the subpixels SP, and are arranged at the same pitch as the subpixels SP. For example, each dummy pixel DSP comprises the pixel electrode PE and the gate circuit 11; however, at least, each dummy pixel DSP does not comprise the memory 10. The second drive signal FRP which is a non-display signal is always supplied to the pixel electrode PE of each dummy pixel DSP. Thus, black display is always applied to each dummy pixel DSP. Each dummy pixel DSP is a pixel which does not display an image.
The number of columns of pixels (signal lines) driven by each first circuit unit 30 is two or more, and is six in
Lines which apply voltages VSS and VDD1 and supply clock HCK and a reset signal xRST to the first shift register 31 are connected to horizontal circuit H1. A line which applies voltages VSS and VDD1 to the first latch circuit 32 is connected to horizontal circuit H2. Lines which apply voltages VSS and VDD1 and timing pulses Ds and xDs to the second latch circuit 33 and the first buffer circuit 34 are connected to horizontal circuit H3. In
The second circuit unit 40 of
Lines which apply voltages VSS and VDD2 and supply clock VCK and a reset signal xRST to the second shift register 41 are connected to vertical circuit V1. Lines which apply voltages VSS, VDD1 and VDD2 and supply enable signals ENB1 and ENB2 to second buffer circuits 42A and 42B and the power supply circuit 43 are connected to vertical circuit V2. In
As shown in
In a planar view, the scanning lines GD, the first power line LP1 and the data buses DBL between horizontal circuits H1 and H2 intersect with the first connective lines CL1. In a planar view, the scanning lines GD and the first power line LP1 between horizontal circuits H2 and H3 intersect with the second connective lines CL2.
In the example of
Horizontal circuits H1 to H3 are arranged in the second direction Y. Horizontal circuits H1 to H3 are out of alignment in the first direction X. Specifically, horizontal circuit H2 shifts to the left in comparison with horizontal circuit H3 in the figure. Horizontal circuit H1 further shifts to the left in comparison with horizontal circuit H2. The lines are bent from the first direction X to the second direction Y in areas generated by shifting horizontal circuits H1 to H3 in the above manner.
In the example of
In the example of
For example, each line shown in
For example, the scanning lines GD and the first power lines LP1 are formed in the first layer. The other lines such as the signal lines S, the first to fourth lines WL1 to WL4 and the data buses DBL are formed in the second layer. For example, the first connective lines CL1 need to avoid the scanning lines GD and the first power line LP1 formed in the first layer and the data buses DBL formed in the second layer. In this case, of the first connective lines CL1, the portion intersecting with the scanning lines GD and the first power line LP1 may be formed in the second layer. The portion intersecting with the data buses DBL may be formed in the first layer. These two portions may be connected to each other via a contact hole provided in the insulating layer.
The first substrate SUB1 is not limited to a structure having two layers including the first and second layers. The first substrate SUB1 may have more layers such that the lines are dispersed into the layers.
Each lead line Sa comprises a first portion Sa1 intersecting with the scanning lines GD and the first power line LP1 between horizontal circuit H3 and the fourth line WL4, and a second portion Sa2 intersecting with the first to fourth lines WL1 to WL4. The first portion Sa1 extends from horizontal circuit H3 to the contact position between the scanning lines GD and the fourth line WL4. The second portion Sa2 extends from the above contact position to the signal line S. The first portion Sa1 is formed in the second layer to avoid the scanning lines GD and the first power line LP1 formed in the first layer. The second portion Sa2 is formed in the first layer to avoid the first to fourth lines WL1 to WL4 formed in the second layer. The first portion Sa1 is connected to the second portion Sa2 at the contact position.
As is clear from
In the embodiment explained above, at least a part of the first driver unit 3 is provided between the second driver unit 4 and the display area DA. In this way, it is possible to prevent a useless space in the peripheral area SA, and reduce the width of the frame.
Further, each first circuit unit 30 is divided into a plurality of horizontal circuits such that the scanning lines GD and the data buses DBL pass between the horizontal circuits. In this way, the circuit layout of the peripheral area SA can be improved in terms of efficiency.
In addition, the horizontal circuits are out of alignment. Thus, the circuit layout of the peripheral area SA can be further improved in terms of efficiency. When each second circuit unit 40 is divided into a plurality of vertical circuits, and the vertical circuits are out of alignment, a similar effect can be obtained.
Apart from this effect, various effects can be obtained from the present embodiment as described earlier.
While certain embodiments have been described, these embodiments have been presented by way of example only, and are not intended to limit the scope of the inventions. Indeed, the novel embodiments described herein may be embodied in a variety of other forms; furthermore, various omissions, substitutions and changes in the form of the embodiments described herein may be made without departing from the spirit of the inventions. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the inventions.
For example, in the above embodiment, the display device in digital mode is disclosed. However, the circuit layout of the peripheral area SA in the above embodiment may be applied to a display device in analog mode in which an analog video signal is supplied to each pixel electrode PE via signal lines S to obtain a multilevel display image. Further, the circuit layout of the peripheral area SA in the above embodiment may be applied to a display device having both the function of digital mode and the function of analog mode.
The structures of the first and second circuit units 30 and 40 disclosed in
Patent | Priority | Assignee | Title |
11508328, | Oct 10 2019 | LG Display Co., Ltd. | Circular display device with narrow bezel and driving method thereof |
Patent | Priority | Assignee | Title |
20090102758, | |||
20160190166, | |||
JP2009122636, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 27 2016 | SHIMA, TAKEHIRO | JAPAN DISPLAY INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 041104 | /0736 | |
Jan 27 2017 | Japan Display Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Nov 22 2022 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
May 28 2022 | 4 years fee payment window open |
Nov 28 2022 | 6 months grace period start (w surcharge) |
May 28 2023 | patent expiry (for year 4) |
May 28 2025 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 28 2026 | 8 years fee payment window open |
Nov 28 2026 | 6 months grace period start (w surcharge) |
May 28 2027 | patent expiry (for year 8) |
May 28 2029 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 28 2030 | 12 years fee payment window open |
Nov 28 2030 | 6 months grace period start (w surcharge) |
May 28 2031 | patent expiry (for year 12) |
May 28 2033 | 2 years to revive unintentionally abandoned end. (for year 12) |