A steering column assembly for an autonomous or semi-autonomous vehicle includes a steering wheel and an upper steering shaft rigidly coupled to the steering wheel. Also included is a lower steering shaft operatively coupled to the upper steering shaft. Further included is a ball coupling assembly comprising balls retained within the upper steering shaft, the balls disposed in a first radial position that engages the balls with the upper steering shaft and the lower steering shaft to place the steering shafts in a coupled condition, the balls disposed in a second radial position that disengages the balls from at least one of the upper steering shaft and the lower steering shaft to place the steering shafts in a decoupled condition.

Patent
   10385930
Priority
Feb 21 2017
Filed
Feb 21 2017
Issued
Aug 20 2019
Expiry
Oct 22 2037
Extension
243 days
Assg.orig
Entity
Large
5
398
currently ok
1. A steering column assembly for an autonomous or semi-autonomous vehicle having a steering wheel, the assembly comprising:
an upper column steering shaft rigidly coupled to the steering wheel;
a lower column steering shaft operatively coupled to the upper column steering shaft; and
a ball coupling assembly for switching the upper column steering shaft and the lower column steering shaft between a coupled condition and a decoupled condition, the ball coupling assembly comprising:
a plurality of balls retained within the upper column steering shaft;
a plurality of pockets circumferentially spaced from each other and defined by the lower column steering shaft, each of the pockets sized to receive a portion of one of the plurality of balls;
a collar surrounding the balls, the collar having an angled portion of an inner wall disposed in contact with the balls; and
a collar actuating mechanism for selectively axially translating the collar between a coupled condition and a decoupled condition, the collar actuating mechanism further comprising:
a driving structure engaged with the collar; and
a linkage coupled to the driving structure to axially translate the collar.
9. A steering column assembly for an autonomous or semi-autonomous vehicle having a steering wheel, the assembly comprising:
an upper column steering shaft rigidly coupled to the steering wheel;
a lower column steering shaft operatively coupled to the upper column steering shaft; and
a ball coupling assembly for switching the upper column steering shaft and the lower column steering shaft between a coupled condition and a decoupled condition, the ball coupling assembly comprising:
a plurality of balls retained within the upper column steering shaft;
a plurality of pockets circumferentially spaced from each other and defined by the lower column steering shaft, each of the pockets sized to receive a portion of one of the plurality of balls;
a collar surrounding the balls, the collar having an angled portion of an inner wall disposed in contact with the balls; and
a collar actuating mechanism for selectively axially translating the collar between a coupled condition and a decoupled condition; and
an electric solenoid having a pin extending therefrom, the pin engageable with a receiving hole defined by the upper column steering shaft to rotationally lock the steering wheel when the upper and lower column steering shafts are in the decoupled condition.
10. A steering column assembly for an autonomous or semi-autonomous vehicle having a steering wheel, the assembly comprising:
an upper column steering shaft rigidly coupled to the steering wheel;
a lower column steering shaft operatively coupled to the upper column steering shaft; and
a ball coupling assembly for switching the upper column steering shaft and the lower column steering shaft between a coupled condition and a decoupled condition, the ball coupling assembly comprising:
a plurality of balls retained within respective holes defined by the lower column steering shaft in a single axial plane;
a central pin disposed within a bore of the lower column steering shaft and axially translatable therein;
an annular recess defined by the central pin; and
a central pin actuating mechanism for axially translating the central pin, the balls disposed at a first radial position that disposes the balls within the annular recess to place the upper and lower column steering shafts in a decoupled condition, the balls disposed at a second radial position that disposes the balls in abutment with a radially outer surface of the central pin and within the holes of the lower column steering shaft and holes of the upper column steering shaft to place the upper and lower column steering shafts in a coupled condition, the coupled condition providing common rotation of the upper and lower column steering shafts and the decoupled condition permitting independent rotation of the upper and lower column steering shafts.
6. A steering column assembly for an autonomous or semi-autonomous vehicle having a steering wheel, the assembly comprising:
an upper column steering shaft rigidly coupled to the steering wheel;
a lower column steering shaft operatively coupled to the upper column steering shaft; and
a ball coupling assembly for switching the upper column steering shaft and the lower column steering shaft between a coupled condition and a decoupled condition, the ball coupling assembly comprising:
a plurality of balls retained within the upper column steering shaft;
a plurality of pockets circumferentially spaced from each other and defined by the lower column steering shaft, each of the pockets sized to receive a portion of one of the plurality of balls;
a collar surrounding the balls, the collar having an angled portion of an inner wall disposed in contact with the balls; and
a collar actuating mechanism for selectively axially translating the collar between a coupled condition and a decoupled condition, wherein the balls are disposed at a first radial position that disposes the balls within the pockets to place the upper and lower column steering shafts in the coupled condition, the balls disposed at a second radial position that removes the balls from the pockets to place the upper and lower column steering shafts in the decoupled condition, the coupled condition providing common rotation of the upper and lower column steering shafts and the decoupled condition permitting independent rotation of the upper and lower column steering shafts, the steering column assembly further comprising an annular recess defined by the lower column steering shaft, the annular recess extending to a radial depth that is less than a radial depth of the plurality of pockets, the balls free to rotate along the annular recess when the balls are in the second radial position, the collar actuating mechanism further comprising an actuator engaged with a linkage to actuate movement of the linkage.
2. The steering column assembly of claim 1, wherein the linkage is secured to a column housing structure of the steering column assembly.
3. The steering column assembly of claim 1, wherein the collar includes a magnet located proximate the inner wall to attract the balls radially outwardly to the second radial position.
4. The steering column assembly of claim 1, wherein the upper and lower steering column shafts are switched between the coupled condition and the decoupled condition with a user input device.
5. The steering column assembly of claim 4, wherein the user input device comprises one of a button, a switch and a voice prompt system.
7. The steering column assembly of claim 6, wherein the actuator comprises an electric solenoid biasing the linkage in a first state of the solenoid to position the balls in the first radial position, the electric solenoid switchable to a second state to allow the balls to move to the second radial position.
8. The steering column assembly of claim 7, wherein the collar actuating mechanism further comprises a spring axially biasing the driving structure to position the balls in the second radial position when the electric solenoid is in the second state.
11. The steering column assembly of claim 10, further comprising an electric solenoid having a pin extending therefrom, the pin engageable with a receiving hole defined by the upper column steering shaft to rotationally lock the steering wheel when the upper and lower column steering shafts are in the decoupled condition.
12. The steering column assembly of claim 10, wherein the central pin actuating mechanism further comprises:
a collar disposed between the upper column steering shaft and a column housing structure and operatively coupled to the central pin;
a driving structure engaged with the collar; and
a linkage coupled to the driving structure to axially translate the collar and the central pin.
13. The steering column assembly of claim 12, wherein the linkage is secured to the column housing structure of the steering column assembly.
14. The steering column assembly of claim 12, wherein the collar actuating mechanism further comprises an actuator engaged with the linkage to actuate movement of the linkage.
15. The steering column assembly of claim 14, wherein the actuator comprises an electric solenoid biasing the linkage in an first state of the solenoid to position the balls in the first radial position, the electric solenoid switchable to a second state to allow the balls to move to the second radial position, the upper and lower steering column shafts switchable between the coupled condition and the decoupled condition with a user input device comprising one of a button, a switch and a voice prompt system.
16. The steering column assembly of claim 15, wherein the collar actuating mechanism further comprises a spring axially biasing the driving structure to position the balls in the first radial position when the electric solenoid is in the first state.

The invention described herein relates to steering column assemblies and, more particularly, to a ball coupling assembly for steering column assemblies implemented in autonomous or semi-autonomous vehicles.

As the automotive industry moves toward autonomously driven vehicles, there will be Advanced Driver Assist Systems (ADAS) that allow a vehicle to be autonomously controlled using sensing, steering, and braking technology. Implementing steering on ADAS vehicles may include decoupling the driver interface (e.g., steering wheel) from the steering actuator. However, a rotating driver interface may cause confusion, inconvenience or even harm to the driver during an autonomous driving mode. Addressing the issue of a moving interface will assist with the overall development of autonomous vehicle technology and feasibility.

According to an aspect of the invention, a steering column assembly for an autonomous or semi-autonomous vehicle includes a steering wheel. Also included is an upper column steering shaft rigidly coupled to the steering wheel. Further included is a lower column steering shaft operatively coupled to the upper column steering shaft. Yet further included is a ball coupling assembly for switching the upper column steering shaft and the lower column steering shaft between a coupled condition and a decoupled condition. The ball coupling assembly includes a plurality of balls retained within the upper column steering shaft. The ball coupling assembly also includes a plurality of pockets circumferentially spaced from each other and defined by the lower steering shaft, each of the pockets sized to receive a portion of one of the plurality of balls. The ball coupling assembly further includes a collar surrounding the balls, the collar having an angled portion of an inner wall disposed in contact with the balls. The ball coupling assembly yet further includes a collar actuating mechanism for selectively axially translating the collar between a coupled condition and a decoupled condition.

According to another aspect of the invention, a steering column assembly for an autonomous or semi-autonomous vehicle includes a steering wheel. Also included is an upper column steering shaft rigidly coupled to the steering wheel. Further included is a lower column steering shaft operatively coupled to the upper column steering shaft. Yet further included is a ball coupling assembly for switching the upper column steering shaft and the lower column steering shaft between a coupled condition and a decoupled condition. The ball coupling assembly includes a plurality of balls retained within respective holes defined by the lower column steering shaft in a single axial plane. The ball coupling assembly also includes a central pin disposed within a bore of the lower column steering shaft and axially translatable therein. The ball coupling assembly further includes an annular recess defined by the central pin. The ball coupling assembly yet further includes a central pin actuating mechanism for axially translating the central pin, the balls disposed at a first radial position that disposes the balls within the annular recess to place the upper and lower column steering shafts in a decoupled condition, the balls disposed at a second radial position that disposes the balls in abutment with a radially outer surface of the central pin and within the holes of the lower column steering shaft and holes of the upper column steering shaft to place the upper and lower column steering shafts in a coupled condition, the coupled condition providing common rotation of the upper and lower column steering shafts and the decoupled condition permitting independent rotation of the upper and lower column steering shafts.

According to yet another aspect of the invention, a steering column assembly for an autonomous or semi-autonomous vehicle includes a steering wheel. Also included is an upper column steering shaft rigidly coupled to the steering wheel. Further included is a lower column steering shaft operatively coupled to the upper column steering shaft. Yet further included is a ball coupling assembly comprising a plurality of balls retained within the upper column steering shaft, the balls disposed in a first radial position that engages the balls with the upper column steering shaft and the lower column steering shaft to place the upper and lower column steering shafts in a coupled condition, the balls disposed in a second radial position that disengages the balls from at least one of the upper column steering shaft and the lower column steering shaft to place the upper and lower column steering shafts in a decoupled condition.

These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.

The subject matter which is regarded as the invention is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:

FIG. 1 is a partial cross-sectional view of a steering column assembly in a coupled condition according to an aspect of the disclosure;

FIG. 2 is a partial cross-sectional view of the steering column assembly of FIG. 1 in a decoupled condition;

FIG. 3 is a partial cross-sectional view of a steering column assembly in a coupled condition according to another aspect of the disclosure; and

FIG. 4 is a partial cross-sectional view of the steering column assembly of FIG. 3 in a decoupled condition.

Referring now to the Figures, where the invention will be described with reference to specific embodiments, without limiting same, various features of a steering column assembly for an autonomous vehicle are illustrated. As described herein, the embodiments provide a reliable and efficient assembly that allows a driver to decouple a steering wheel from a lower steering shaft for use of the vehicle in an autonomous mode, while maintaining the steering wheel in a stationary position.

The steering column assembly is part of an advanced driver assist system (ADAS) that is able to steer as well as control other parameters of the vehicle to operate it without direct driver involvement. Autonomous or semi-autonomous driving refers to vehicles that are configured to perform operations without continuous input from a driver (e.g., steering, accelerating, braking etc.) and may be equipped with technology that allows the vehicle to be autonomously or semi-autonomously controlled using sensing, steering, and/or braking technology.

Referring to FIGS. 1 and 2, a portion of a steering column assembly 10 is shown according to an embodiment. The steering column assembly 10 includes a lower column steering shaft 12 (also referred to herein as a lower steering shaft) that is operatively coupled to road wheel control structures (not shown), thereby allowing a driver to input road wheel controls and to receive feedback in response to road wheel movement. A column jacket surrounds a portion of the lower steering shaft 12. A steering input device, such as the illustrated steering wheel 16, is operatively coupled to the lower steering shaft 12 via an upper column steering shaft 17 (also referred to herein as an upper steering shaft) to allow the user to control the vehicle in a manual driving mode. The upper steering shaft 17 is rigidly fixed to the steering wheel 16 with a splined connection, or the like, to ensure common rotation of the steering wheel 16 and the upper steering shaft 17.

The steering column assembly 10 is shown in the manual driving mode in FIG. 1. In the manual driving mode, the upper steering shaft 17 is coupled to the lower steering shaft 12, also referred to as being rotationally coupled. The coupled (or rotationally coupled) condition of the upper steering shaft 17 and the lower steering shaft 12 results in common rotation of the steering wheel 16 and the lower steering shaft 12, such that rotation of the components is dependent upon each other. Conversely, a decoupled condition (FIG. 2) of the upper steering shaft 17 and the lower steering shaft 12 may be present during an autonomous driving mode. The decoupled (or rotationally decoupled) condition results in independent rotation of the steering wheel 16 and the lower steering shaft 12, such that rotation of the lower steering shaft 12 in response to road wheel angular movement does not require or result in rotation of the steering wheel 16. The steering column assembly 10 disclosed herein provides a driver the ability to switch between the coupled and decoupled condition in conjunction with switching between manual and autonomous driving modes.

In contrast to a continuously fixed relationship between the lower steering shaft 12 and the steering wheel 16 that is achieved with a splined mating assembly, the embodiments described herein employ at least one, but typically a plurality of balls 18 to establish the coupled or decoupled conditions. The plurality of balls 18 are part of a ball coupling assembly and are fixed within a ball retaining structure, such as a plurality of respective holes 19, defined by the upper steering shaft 17 in a one-to-one relationship. The holes 19 are circumferentially spaced from each other and are each sized to axially and circumferentially retain one of the balls 18 therein.

The lower steering shaft 12 defines a plurality of pockets 20 disposed in a common axial plane and that are circumferentially spaced from each other. The plurality of pockets 20 extend to a radial depth of the lower steering shaft 12 that allows the balls to be partially disposed therein, but with a portion of the balls 18 protruding radially outwardly therefrom. The balls 18 are positioned within the pockets 20 in the coupled condition of the lower steering shaft 12 with the upper steering shaft 17 and the steering wheel 16. The balls protrude radially from the pockets 20 to engage both the pocket surfaces and the walls defining the holes 19 of the upper steering shaft 17. Therefore, when the balls 18 are positioned with the pockets 20 of the lower steering shaft 12, torque transmission between the steering wheel 16 and the lower steering shaft 12 is established.

To retain the balls 18 within the pockets 20 and prevent radial movement of the balls 18, an inner wall 26 of a collar 30 is disposed in contact with the balls 18. More specifically, an innermost location of an angled portion 32 of the inner wall 26 is in contact with the balls 18. The collar 30 is disposed between the upper steering shaft 17 and a column housing structure 23. Due to the angled portion 32 of the inner wall 26, a portion of the inner wall 26 is spaced from the balls 18 to allow the balls 18 to move radially outwardly in some conditions, as described in detail herein.

A collar actuating mechanism 40 is provided to selectively axially translate the collar 30 in order to control the portion of the angled portion 32 that is adjacent the balls 18, as this positioning determines whether the balls 18 are radially retained within the pockets 20 or free to move radially outwardly. A driving structure 42, such as a pin or shift fork is engaged with the collar 30. The driving structure 42 extends through an aperture 44 of the column housing structure 23 in the illustrated embodiment. The aperture 44 is large enough to accommodate axial travel by the driving structure 42. A linkage 46 is coupled to the driving structure 42 at one end and to the column housing structure 23 at an opposing end. Different positioning of the linkage 46 axially translates the driving structure 42 and therefore the collar 30 between two axial positions. Manipulation of the linkage 46 may be accomplished with any suitable actuator, such as an electric solenoid 48 having a pin engageable with the linkage 46.

In a first state (i.e., powered or unpowered) of the electric solenoid 48, the linkage 46 positions the driving structure 42, and therefore the collar 30, in an orientation that disposes the balls 18 in the pockets 20. This provides the coupled condition (FIG. 1), with the innermost location of the angled portion 32 in contact with, or in close proximity to, the balls 18 to radially retain the balls 18 within the pockets 20. In second state (i.e., powered or unpowered) of the electric solenoid 48, the driving structure 42 is biased with a spring 50 to move the collar 30 to a position that locates a radially outer region of the angled portion 32, thereby allowing the balls 18 to move radially outwardly. Outward radial movement of the balls 18 is facilitated with one or more magnets 52 located on or in the collar 30 in some embodiments. The lower steering shaft 12 defines an annular recess 54 that is located at the same axial position as the pockets 20, but the annular recess 54 extends to a radial depth that is less than the radial depth of the pockets 20. This provides a continuous track for the balls to travel through when the balls 18 are at the outer radial position (i.e., decoupled condition), thereby rotationally decoupling the steering wheel from the lower steering shaft 12.

The steering column assembly 10 also facilitates autonomous mode for the steering wheel 16 when the assembly in the decoupled condition. An autonomous mode refers to a rotationally stationary position and condition of the steering wheel 16. Maintaining the steering wheel 16 in a stationary position reduces the likelihood of driver confusion, inconvenience and/or harm.

Placing the steering wheel in the stationary position occurs upon transition to the decoupled condition of the steering column assembly 10 shown in FIG. 2. In the illustrated embodiment, an electric solenoid 56 includes a pin 58 extending therefrom. The electric solenoid 56 is switchable between a first state (i.e., powered or unpowered) and a second state (i.e., powered or unpowered), with one state disposing the pin 58 in a retracted position (FIG. 1) and the other state disposing the pin 58 in an extended position (FIG. 2). The extended position of the pin 58 engages the pin 58 with a receiving hole 60 defined by the upper steering shaft 17 to rotationally lock the steering wheel 16 when the upper and lower steering shafts 12, 17 are in the decoupled condition. The preceding example is merely illustrative of how the steering wheel 16 may be locked in the “quiet wheel” mode. Although the steering wheel 16 is rotationally locked, the lower steering shaft 12 is free to rotate due to the balls 18 being disposed in the outward radial position.

In operation, a user interacts with a user input device that switches the states of both electric solenoids 48, 56. The user input device may be a button, toggle switch, voice activated command, etc. These types of input devices are merely illustrative of the devices that may be employed to switch the states of the solenoids.

Referring now to FIGS. 3 and 4, another aspect of the disclosure is illustrated. In particular, a portion of a steering column assembly 110 is shown according to an embodiment. The steering column assembly 110 includes a lower column steering shaft 112 (also referred to herein as a lower steering shaft) that is operatively coupled to road wheel control structures (not shown), thereby allowing a driver to input road wheel controls and to receive feedback in response to road wheel movement. A column jacket surrounds a portion of the lower steering shaft 112. A steering input device, such as the illustrated steering wheel 116, is operatively coupled to the lower steering shaft 112 via an upper column steering shaft 117 (also referred to herein as an upper steering shaft) to allow the user to control the vehicle in a manual driving mode. The upper steering shaft 117 is rigidly fixed to the steering wheel 116 with a splined connection, or the like, to ensure common rotation of the steering wheel 116 and the upper steering shaft 117.

The steering column assembly 110 is shown in the manual driving mode in FIG. 3. In the manual driving mode, the upper steering shaft 117 is coupled to the lower steering shaft 112, also referred to as being rotationally coupled. The coupled (or rotationally coupled) condition of the upper steering shaft 117 and the lower steering shaft 112 results in common rotation of the steering wheel 116 and the lower steering shaft 112, such that rotation of the components is dependent upon each other. Conversely, a decoupled condition (FIG. 4) of the upper steering shaft 117 and the lower steering shaft 112 may be present during an autonomous driving mode. The decoupled (or rotationally decoupled) condition results in independent rotation of the steering wheel 116 and the lower steering shaft 112, such that rotation of the lower steering shaft 112 in response to road wheel angular movement does not require or result in rotation of the steering wheel 116. The steering column assembly 110 disclosed herein provides a driver the ability to switch between the coupled and decoupled condition in conjunction with switching between manual and autonomous driving modes.

In contrast to a continuously fixed relationship between the lower steering shaft 112 and the steering wheel 116 that is achieved with a splined mating assembly, the embodiments described herein employ at least one, but typically a plurality of balls 118 to establish the coupled or decoupled conditions. The plurality of balls 118 are part of a ball coupling assembly and are fixed within ball retaining structure, such as a plurality of respective holes 119 defined by the lower steering shaft 112 in a one-to-one relationship. The holes 119 are circumferentially spaced from each other and are each sized to axially and circumferentially retain one of the balls 118 therein. The upper steering shaft 117 also has a plurality of holes 121 that are circumferentially spaced from each other and are each sized to axially and circumferentially retain a portion of one of the balls 118 therein. The holes 121 of the upper steering shaft 117 and the holes 119 of the lower steering shaft 112 are equal in number and aligned in a common axial plane.

A central pin 170 is disposed within an axially extending bore 131 of the lower steering shaft 112. The central pin 170 includes a grooved surface leading from a radially outer surface 133 of the central pin 170 to an annular recess 138 defined by the central pin 170. In the coupled condition shown in FIG. 3, the balls 118 are in abutment with the radially outer surface 133 of the central pin 170. The balls 118 protrude radially to engage the walls defining the holes 119 of the lower steering shaft 112 and the holes 121 of the upper steering shaft 117. Therefore, when the balls 118 are positioned as such, torque transmission between the steering wheel 116 and the lower steering shaft 112 is established.

To radially retain the balls 118, an inner wall 126 of a collar 130 is disposed in contact with an outer radial surface of the balls 118. The collar 130 is disposed between the upper steering shaft 117 and a column housing structure 123. The collar 130 is operatively coupled to the central pin 170 and the elements are axially translatable in a dependent manner. Operative coupling of the collar 130 and the central pin 170 may be achieved with a pin 172 that is disposed in forced contact with the central pin 170 and the collar 130 as a result of a preload reaction of spring 150 against driving pin 142. The spring 150 is provided in some embodiments, but is not necessary to bias the driving pin 142 in some embodiments. In some embodiments, it is contemplated that the pin 172 and the central pin 170 are fixed to each other. The pin 172 extends through and axially moves within slots 199 defined by the upper steering shaft 117.

A collar actuating mechanism 140 is provided to axially translate the collar 130 in order to control the axial position of the central pin 170, as this positioning determines whether the balls 118 are located at a first radial position or a second radial position. In particular, the balls 118 may be located at a first radial position when the balls 118 are disposed radially inwardly within the annular recess 138 and at a second radial position when the balls 118 are disposed in abutment with the radially outer surface 133 of the central pin 170. The radial position of the balls 118 is dependent upon the axial position of the central pin 170.

The collar actuating mechanism 140 includes a driving structure 142, such as a pin or shift fork is engaged with the collar 130. The driving structure 142 extends through an aperture 144 of the column housing structure 123 in the illustrated embodiment. The aperture 144 is large enough to accommodate axial travel by the driving structure 142. A linkage 146 is coupled to the driving structure 142 at one end and to the column housing structure 123 at an opposing end. Different positioning of the linkage 146 axially translates the driving structure 142 and therefore the collar 130 between two axial positions. Manipulation of the linkage 146 may be accomplished with any suitable actuator, such as an electric solenoid 148 having a pin engageable with the linkage 146.

In a first state (i.e., powered or unpowered) of the electric solenoid 148, the linkage 146 positions the driving structure 142, and therefore the collar 130, in an orientation that disposes the balls 118 in abutment with the radially outer surface 133 of the central pin 170. This provides the coupled condition (FIG. 3. In a second state (i.e., powered or unpowered) of the electric solenoid 148, the driving structure 142 is biased with a spring 150 to move the collar 130 to a position that moves the balls 118 radially inwardly and out of contact with the wall defining the holes 121 of the upper steering shaft 117. In this position, the balls 118 are located within the annular recess 138 which provides a continuous track for the balls 118 to travel through when the balls 118 are at the inner radial position (i.e., decoupled condition), thereby rotationally decoupling the steering wheel 116 from the lower steering shaft 112. A spring 180 located within the bore 131 of the lower steering shaft 112 biases the central pin 170 to the axial position that disposes the balls 118 in the annular recess 138.

The steering column assembly 10 is also facilitates a rotationally stationary position and condition of the steering wheel 116. Maintaining the steering wheel 116 in a stationary position reduces the likelihood of driver confusion, inconvenience and/or harm.

Placing the steering wheel 116 in the stationary position occurs upon transition to the decoupled condition of the steering column assembly 110 shown in FIG. 4. In the illustrated embodiment, an electric solenoid 156 includes a pin 158 extending therefrom. The electric solenoid 156 is switchable between a first state (i.e., powered or unpowered) and a second state (i.e., powered or unpowered), with one state disposing the pin 158 in a retracted position (FIG. 3) and the other state disposing the pin 158 in an extended position (FIG. 4). The extended position of the pin 158 engages the pin 158 with a receiving hole 160 defined by the upper steering shaft 117 to rotationally lock the steering wheel 116 when the upper and lower steering shafts 112, 117 are in the decoupled condition. The preceding example is merely illustrative of how the steering wheel 116 may be locked in the “quiet wheel” mode. Although the steering wheel 116 is rotationally locked, the lower steering shaft 112 is free to rotate due to the balls 118 being disposed in the inward radial position.

In operation, a user interacts with a user input device that switches the states of both electric solenoids 148, 156. The user input device may be a button, toggle switch, voice activated command, etc. These types of input devices are merely illustrative of the devices that may be employed to switch the states of the solenoids.

In some of the above-described embodiments, the overall steering system is monitored with an absolute position sensor and the system only allows switching between the driving modes (autonomous and manual) when the steering system is in an “on-center position” (e.g., straight ahead driving position). This facilitates a smooth transition between the driving modes.

The embodiments described herein provide a reliable and efficient way to transition between the coupled and decoupled conditions of the steering column assembly 10. Additionally, the steering wheel 16 is desirably maintained in a stationary position (rotationally) while the assembly is in the decoupled condition and autonomous driving mode.

While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description.

Magnus, Brian J., Beam, John S.

Patent Priority Assignee Title
10907710, Jun 25 2015 Steering Solutions IP Holding Corporation Stationary steering wheel assembly and method
10994766, Jan 25 2018 JTEKT Corporation Steering system
11273860, Nov 25 2019 Steering Solutions IP Holding Corporation System, method and apparatus for a stowable steering column having a collapse-limited position
11459015, Dec 15 2017 THYSSENKRUPP PRESTA AG; THYSSENKRUPP AG Electrically adjustable steering column for a motor vehicle
11560169, Jun 11 2015 Steering Solutions IP Holding Corporation Retractable steering column system and method
Patent Priority Assignee Title
1795567,
3369425,
3386309,
3396600,
3782492,
4138167, Aug 04 1976 SKF Kugellagerfabriken GmbH Rolling bearing including lengthwise convex race rails
4337967, Jun 25 1979 Toyota Jidosha Kogyo Kabushiki Kaisha Steering device
4476954, Sep 22 1982 Ford Motor Company Remote control for motor vehicle
4503504, Aug 21 1981 Aisin Seiki Kabushiki Kaisha Attitude controlling device for a steering wheel
4509386, Nov 15 1982 General Motors Corporation Lash-free telescopic steering shaft assembly and method of making the assembly
4535645, Mar 24 1983 The Torrington Company Vehicle steering sub-assembly
4559816, Apr 15 1983 Robert Bosch GmbH Displacement transducer for detecting the position of an adjusting device
4570776, Jul 09 1982 Sanshin Kogyo Kabushiki Kaisha Detent mechanism for clutches
4598604, May 25 1983 Daimler-Benz Aktiengesellschaft Steering device for motor vehicles, adjustable along its longitudinal axis
4602520, Jun 23 1983 Aisin Seiki Kabushiki Kaisha; Toyota Jidosha Kabushiki Kaisha Telescopic steering column assembly
4633732, Jun 11 1983 Aisin Seiki Kabushiki Kaisha; Toyota Jidosha Kabushiki Kaisha Shaft and bush device and tilting steering equipment with the shaft and bush device
4661752, Sep 10 1984 Aisin Seiki Kabushiki Kaisha; Toyota Jidosha Kabushiki Kaisha Attitude controlling system for a steering wheel
4669325, Oct 30 1984 AISIN SEIKI KABUSHIKI KAISHA, A CORP OF JAPAN; TOYOTA JIDOSHA KABUSHIKI KAISHA, A CORP OF JAPAN Telescopic assembly
4785684, Sep 30 1986 Aisin Seiki Kabushiki Kaisha Vehicle steering mechanism
4811580, Jul 26 1988 Steering wheel release locking mechanism
4836566, Jun 08 1988 General Motors Corporation Four-wheel steering system
4881020, Aug 13 1985 Aisin Seiki Kabushiki Kaisha; Toyota Jidosha Kabushiki Kaisha Apparatus for controlling attitude of vehicle mounted device
4893518, Apr 17 1987 Nippon Seiko Kabushiki Kaisha Electric steering apparatus
4901544, Jun 07 1989 Steering wheel releasing and engaging mechanism
4901593, Jan 26 1988 Aisin Seiki Kabushiki Kaisha Adjustable vehicle steering mechanism
4921066, May 23 1986 GRUMBO, ELDON C ; GRUMBO, MARSHA C Dual control driving system
4941679, Jul 02 1988 Daimler-Benz AG Axially adjustable steering device for motor vehicles
4943028, Jun 19 1987 Porsche AG Steering column fastening arrangement for motor vehicles with a deformation element
4962570, Feb 07 1984 Nissan Motor Company Limited Throttle control system for internal combustion engine with vehicle driving condition-dependent throttle angle correction coefficient variable
4967618, Apr 17 1987 Nippon Seiko Kabushiki Kaisha Electric steering apparatus
4976239, Feb 07 1984 Nissan Motor Company, Limited Throttle control system with noise-free accelerator position input
5048364, Jul 14 1988 Koyo Seiko Co., Ltd. Motor-operated tilt steering device
5226853, Nov 23 1990 NACAM Telescopic coupling for steering systems
5295712, Dec 11 1991 NISSAN MOTOR CO , LTD Control of a vehicle restraining system having an air bag in a retractable steering column
5311432, Dec 10 1991 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Method and system for estimating the neutral point of a steering wheel
5319803, May 20 1991 Steering wheel assembly with communication keyboard
5428873, Apr 29 1993 RAYTHEON AIRCRAFT MONTEK COMPANY Ball Latch mechanism
5488555, May 27 1993 MID-AMERICA COMMERCILIZATION CORPORATION, A KANSAS CORP Method and apparatus for four wheel steering control
5590565, Feb 08 1995 General Motors Corporation Motor vehicle steering column
5606892, Mar 31 1995 Visteon Global Technologies, Inc Modular steering column assembly
5613404, Mar 07 1994 CNH America LLC; BLUE LEAF I P , INC Tiltable steering mechanism for an off-highway implement
5618058, Mar 22 1995 Daewoo Electronics Co., Ltd. Collapsible steering column apparatus of a motor vehicle
5668721, Oct 02 1995 Steering Solutions IP Holding Corporation Electric power steering motor control
5678454, Jun 15 1995 TRW Inc. Steering column
5690362, Jul 03 1995 Daimler AG Longitudinal adjusting arrangement on a casing tube telescope of a steering spindle in a motor vehicle
5737971, Aug 05 1996 PACIFIC CENTURY MOTORS, INC ; GM Global Technology Operations, Inc Motor vehicle steering column
5765116, Aug 28 1993 Lucas Industries public limited company Driver assistance system for a vehicle
5813699, Oct 10 1994 LEOPOLD KOSTAL GMBH & CO KG Steering device for motor vehicles
5890397, Feb 24 1997 BLUE LEAF I P , INC Four-way adjustable pedestal floor mounted steering column for a combine harvester
5893580, May 22 1996 UNIQUE TECHNOLOGIES, L P Motor vehicle steering column safety device
5911789, Aug 13 1997 Steering Solutions IP Holding Corporation Linear actuator for motor vehicle steering column
5931250, Feb 05 1996 Toyota Jidosha Kabushiki Kaisha Automatic steering apparatus
5941130, Apr 07 1998 Steering Solutions IP Holding Corporation Adjustable steering column for motor vehicle
6041677, Apr 15 1996 Petri AG Device for attaching a hub to a shaft, in particular a steering wheel hub to a steering column
6079513, Feb 12 1997 Koyo Seiko Co., LTD; Toyota Jidosha Kabushiki Kaisha Steering apparatus for vehicle
6142523, Dec 23 1997 Mannesmann VDO AG Steering spindle provided for mounting on a body part of a motor vehicle
6170862, May 22 1996 UNIQUE TECHNOLOGIES, L P Motor vehicle steering column safety device
6220630, Sep 16 1996 LIVSAFE INC Steering wheel suspension system
6227571, Nov 03 1999 TRW Vehicle Safety Systems Inc. Telescoping vehicle steering column apparatus for helping to protect a vehicle driver
6234040, Sep 09 1999 Visteon Global Technologies, Inc Rotating, traveling energy absorber for steering column
6264239, Mar 19 1998 CHEMTRON RESEARCH LLC Steering column arrangement for a motor vehicle
6277571, Oct 03 1997 Virginia Commonwealth University Intellectual Property Foundation Sequential consensus region-directed amplification of known and novel members of gene families
6301534, May 19 1998 TEXAS A&M UNIVERSITY SYSTEM, THE Method and system for vehicle directional control by commanding lateral acceleration
6343993, Jun 30 1999 ROBERT BOSCH AUTOMOTIVE STEERING VENDÔME SAS Ball-type system for coupling two sliding shafts
6354622, Jul 16 1997 Takata-Petri AG Steering wheel with an airbag module
6354626, Aug 09 2000 TRW Inc. Locking mechanism for telescoping steering column
6360149, Dec 09 1998 Autoliv Development AB Dual position vehicle steering command module
6373472, Oct 13 1995 Lear Automotive Dearborn, Inc Driver control interface system
6381526, Aug 30 1999 Suzuki Motor Corporation Torque detection apparatus
6390505, Apr 19 2000 INTERNATIONAL TRUCK INTELLECTUAL PROPERTY COMPANY, L L C ; International Truck Intellectual Property Company, LLC Steering column adjustment system using force feedback system
6460427, Jan 28 2002 Ford Global Technologies, Inc. Adjustment linkage for tilting and telescoping a steering column assembly
6571587, Jan 09 2001 Strattec Security Corporation Steering column lock apparatus and method
6611745, May 20 1999 ZF Friedrichshafen AG Steering system and steering method
6612198, Nov 01 2001 Steering Solutions IP Holding Corporation Lash-free cable drive
6612393, Jan 17 2001 DaimlerChrysler AG Steering system for motor vehicles
6819990, Dec 23 2002 Matsushita Electric Industrial Co., Ltd.; MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Touch panel input for automotive devices
7021416, Apr 11 2000 SKF ENGINEERING AND RESEARCH CENTRE B V Vehicle control with manual back up
7025380, May 29 2002 Fuji Kiko Co., Ltd. Power telescopic type steering column
7048305, May 07 2002 THYSSENKRUPP PRESTA AG Safety steering and mechanism and a method of operating
7062365, Sep 03 2003 Personal computer for automobiles
7140213, Feb 21 2004 Strattec Security Corporation Steering column lock apparatus and method
7159904, Jan 14 2003 ZF Lemförder Metallwaren AB Steering column for a motor vehicle
7213842, Oct 18 2004 Deere & Company Control housing for work vehicle
7258365, Jan 31 2002 Daimler AG Steering column arrangement for a motor vehicle
7261014, Sep 29 2003 Fujikiko Kabushiki Kaisha Backlash preventing structure for steering column
7290800, May 09 2006 DURA Automotive Systems Reich GmbH Telescoping steering shaft
7295904, Aug 31 2004 GOOGLE LLC Touch gesture based interface for motor vehicle
7308964, Oct 02 2003 Nissan Motor Co., Ltd. Vehicle steering apparatus
7410190, Feb 17 2005 NSK Ltd. Motor-driven position adjustment apparatus for steering wheel
7428944, Mar 22 2005 KNORR-BREMSE SYSTEME FUER NUTZFAHRZEUGE GMBH Drive train for a compressor and a hydraulic pump
7461863, May 11 1998 THYSSENKRUPP PRESTA AG Safety steering column, motor vehicle with a safety system and safety method
7533594, Dec 13 2006 Steering Solutions IP Holding Corporation Position control apparatus for steering column
7628244, Mar 03 2006 Nissan Motor Co., Ltd. Steering device
7719431, Oct 05 2007 Steering Solutions IP Holding Corporation Systems, methods and computer products for drowsy driver detection and response
7735405, Mar 14 2008 Autoliv ASP, Inc. Pyrotechnic actuator for retracting a piston
7758073, May 06 2008 ADVANCE TUNER WAREHOUSE INC Lockable vehicle steering-wheel tilting assembly
7775129, Apr 10 2006 Panasonic Corporation Rotation angle sensor
7784830, Oct 23 2003 FCA US LLC Axially adjustable steering column assembly with flexible bearing sleeve
7793980, Oct 25 2007 Retractable steering mechanism
7862079, Mar 09 2007 Toyota Jidosha Kabushiki Kaisha Steering column device with knee airbag device
7894951, Oct 21 2005 iRobot Corporation Systems and methods for switching between autonomous and manual operation of a vehicle
7909361, Jun 10 2008 GM Global Technology Operations LLC Vehicular steering wheel and column assembly including torsional damper device
7913803, Oct 25 2004 Denso Corporation Vehicular steering apparatus with capability of providing suitable steering angle correction and power assistance
7975569, Dec 13 2007 GM Global Technology Operations LLC Telescopable steering spindle arrangement
8002075, Jul 20 2005 JOYSON SAFETY SYSTEMS GERMANY GMBH Steering device for a superposition steering system
8011265, Feb 11 2008 Steering Solutions IP Holding Corporation Modular power actuator
8021235, Dec 16 2008 Steering Solutions IP Holding Corporation Rolling element shaft assembly
8027767, Nov 30 2006 Steering Solutions IP Holding Corporation Method for controlling a vehicle steering system
8055409, Jul 25 2005 Toyota Jidosha Kabushiki Kaisha Power steering system and control method of the same
8069745, Jul 10 2008 Steering Solutions IP Holding Corporation Power steering device including a compliant gear
8079312, Oct 01 2007 Steering wheel table
8146945, Nov 07 2002 Daimler AG Motor vehicle steering column
8161839, Oct 19 2007 Fuji Kiko Co., Ltd. Electrically powered tilt steering device
8170725, Feb 18 2009 GM Global Technology Operations LLC Vehicle stability enhancement control adaptation to driving skill based on highway on/off ramp maneuver
8260482, Apr 28 2010 GOOGLE LLC User interface for displaying internal state of autonomous driving system
8352110, Apr 28 2010 Waymo LLC User interface for displaying internal state of autonomous driving system
8466382, Jul 17 2009 GM Global Technology Operations LLC Switch assembly for a steering wheel
8479605, Sep 19 2008 GM Global Technology Operations, Inc Rotary-to-linear mechanism having an isolator
8548667, Dec 15 2011 Steering Solutions IP Holding Corporation Hands on steering wheel detect in lane centering operation
8606455, Oct 10 2009 Daimler AG Method and device for automatically operating a vehicle in an autonomous driving mode requiring no user action
8634980, Oct 05 2010 GOOGLE LLC Driving pattern recognition and safety control
8650982, Jun 29 2010 Fuji Kiko Co., Ltd. Electric telescopic steering apparatus
8670891, Apr 28 2010 Waymo LLC User interface for displaying internal state of autonomous driving system
8695750, May 17 2012 R.H. SHEPPARD CO., INC. Dual hydraulic power steering system
8733201, Mar 14 2011 JTEKT Corporation Steering apparatus for vehicle
8818608, Nov 30 2012 GOOGLE LLC Engaging and disengaging for autonomous driving
8825258, Nov 30 2012 Waymo LLC Engaging and disengaging for autonomous driving
8825261, Apr 28 2010 GOOGLE LLC User interface for displaying internal state of autonomous driving system
8843268, Feb 03 2009 Volkswagen AG Motor vehicle
8874301, Jul 09 2013 Ford Global Technologies, LLC Autonomous vehicle with driver presence and physiological monitoring
8880287, Mar 06 2013 GM Global Technology Operations LLC Steering-wheel-hold detection for lane keeping assist feature
8881861, May 16 2012 JTEKT Corporation Steering system
8899623, Jul 25 2012 Audi AG Motor vehicle with retractable steering wheel
8909428, Jan 09 2013 Waymo LLC Detecting driver grip on steering wheel
8948993, Mar 08 2013 Method and system for controlling the behavior of an occupant of a vehicle
8950543, Aug 16 2011 HL Mando Corporation Electric power steering apparatus
8955407, May 30 2011 NSK Ltd Steering apparatus
8994521, Jun 29 2011 GM Global Technology Operations LLC Steering wheels for vehicle control in manual and autonomous driving
9002563, Nov 17 2011 GM Global Technology Operations LLC Steering wheel device for indicating required supervisory control of a vehicle and method for use
9031729, Nov 29 2012 Volkswagen AG Method and system for controlling a vehicle
9032835, Oct 08 2010 TRW STEERING SYSTEMS POLAND SP Z O O ; TRW Limited Steering column assembly
9039041, Feb 28 2013 Steering Solutions IP Holding Corporation Steering column anti-rotation pin
9045078, Jan 09 2011 Audi AG Arrangement for covering a component, component and motor vehicle
9073574, Nov 20 2013 Ford Global Technologies, LLC Autonomous vehicle with reconfigurable interior
9080895, May 25 2011 SENSATA TECHNOLOGIES, INC Magnetic position sensor assembly for measurement of rotational angular position of a rotating structure
9092093, Nov 27 2012 Neonode Inc Steering wheel user interface
9134729, Apr 28 2010 GOOGLE LLC User interface for displaying internal state of autonomous driving system
9150200, Apr 24 2012 Ford Global Technologies, LLC Method and apparatus for changing an autonomously travelling motor vehicle to a safe state
9150224, Sep 24 2013 Ford Global Technologies, LLC Transitioning from autonomous vehicle control to to driver control to responding to driver control
9164619, Mar 04 2014 Panasonic Automotive Systems Company of America, Division of Panasonic Corporation of North America Configurable touch screen LCD steering wheel controls
9174642, Feb 06 2012 Audi AG Motor vehicle having a driver assistance device and method for operating a motor vehicle
9186994, Oct 31 2011 HONDA MOTOR CO , LTD Vehicle input apparatus
9193375, Aug 10 2005 Hyundai Motor Company; Kia Corporation Steering apparatus
9199553, Nov 20 2013 Ford Global Technologies Autonomous vehicle with reconfigurable seats
9227531, Nov 20 2013 Ford Global Technologies, LLC Autonomous vehicle with reconfigurable seats
9233638, Oct 23 2012 Joyson Safety Systems Acquisition LLC Steering wheel light bar
9235111, Oct 01 2012 Canon Kabushiki Kaisha Projection display apparatus
9235211, Sep 12 2013 POLESTAR PERFORMANCE AB Method and arrangement for handover warning in a vehicle having autonomous driving capabilities
9235987, Nov 17 2011 GM Global Technology Operations LLC System and method for closed-loop driver attention management
9238409, Aug 06 2009 Volkswagen AG Steering wheel and integrated touchpads for inputting commands
9248743, Jun 01 2012 Audi AG Motor vehicle with a control device for an extravehicular computer system
9260130, Apr 10 2013 Aisin Seiki Kabushiki Kaisha Vehicle steering apparatus
9290174, Oct 23 2014 GM Global Technology Operations LLC Method and system for mitigating the effects of an impaired driver
9290201, Jan 09 2013 GOOGLE LLC Detecting driver grip on steering wheel
9296410, Dec 17 2013 YAMADA MANUFACTURING CO., LTD. Steering device
9298184, Oct 30 2013 Volkswagen AG Process and device to enable or disable an automatic driving function
9308857, Oct 23 2012 Joyson Safety Systems Acquisition LLC Steering wheel light bar
9308891, Feb 14 2014 Slingshot IOT LLC Limitations on the use of an autonomous vehicle
9333983, Mar 15 2013 Volkswagen AG; Audi AG Dual-state steering wheel/input device
9352752, Nov 30 2012 Waymo LLC Engaging and disengaging for autonomous driving
9360108, Sep 28 2012 Steering Solutions IP Holding Corporation Gear shift lever lock system and method
9360865, Sep 20 2013 Ford Global Technologies, LLC Transitioning from autonomous vehicle control to driver control
9421994, Feb 01 2013 THYSSENKRUPP PRESTA AG Steering column for a motor vehicle
9487228, Feb 12 2013 ROBERT BOSCH AUTOMOTIVE STEERING VENDOME Device for stowing a steering column
9616914, Feb 20 2014 Steering Solutions IP Holding Corporation Telescope and adaptive energy absorption system
9643641, Oct 28 2015 Steering Solutions IP Holding Corporation Tunable steering column energy absorption system
9663136, Feb 20 2014 Steering Solutions IP Holding Corporation Steering column having anti-rotation feature
9744983, Dec 18 2015 Steering Solutions IP Holding Corporation Steering column assembly
9845106, Aug 31 2015 Steering Solutions IP Holding Corporation Overload protection for belt drive mechanism
9849904, Jul 31 2015 Steering Solutions IP Holding Corporation Retractable steering column with dual actuators
9852752, Aug 12 2016 Headway Technologies, Inc. Plasmon generator with metallic waveguide blocker for TAMR
9862403, Nov 29 2016 Steering Solutions IP Holding Corporation Manually retractable steering column assembly for autonomous vehicle
9919724, May 29 2015 Steering Solutions IP Holding Corporation Retractable steering column with manual retrieval
20020171235,
20030046012,
20030094330,
20030146037,
20030188598,
20030227159,
20040016588,
20040046346,
20040046379,
20040099083,
20040099468,
20040204808,
20040262063,
20050197746,
20050242562,
20050263996,
20050275205,
20060005658,
20060186658,
20060202463,
20060219499,
20060224287,
20060237959,
20060244251,
20060283281,
20070021889,
20070029771,
20070046003,
20070046013,
20070096446,
20070126222,
20070158116,
20070241548,
20080009986,
20080028884,
20080047382,
20080079253,
20080147276,
20080216597,
20080264196,
20090024278,
20090056493,
20090107284,
20090229400,
20090266195,
20090276111,
20090280914,
20090292466,
20100152952,
20100218637,
20100222976,
20100228417,
20100228438,
20100280713,
20100286869,
20100288567,
20110098922,
20110153160,
20110167940,
20110187518,
20110266396,
20110282550,
20110314954,
20120136540,
20120205183,
20120209473,
20120215377,
20120247259,
20120287050,
20130002416,
20130104689,
20130133463,
20130158771,
20130174686,
20130199866,
20130205933,
20130218396,
20130292955,
20130325202,
20130325264,
20140028008,
20140046542,
20140046547,
20140111324,
20140116187,
20140137694,
20140277896,
20140300479,
20140309816,
20150002404,
20150014086,
20150032322,
20150051780,
20150060185,
20150120142,
20150137492,
20150203145,
20150203149,
20150210273,
20150246673,
20150251666,
20150283998,
20150324111,
20150375769,
20160016604,
20160075371,
20160082867,
20160114828,
20160185387,
20160200246,
20160200343,
20160200344,
20160207538,
20160209841,
20160229450,
20160231743,
20160244070,
20160244086,
20160252133,
20160318540,
20160318542,
20160347347,
20160347348,
20160362084,
20160362117,
20160368522,
20160375770,
20160375860,
20160375923,
20160375924,
20160375925,
20160375926,
20160375927,
20160375928,
20160375929,
20160375931,
20170029018,
20170097071,
20170106894,
20170106895,
20170113589,
20170113712,
20170151975,
20170158222,
20170294120,
20170297606,
20170341677,
20170361863,
20170369091,
20180029628,
20180050720,
20180072339,
20180079441,
20180086378,
20180111639,
20180148084,
20180154932,
20180229753,
20180251147,
20180273081,
20180319367,
CN101037117,
CN101041355,
CN101049814,
CN101291840,
CN101402320,
CN101596903,
CN101954862,
CN102161346,
CN102452391,
CN102523738,
CN102574545,
CN102806937,
CN103085854,
CN103419840,
CN103448785,
CN103587571,
CN1550395,
CN1722030,
CN1736786,
CN201534560,
CN202337282,
CN203793405,
CN204222957,
DE102005032528,
DE102005056438,
DE102006025254,
DE102008057313,
DE102010025197,
DE102015216326,
DE10212782,
DE19923012,
DE19954505,
DE4310431,
EP1559630,
EP1606149,
EP1783719,
EP1932745,
EP2384946,
EP2426030,
EP2489577,
EP2604487,
FR2862595,
FR3016327,
JP2007253809,
JP2012201334,
JP5162652,
JP58191668,
JP60157963,
KR101062339,
KR20100063433,
WO2006099483,
WO2010082394,
WO2010116518,
WO2014208573,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Feb 17 2017MAGNUS, BRIAN J Steering Solutions IP Holding CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0413200277 pdf
Feb 17 2017BEAM, JOHN S Steering Solutions IP Holding CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0413200277 pdf
Feb 21 2017Steering Solutions IP Holding Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
Feb 20 2023M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Aug 20 20224 years fee payment window open
Feb 20 20236 months grace period start (w surcharge)
Aug 20 2023patent expiry (for year 4)
Aug 20 20252 years to revive unintentionally abandoned end. (for year 4)
Aug 20 20268 years fee payment window open
Feb 20 20276 months grace period start (w surcharge)
Aug 20 2027patent expiry (for year 8)
Aug 20 20292 years to revive unintentionally abandoned end. (for year 8)
Aug 20 203012 years fee payment window open
Feb 20 20316 months grace period start (w surcharge)
Aug 20 2031patent expiry (for year 12)
Aug 20 20332 years to revive unintentionally abandoned end. (for year 12)