An improved air compressor includes a cylinder that is fitted with a piston body and defines at its top wall a plurality of exit holes which are approximately equal in diameter and can be regulated by plugs to enable the cylinder to communicate with an air storage container. The exit holes are normally sealed by the plugs with the assistance of compression springs when the air compressor is not in operation. The exit holes allow the compressed air produced in the cylinder to quickly enter the air storage container, so that the piston body can conduct reciprocating motion more smoothly and thus the performance of the air compressor can be increased.

Patent
   10385848
Priority
Jan 14 2016
Filed
Jan 10 2017
Issued
Aug 20 2019
Expiry
May 13 2037
Extension
123 days
Assg.orig
Entity
Small
1
5
currently ok
1. In an air compressor including a main frame for mounting a motor which rotates a gear to drive a piston body fitted in a cylinder to conduct reciprocating motion for producing compressed air which is allowed to enter an inner space of an air storage container; wherein the improvement comprises:
the cylinder defines at a top wall thereof a plurality of exit holes of equal dimension, the exit holes being regulated by a control mechanism to be opened or closed, the control mechanism including a plurality of plugs and a plurality of compression springs capable of urging the plugs to seal the exit holes, respectively, the air storage container provided with two opposite coupling means at a bottom edge thereof, each coupling means including a base portion extending outwardly from the bottom edge of the air storage container, and an L-shaped holding portion integrally formed at one end of the base portion distal from the bottom edge of the air storage container, the air storage container provided at an inner surface thereof with a plurality of columns corresponding to the compression springs, each of the compression springs having one end forcing against a corresponding plug, and having another end being fitted around a corresponding column, wherein each of the columns is located at a predetermined height above the corresponding plug so as to limit movement of the corresponding plug.
7. An air compressor, which comprises a main frame for mounting a motor which rotates a gear to drive a piston body fitted in a cylinder to conduct reciprocating motion for producing compressed air which is allowed to enter an inner space of an air storage container; wherein the cylinder defines at a top wall thereof a plurality of exit holes of equal dimension, the exit holes being regulated by a control mechanism to be opened or closed, the control mechanism including a plurality of plugs and a plurality of compression springs capable of urging the plugs to seal the exit holes, respectively, the air storage container provided with two opposite coupling means at a bottom edge thereof, each coupling means including a base portion extending outwardly from the bottom edge of the air storage container, and an L-shaped holding portion integrally formed at one end of the base portion distal from the bottom edge of the air storage container; wherein the air storage container is provided at an inner surface thereof with a plurality of columns corresponding to the compression springs, each of the columns having a base round portion, a middle round portion, and an end round portion; each of the compression springs has one end forcing against a corresponding plug, and has another end being fitted around the middle round portion of a corresponding column and forcing against the base round portion of the corresponding column, wherein each of the end round portions of the columns is located at a predetermined height above the corresponding plug so as to limit movement of the corresponding plug.
2. The air compressor of claim 1, wherein the cylinder has a tubular projection formed on the top wall, the tubular projection provided at its outer surface with two opposite lugs each having an engagement section, the L-shaped holding portion of each coupling means capable of engaging with the engagement section of one of the two lugs, so that the air storage container is detachably assembled onto the cylinder.
3. The air compressor of claim 1, wherein the cylinder has a tubular projection formed on the top wall, the tubular projection provided at its outer surface with two opposite lugs each having an engagement section, the L-shaped holding portion of each coupling means capable of engaging with the engagement section of one of the two lugs, each of the two coupling means further including an operation portion extending from the L-shaped holding portion in a direction opposite to the base portion, so that the air storage container is detachably assembled onto the cylinder.
4. The air compressor of claim 1, wherein the cylinder has a tubular projection formed on the top wall, the tubular projection provided at its outer surface with a circular flange and defining an annular groove between the circular flange and the top wall for allowing the L-shaped holding portion of each coupling means to be inserted into the annular groove and engaged with the circular flange, so that the air storage container is detachably assembled onto the cylinder.
5. The air compressor of claim 1, wherein the cylinder has a tubular projection formed on the top wall, the tubular projection provided at its outer surface with two opposite lugs each having an engagement section , the L-shaped holding portion of each coupling means capable of engaging with the engagement section of one of the two lugs, each of the two coupling means further including an operation portion which is integrally formed at one end of the base portion distal from the bottom edge of the air storage container and located at a side of the base portion opposite to the L-shaped holding portion, so that the air storage container is detachably assembled onto the cylinder.
6. The air compressor of claim 5, wherein the tubular projection further provided at its outer surface with a first rectangular flange defining a plurality of first positioning holes, the air storage container further provided at its bottom edge with a second rectangular flange defining a plurality of second positioning holes corresponding to the first positioning holes of the first rectangular flange, so that the air storage container is detachably assembled onto the cylinder.

The present invention relates to an air compressor and, more particularly, to an improved air compressor which includes a cylinder being fitted with a piston body and defining a plurality of exit holes of approximately equal dimension, so that compressed air produced in the cylinder may quickly enter an air storage container, so that the piston body can conduct reciprocating motion more smoothly and thus the performance of the air compressor can be increased.

Currently, an air compressor basically has a cylinder which allows a piston body to conduct reciprocating motion therein to produce compressed air which can overcome a valve mechanism, so that the compressed air can flow through an exit hole of the cylinder to enter the inner space of an air storage container or an air tank. The air storage container is provided with outlets for delivering the compressed air to an object to be inflated.

In conventional air compressors, there is only one exit hole defined at the cylinder for communicating with the air storage container. The exit hole of the cylinder is controlled by a valve mechanism, which generally includes a plug and a compression spring, so that the exit hole can be opened or closed properly according to the pressure of the compressed air. In operation, the compressed air produced in the cylinder can overcome the compressive force of the compression spring to enter the inner space of the air compressor. However, the compressed air stored in the air storage container can exert a back force on the plug, thus restraining the plug being moved away from the exit hole. As a result, the piston body, which conducts reciprocating motion in the cylinder, will be subjected to greater resistance. Therefore, the piston body may not move smoothly in the cylinder, and thus the speed of inflating an object will become slow. Furthermore, the motor of the air compressor may become too hot, thus decreasing the performance of the motor. Even worse, the motor may be under the risk of burning out.

In view of the foregoing, the applicant intends to develop an improved air compressor which can solve the shortcomings of conventional air compressors.

One object of the present invention is to provide an improved air compressor, wherein a cylinder thereof defines a plurality of exit holes, through which a large amount of compressed air produced in the cylinder may enter an air storage container in a short time.

Another object of the present invention is to provide an improved air compressor, wherein a cylinder thereof is fitted with a piston body and defines a plurality of exit holes of approximately equal dimension, so that a large amount of compressed air produced in the cylinder may enter an air storage container in a short time. Since the compressed air can quickly enter the air storage container, the piston body can conduct reciprocating motion more smoothly and thus the performance of the air compressor and the speed of inflating an object can be increased.

Other objects, advantages, and novel features of the present invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.

FIG. 1 shows a 3-dimensional view of an air compressor according to one embodiment of the present invention.

FIG. 2 shows an exploded view of the air compressor.

FIG. 3 shows a plan view of the air compressor, wherein a plurality of exit holes defined at a cylinder thereof are revealed.

FIG. 4 shows a plan view of the air compressor, wherein a plurality of plugs being used to seal the exit holes are revealed.

FIG. 5 shows a 3-dimensional view of an air storage container used in the air compressor, wherein a plurality of columns provided at an inner surface of the air storage container are revealed.

FIG. 6 shows a plan view of the air compressor, wherein the air storage container is assembled onto the cylinder.

FIG. 7 shows a sectional view of the air compressor taken along line A-A in FIG. 6.

FIG. 8 shows a plan view of the air compressor, wherein a gear and a piston body used in the air compressor are revealed.

FIG. 9 shows an exploded view of an air compressor according to another embodiment of the present invention.

FIG. 10 shows an exploded view of an air compressor according to a further embodiment of the present invention.

FIG. 11 shows an exploded view of an air compressor according to a still further embodiment of the present invention.

FIG. 12 shows an exploded view of an air compressor according to a yet still further embodiment of the present invention.

Referring to FIGS. 1 and 2, an air compressor according to one embodiment of the present invention is shown, which generally comprises a cylinder 2 fitted with a piston body 14, and a main frame 11 for mounting a motor 12 which can rotate a gear 13 to drive the piston body 14 to conduct reciprocating motion for producing compressed air in the cylinder, which may enter an air storage container 3 provided with one or more outlets for supplying air to various devices. For example, the outlet 31 can be used for connecting with a pressure gauge 30, the outlet 33 can be used for connecting with a relief valve 32, and the outlet 34 can be connected with a hose for inflating an object (not shown).

Referring to FIGS. 2 through 7, the air compressor is designed in a way different from conventional technology. The cylinder 2, which defines three exit holes 4, 5, 6 at its top wall 21, is formed of a plastic material, integrally with the main frame 11. The exit holes 4, 5, 6 are approximately equal in dimension. As shown in FIG. 3, the exit hole 4 is defined to have a diameter of (X), the exit hole 5 is defined to have a diameter of (Y), and the exit hole 6 is defined to have a diameter of (Z), wherein X=Y=Z; namely, the exit holes 4, 5, 6 have the same diameter. The exit holes 4, 5, 6 are regulated by a control mechanism to be opened or closed. The control mechanism includes a plurality of plugs 7, 8, 9 and a plurality of compression springs 71, 81, 91, corresponding to plugs 7, 8, 9. The compression springs 71, 81, 91 can urge the plugs 7, 8, 9 to seal the exit holes 4, 5, 6, respectively (see FIGS. 2, 4 and 7). The cylinder 2 has a tubular projection 22 formed on the top wall 21. The tubular projection 22 is provided with a circular flange 221 at its outer surface and defines an annular groove 222 between the circular flange 221 and the top wall 21. The air storage container 3 is provided with two opposite coupling means 35 (see FIG. 5), each of which includes a base portion 351 extending outwardly from a bottom edge of the air storage container 3, and an L-shaped holding portion 352 integrally formed at one end of the base portion 351 distal from the bottom edge of the air storage container 3. Furthermore, the air storage container 3 is provided at an inner surface thereof with a plurality of columns 37, 38, 39 corresponding to the compression springs 71, 81, 91. The column 37 has a base round portion 371, a middle round portion 372, and an end round portion 373; the column 38 has a base round portion 381, a middle round portion 382, and an end round portion 383; the column 39 has a base round portion 391, a middle round portion 392, and an end round portion 393; wherein the diameter of the base round portion 371, 381 or 391 is greater than that of the corresponding middle round portion 372, 382 or 392, and the diameter of the middle round portion 372, 382 or 392 is greater than that of the corresponding end round portion 373, 383 or 393. The L-shaped holding portions 352 of the coupling means 35 of the air storage container 3 can be inserted into the annular groove 222 and engaged with the circular flange 221, so that the air storage container 3 can be detachably assembled onto the cylinder 2. As shown in FIG. 7, each of the compression springs 71, 81, 91 has one end forcing against the corresponding plug 7, 8 or 9, and has another end being fitted around the middle round portion 372, 382 or 392 of the corresponding column and forcing against the base round portion 371, 381 or 391 of the corresponding column. Each of the end round portions 373, 383, 393 of the columns 37, 38, 39 is located at a predetermined height above the corresponding plug so as to limit the movement of the corresponding plug. FIG. 1 shows the air storage container 3 being assembled onto the cylinder 2.

Referring to FIGS. 7 and 8, when the piston body 14 conducts reciprocating motion, the compressed air produced in the cylinder 2 can overcome the force of the compression springs 71, 81, 91 exerted on the plugs 7, 8, 9, thus pushing the plugs 7, 8, 9 away from the exit holes 4, 5, 6, respectively, so that the compressed air can flow into the inner space 36 of the air storage container 3. Initially, since the compressed air can flow into the inner space 36 of the air storage container 3 simultaneously via the exit holes 4, 5, 6, the air storage container 3 can be filled with a large amount of air in a short time. Later, since there is a large amount of air having entered the inner space 36 of the air storage container 3, the air contained in the air storage container 3 can exert a greater back force on the plugs 7, 8, 9 compared to the air initially contained in the air storage container 3. In other words, the piston body 14 may experience greater resistance in conducting reciprocating motion, and thus may cause the exit holes 4, 5, 6 more difficult to be opened. However, upon a decrease of the pressure of the air contained in the air storage container 3, the back force exerted on the plugs 7, 8, 9 will decrease and this allows the compressed air produced in the cylinder 2 to quickly enter the inner space 36 of the air storage container 3. Considering the operation of the air compressor as a whole, since the multiple exit holes allow the piston body 14 to conduct reciprocating motion more smoothly, the performance of the air compressor can be increased. Thus, the air compressor can inflate an object more quickly.

FIG. 9 shows another embodiment of the present invention, wherein the tubular projection 22 is provided at its outer surface with two opposite lugs 23 each having an engagement section 231. The L-shaped holding portions 352 of the two coupling means 35 can engage with the engagement sections 231 of the two lugs 23, so that the air storage container 3 can be detachably assembled onto the cylinder 2.

FIG. 10 shows a further embodiment of the present invention, wherein the tubular projection 22 is provided at its outer surface with two opposite lugs 23 each having an engagement section 231. The L-shaped holding portions 352 of the two coupling means 35 can engage with the engagement sections 231 of the two lugs 23, so that the air storage container 3 can be detachably assembled onto the cylinder 2. Besides, each of the two coupling means 35 further includes an operation portion 353, which is a resilient member and integrally formed at one end of the base portion 351 distal from the bottom edge of the air storage container 3 and located at a side of the base portion 351 opposite to the L-shaped holding portion 352. As such, a user may depress the operation portions 353 to have the L-shaped holding portions 352 disengaged from the lugs 23, so that the air storage container 3 can be dissembled from the cylinder 2 conveniently when maintenance is required.

FIG. 11 shows a still further embodiment of the present invention, wherein the tubular projection 22 is provided at its outer surface with two opposite lugs 23 each having an engagement section 231. The L-shaped holding portions 352 of the two coupling means 35 can engage with the engagement sections 231 of the two lugs 23, so that the air storage container 3 can be detachably assembled onto the cylinder 2. Besides, each of the two coupling means 35 further includes an operation portion 354, which is a resilient member and extends from the L-shaped holding portion 352 in a direction opposite to the base portion 351. As such, a user may pull the operation portions 354 outwardly from the cylinder 2 to have the L-shaped holding portions 352 disengaged from the lugs 23, so that the air storage container 3 can be dissembled from the cylinder 2 easily when maintenance is required.

FIG. 12 shows a yet still further embodiment of the present invention, wherein the tubular projection 22 is provided at its outer surface with two opposite lugs 23 each having an engagement section 231. The tubular projection 22 is further provided at its outer surface with a first rectangular flange 24 which defines a plurality of first positioning holes 240. The air storage container 3 is further provided at its bottom edge with a second rectangular flange 355 which defines a plurality of second positioning holes 356 corresponding to the first positioning holes 240 of the first rectangular flange 24. In addition to the L-shaped holding portions 352 of the coupling means 35 being engaged with the engagement sections 231 of the lugs 23, the first and second flanges 24, 355 can be attached together by fasteners fitted through the first and second positioning holes 240, 356. As such, the air storage container 3 can be assembled onto the cylinder 2 more securely.

As a summary, the air compressor of the present invention has a breakthrough over the prior art in that the top wall 21 of the cylinder 2 defines a plurality of exit holes 4, 5, 6, which are approximately equal in dimension and controlled by the plugs 7, 8, 9 to allow the compressed air produced in the cylinder 2 to quickly enter the inner space 36 of the air storage container 3, so that the piston body 14 can conduct reciprocating motion more smoothly and thus the performance of the air compressor can be increased. These features render the air compressor of the present invention useful and inventive.

Chou, Wen-San

Patent Priority Assignee Title
10914298, Aug 07 2019 UNIK WORLD INDUSTRIAL CO , LTD Structure of fixing bearing of air compressor
Patent Priority Assignee Title
4542768, Mar 12 1984 Rotron, Inc. Pressure relief valve
4957419, Apr 14 1989 Compressor
20090028733,
20140286804,
20160144672,
Executed onAssignorAssigneeConveyanceFrameReelDoc
Date Maintenance Fee Events
Jan 09 2023M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.


Date Maintenance Schedule
Aug 20 20224 years fee payment window open
Feb 20 20236 months grace period start (w surcharge)
Aug 20 2023patent expiry (for year 4)
Aug 20 20252 years to revive unintentionally abandoned end. (for year 4)
Aug 20 20268 years fee payment window open
Feb 20 20276 months grace period start (w surcharge)
Aug 20 2027patent expiry (for year 8)
Aug 20 20292 years to revive unintentionally abandoned end. (for year 8)
Aug 20 203012 years fee payment window open
Feb 20 20316 months grace period start (w surcharge)
Aug 20 2031patent expiry (for year 12)
Aug 20 20332 years to revive unintentionally abandoned end. (for year 12)