A method for producing a sealed and thermally insulating wall for a fluid storage tank includes attaching plural anchoring elements to a support structure; installing modular formwork elements on the support structure, the modular formwork elements having a shape that protrudes relative to the support structure and that defines, with the support structure and the plurality of anchoring parts, compartments having an open side opposite the support structure; spraying insulating foam into the compartments through the open side to form plural insulating sectors made from sprayed insulating foam; arranging insulating junction elements in a stressed position in which they are stressed between the insulating sectors and capable of expanding when the insulating sectors contract, to ensure continuity of the thermal insulation; and attaching a sealing membrane to the anchoring elements.
|
1. A method for producing a sealed and thermally insulating wall for a fluid storage tank, comprising the steps of:
attaching a plurality of anchoring elements (1) to a support structure (2);
installing modular formwork elements (3) on the support structure (2), the modular formwork elements (3) having a shape that protrudes relative to the support structure (2) and that defines, with the support structure (2) and the plurality of anchoring elements (1), mutually adjacent compartments (4) having an open side opposite the support structure (2), two mutually adjacent compartments being separated in each case by one of the modular formwork element positioned between the two mutually adjacent compartments;
spraying insulating foam into said compartments (4) through the open side so as to form a plurality of insulating sectors (5) made from sprayed insulating foam
withdrawing the modular formwork elements (3);
arranging compressible insulating junction elements (8) in place of the modular formwork elements (3), the insulating junction elements (8) being arranged in a stressed position in which the compressible insulating junction elements (8) are compressed between said insulating sectors (5) and capable of expanding when said insulating sectors (5) contract, so as to ensure continuity of a thermal insulation layer comprising the insulating junction elements (8) and the insulating sectors (5); and
attaching a sealing membrane (9) to said anchoring elements (1).
2. A method for producing a sealed and thermally insulating wall for a fluid storage tank, comprising the steps of:
attaching a plurality of anchoring elements (1) to a support structure (2);
installing combined elements on the support structure (2), each combined element comprising one of the modular formwork elements (3) and a compressible insulating junction element (8) housed under stress in a compressed way within the modular formwork element (3); the modular formwork elements (3) having a shape that protrudes relative to the support structure (2) and that defines, with the support structure (2) and the plurality of anchoring elements (1), mutually adjacent compartments (4) having an open side opposite the support structure (2), two mutually adjacent compartments being separated in each case by one of the modular formwork elements positioned between the two mutually adjacent compartments;
spraying insulating foam into said compartments (4) through the open side so as to form a plurality of insulating sectors (5) made from sprayed insulating foam;
withdrawing the modular formwork elements (3); the insulating junction elements (8) being left, in a stressed position, between said insulating sectors (5) when the modular formwork elements (3) are withdrawn, the insulating junction elements (8) being, in their stressed position, compressed between said insulating sectors (5) and capable of expanding when said insulating sectors (5) contract, so as to ensure continuity of a thermal insulation layer comprising the insulating junction elements (8) and the insulating sectors (5); and
attaching a sealing membrane (9) to said anchoring elements (1).
3. A method for producing a sealed and thermally insulating wall for a fluid storage tank, comprising the steps of:
attaching a plurality of anchoring elements (1) to a support structure (2);
installing combined elements on the support structure (2), each combined element comprising one of the modular formwork elements (3) and a compressible insulating junction element (8), the modular formwork element (3) comprising two permanent formwork sides (27) between which one of the insulating junction elements (8) is housed under stress, and releasable means (28) for clamping the sides (27), these releasable means (28) for clamping the sides (27) being capable of clamping the two permanent formwork sides (27) against the insulating junction element (8) in a non-released state and of no longer clamping the two permanent formwork sides (27) in a released state; the modular formwork elements (3) having a shape that protrudes relative to the support structure (2) and that defines, with the support structure (2) and the plurality of anchoring elements (1), mutually adjacent compartments (4) having an open side opposite the support structure (2), two mutually adjacent compartments being separated in each case by one of the modular formwork elements (3) positioned between the two mutually adjacent compartments;
spraying insulating foam into said compartments (4) through the open side so as to form a plurality of insulating sectors (5) made from sprayed insulating foam;
releasing the releasable means (28) for clamping the sides (27) so as to place the insulating junction elements (8) in a stressed position in which the insulating junction elements (8) are compressed between said insulating sectors (5) and capable of expanding when said insulating sectors (5) contract, so as to ensure continuity of a thermal insulation layer comprising the insulating junction elements (8) and the insulating sectors (5); each insulating junction element (8), in its stressed position, causing the two permanent formwork sides (27) of the combined element to which it belongs to engage with the insulating sectors (5) between which said two permanent formwork sides are located; and
attaching a sealing membrane (9) to said anchoring elements (1).
4. The production method as claimed in
5. The production method as claimed in
6. The production method as claimed in
7. The production method as claimed in
8. The production method as claimed in
9. The production method as claimed in
10. The production method as claimed in
11. The production method as claimed in
12. The production method as claimed in
13. A sealed and thermally insulating wall for a cryogenic fluid storage tank, made by a production process as claimed in
a support structure;
a plurality of anchoring elements, attached to the support structure;
a plurality of insulating sectors made of insulating foam, produced by spraying insulating foam through an open side of a compartment defined by modular formwork elements, the support structure and the plurality of anchoring parts;
insulating junction elements arranged in a stressed position in which they are stressed between said insulating sectors and capable of expanding when said insulating sectors contract, so as to ensure continuity of the thermal insulation; and
a sealing membrane attached to said anchoring elements.
14. The wall as claimed in
16. A ship (70) for transporting a refrigerated liquid product, the ship comprising a tank (71) as claimed in
17. A method for loading or unloading a ship (70) as claimed in
18. A transfer system for a refrigerated liquid product, the system comprising a ship (70) as claimed in
|
The invention relates to the field of sealed and thermally insulating membrane tanks for the storage and/or transportation of fluid such as a cryogenic fluid. The invention relates more particularly to the production of a sealed membrane tank in which the thermal insulation is partially formed by spraying insulating foam in situ.
Sealed and thermally insulating membrane tanks are used, notably, for the storage of liquefied natural gas (LNG). These tanks may be installed on the land or on a floating structure. In the case of a floating structure, the tank may be intended for the transportation of liquefied natural gas or for receiving liquefied natural gas used as fuel for the propulsion of the floating structure.
In the prior art, there are known methods of manufacturing such tanks from prefabricated insulating panels. These insulating panels have a layer of insulating foam, optionally reinforced with glass fibers, sandwiched between two sheets of plywood. The manufacture of a thermal insulation barrier from these prefabricated panels is a lengthy and costly process, because the prefabricated panels have to be transported and then installed one by one.
In the prior art, there is also a known method of manufacturing insulating barriers in situ against a support structure.
U.S. Pat. No. 3,759,209 discloses the production of an insulating barrier outside the hull of a ship for transporting liquefied natural gas. This document proposes attaching a formwork, composed of horizontal and vertical members defining a plurality of compartments, to the outer hull of the ship, and then placing insulating foam in the compartments. The formwork is held in place and a sealing membrane is attached to it. However, the formwork does not permit compensation for the thermal contraction of the foam, and consequently the continuity of the thermal insulation between the different foam compartments is not assured when the wall is subjected to cryogenic temperatures.
FR 2,191,064 also discloses a method of producing a tank for transporting liquefied natural gas. This document proposes attaching spacers to a support structure and then forming a grid of cables of glass fibers or metal wires which are stretched and supported by the spacers. A sheet of plywood is then attached to the tops of the spacers and an expandable urethane solution is then injected into the space between the sheet of plywood and the support structure.
The invention is based on the idea of proposing a method for producing, by foam spraying in situ, an insulating barrier for a cryogenic liquid storage tank, which, on the one hand, can be used to form a wall providing continuity of thermal insulation, and which, on the other hand, is easy to install.
According to a first aspect, the invention relates to a method for producing a sealed and thermally insulating wall for a fluid storage tank, comprising the steps of:
Thus this method for producing a wall benefits from the advantages of the use of a formwork, since it is simple to carry out and enables the layer of thermal insulation to be divided up so as to limit the mechanical stresses due to the temperature differences between its external and internal surfaces, while ensuring continuity of the thermal insulation when the wall is subjected to low temperatures.
In one embodiment, the method comprises a step of withdrawing the modular formwork elements. Advantageously, combined elements are placed on the support structure, a combined element comprising a modular formwork element and an insulating junction element housed, in a stressed way, within the modular formwork element, and the insulating junction element is left in the stressed position between said insulating sectors when the modular formwork elements are withdrawn. Thus the withdrawal of the modular elements and the positioning of the insulating junction elements are carried out simultaneously.
In another embodiment, combined elements are placed on the support structure, a combined element comprising a modular formwork element and an insulating junction element, the modular formwork element comprising two permanent formwork sides between which an insulating junction element is housed under stress, and releasable means for clamping the sides, and the insulating junction element, housed under stress between the two permanent formwork sides, is placed in its stressed position after the release of the side clamping means, the insulating element in its stressed position causing the two permanent formwork sides to engage with the insulating sectors between which the combined element is located.
According to other advantageous embodiments:
According to a second aspect, the invention also provides a sealed and thermally insulating wall for a cryogenic fluid storage tank, made by a production process according to the first aspect of the invention.
In other words, the sealed and thermally insulating wall comprises:
Advantageously, the insulating sectors adhere to the support structure. Thus, because of the adhesive capacity of the sprayed foam, the insulating sectors are held in place relative to the support structure, thereby simplifying the execution of the method. This characteristic also makes it possible to prevent the insulating sectors from exerting a pressure on the membrane when the wall is a vertical wall or a ceiling.
According to a third aspect, the invention relates to a cryogenic liquid storage tank comprising at least one wall according to the second aspect of the invention.
According to one embodiment, a ship for transporting a refrigerated liquid product comprises a storage tank of the aforesaid type.
In one embodiment, the ship has a single or double hull and a tank of the aforesaid type arranged in the single or double hull.
In another embodiment, the ship has a deck and the aforesaid tank is arranged on the deck. In this case, the support structure of the tank may consist of a sheet metal structure arranged on the deck of the ship. Tanks of this type have, for example, a volume of between 5,000 and 30,000 m3, and can be used for supplying fuel to engine rooms.
The tank may be used for storing liquefied natural gas at atmospheric pressure or under a relative overpressure, according to the compressive strength of the foam used, for example 3 bar for a foam having a compressive strength of 0.3 MPa.
According to one embodiment, the invention also provides a method for loading or unloading a ship of this type, in which a refrigerated liquid product is conveyed through insulated pipes from or toward a floating or land-based storage installation toward or from the ship's tank.
According to one embodiment, the invention also provides a transfer system for a refrigerated liquid product, the system comprising the aforesaid ship, insulated pipes arranged so as to connect the tank installed in the ship's hull to a floating or land-based storage installation and a pump for propelling a flow of refrigerated liquid product through the insulated pipes from or toward the floating or land-based storage installation toward or from the ship's tank.
The invention will be better understood and other objects, details, characteristics and advantages thereof will be more fully apparent from the following description of some specific embodiments of the invention, provided solely for illustrative purposes and in a non-limiting way, with reference to the attached drawings.
In these drawings:
Conventionally, the terms “external” and “internal” are used to define the relative position of one element with respect to another, with reference to the inside and outside of the tank.
Each tank wall has, in succession, through the thickness, from the inside toward the outside of the tank, at least one sealing membrane in contact with the fluid contained in the tank, a thermally insulating barrier and a support structure. In a particular embodiment, the wall comprises two levels of sealing and thermal insulation. In this case, the wall comprises in succession, from the inside toward the outside, a primary sealing membrane, a primary insulating barrier, a secondary sealing membrane, a secondary insulating barrier, and a support structure. The terms “primary” and “secondary” are then used to describe elements belonging to the primary and secondary levels.
With reference to
Anchoring blocks 1, also called couplers, are regularly positioned and attached to an external support structure 2. This support structure 2 can, notably, be a self-supporting sheet metal structure, or, more generally, any type of rigid partition having appropriate mechanical properties, such as a concrete wall in a land-based construction.
Modular formwork elements 3 are arranged against the support structure 2 between the anchoring blocks 1. The modular formwork elements 3 thus have a shape protruding inward relative to the plane of the support structure 2. The modular formwork elements 3 form, with the anchoring blocks 1 and the support structure 2, a plurality of compartments 4. The compartments have an open side opposite the support structure 2. The modular formwork elements 3 are longitudinal beams arranged perpendicularly to one another so as to form compartments 4 in the shape of right-angled quadrilaterals. The modular formwork elements 3 can be fitted with releasable attachment members, which are described below in relation to
As shown in
The internal surface of the sprayed foam insulating sectors 5 is then subjected to a trimming operation. This operation can be used to remove surface irregularities and thus level the internal surface of the insulating sectors 5. The trimming operations are, for example, carried out by means of a plane 6, shown in
In
To ensure the continuity of the thermal insulation, the interstices 7 between the insulating sectors 5 are lined with insulating junction elements 8, shown in
According to one embodiment, the insulating junction elements 8 are strips made of a flexible material such as glass fiber, polyester wadding, or foams of polyurethane (PU), melamine, polyethylene (PE), polypropylene (PP) or silicone. The width of these strips is determined so that, at ambient temperature, they are subjected to a compressive stress between the insulating sectors 5.
According to other variant embodiments, shown in
To ensure the sealing of the wall, a sealing membrane 9, covering the insulating sectors 5 and the insulating junction elements 8, is attached to the anchoring blocks 1. This sealing membrane 9 is partially shown in
Thus the method can be used to produce a wall comprising a sealing membrane 9 and a thermally insulating barrier. If the wall has two levels, namely a primary and a secondary level, of sealing and thermal insulation, the thermally insulated barrier and the sealing membrane 9 made in this way form secondary components, and the method is repeated with the anchoring blocks 1 and the modular formwork elements 3 arranged against the second sealing membrane 9, after which foam is injected into the compartments whose bases are formed by said secondary sealing membrane 9. Preferably, in this case, the secondary sealing membrane 9 is covered in advance with a coating to prevent the sprayed foam from adhering to the secondary sealing membrane 9, and to prevent it from creating additional mechanical stresses in this way. This coating may have low adhesion and/or low mechanical strength, so that it is ruptured when subjected to small stresses, and therefore does not transmit any large forces between the membrane and the sprayed foam.
The anchoring block 1, shown in
To provide better anchoring of the sealing membrane 9, anchoring plates 23, shown in
In
A combined element comprising a modular formwork element 3 and an insulating junction element 8 is shown in
In
In one embodiment which is not shown, the attachment members may comprise ties for attaching the modular formwork elements 3 to the anchoring blocks 1.
In
In the embodiment of
It should also be noted that, in this embodiment, the modular formwork elements 3 are fitted with handles 35 to facilitate their handling and placing against the support structure 2.
In the embodiment of
The method of producing a wall described above can be used for producing one or more or all of the walls of a sealed thermally insulating tank for storing and/or transporting cryogenic fluid.
According to one embodiment, the method is applied to a flat load-bearing wall installed horizontally. When the insulating barrier and the sealing membrane have been installed on this flat wall, it forms a sealed insulating wall which can be manipulated as a single piece. It is then possible to produce a polyhedral tank by assembling a plurality of load-bearing walls, assembled to one another, to form a tank, the walls being, for example, a bottom wall, side walls and a ceiling wall. The method can then be used to produce the insulating barrier and the sealed membrane on each of the load-bearing walls.
A tank of this type may form part of a land-based storage installation, for storing LNG for example, or may be installed in a floating structure in coastal or deep waters, notably in a gas carrier ship, a floating storage and regasification unit (FSRU), a floating production and storage and offloading unit (FPSO), or others.
With reference to
In a known way, loading/unloading pipes 73 positioned on the upper deck of the ship can be connected, using appropriate connectors, to a marine or port terminal for transferring a cargo of LNG from or to the tank 71.
In order to generate the pressure required for transferring the liquefied gas, pumps on board the ship 70 and/or pumps fitted in the land-based installation 77 and/or pumps fitted in the loading and unloading station 75 are used.
Although the invention has been described with reference to particular embodiments, it is evidently not limited in any way to these embodiments, and comprises all the technical equivalents of the means described and their combinations where these fall within the scope of the invention.
The use of the verb “to have”, “to comprise” or “to include” and any of its conjugated forms does not exclude the presence of elements or steps other than those stated in a claim. The use of the indefinite article “a” for an element or a step does not exclude the presence of a plurality of such elements or steps unless otherwise specified.
In the claims, any reference symbol in brackets is not to be interpreted as a limitation of the claim.
Le Roux, Guillaume, Ducoup, Laurent, Longuet, Virginie, Pelle, Jerome
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3759209, | |||
3800970, | |||
3941272, | Mar 27 1974 | Kaiser Aluminum & Chemical Corporation | Cryogenic transport |
5269247, | Nov 20 1991 | Gaz Transport | Sealed thermally insulating vessel forming part of the supporting structure of a ship |
20030110723, | |||
20070181586, | |||
20080011756, | |||
20130232901, | |||
20130326861, | |||
20150315800, | |||
FR2191064, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 21 2014 | GAZTRANSPORT ET TECHNIGAZ | (assignment on the face of the patent) | / | |||
Jul 27 2015 | LONGUET, VIRGINIE | GAZTRANSPORT ET TECHNIGAZ | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036301 | /0090 | |
Jul 27 2015 | PELLE, JEROME | GAZTRANSPORT ET TECHNIGAZ | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036301 | /0090 | |
Jul 28 2015 | DUCOUP, LAURENT | GAZTRANSPORT ET TECHNIGAZ | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036301 | /0090 | |
Jul 28 2015 | LE ROUX, GUILLAUME | GAZTRANSPORT ET TECHNIGAZ | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036301 | /0090 |
Date | Maintenance Fee Events |
Dec 07 2022 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 11 2022 | 4 years fee payment window open |
Dec 11 2022 | 6 months grace period start (w surcharge) |
Jun 11 2023 | patent expiry (for year 4) |
Jun 11 2025 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 11 2026 | 8 years fee payment window open |
Dec 11 2026 | 6 months grace period start (w surcharge) |
Jun 11 2027 | patent expiry (for year 8) |
Jun 11 2029 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 11 2030 | 12 years fee payment window open |
Dec 11 2030 | 6 months grace period start (w surcharge) |
Jun 11 2031 | patent expiry (for year 12) |
Jun 11 2033 | 2 years to revive unintentionally abandoned end. (for year 12) |