A battery-powered portable cutting tool includes a housing, a cutting element, an electric motor to drive the cutting element to cut, a battery to supply electric current to the motor and a control circuit to control the supply of electric current to the motor from the battery. The control circuit may include a main switch and an auxiliary switch. The control circuit may have an active state in which the main switch allows electric current to flow to the motor and an inactive state in which the main switch does not allow electric current to flow to the motor. The operation of the auxiliary switch causes the control circuit to change between the active and inactive states. The auxiliary switch is arranged to determine whether the tool is in an inappropriate state to be used and, if so, cause the control circuit to change to the inactive state.
|
14. A battery-powered portable cutting tool, comprising:
a housing,
a cutting element supported by the housing,
an electric motor coupled to the cutting element so as to drive the cutting element to cut,
a battery electrically coupled to the motor so as to supply electric current to the motor,
a chain brake comprising a brake handle operable by a user to brake movement of the cutting element, and
a control circuit coupled to the battery and the motor to control the supply of electric current to the motor from the battery, the control circuit comprising a main switch and an auxiliary switch;
wherein the control circuit is configured to be in an active state in response to the auxiliary switch being in a first state;
wherein, in the active state, the control circuit is configured to pass electric current from the battery to the motor to cause the cutting element to be driven in response to the main switch being in an actuated state;
wherein the control circuit is configured to be in an inactive state in response to the auxiliary switch being in a second state;
wherein, in the inactive state, the control circuit is configured to prevent electric current from passing from the battery to the motor to prevent the motor from driving the cutting element whether the main switch is in the actuated state or an unactuated state;
wherein the auxiliary switch includes a suspension element connected to a load sensor, and wherein the auxiliary switch is configured to be in the second state in response to a weight of the tool being applied to the load sensor through the suspension element.
15. A battery-powered portable cutting tool, comprising:
a housing,
a cutting element supported by the housing and extending from a cutting end of the housing,
an electric motor coupled to the cutting element so as to drive the cutting element to cut,
a battery electrically coupled to the motor so as to supply electric current to the motor, and
a control circuit coupled to the battery and the motor to control the supply of electric current to the motor from the battery, the control circuit comprising a main switch and an auxiliary switch;
wherein the control circuit is configured to be in an active state in response to the auxiliary switch being in a closed state; wherein, in the active state, the control circuit is configured to pass electric current from the battery to the motor to cause the cutting element to be driven in response to the main switch being in an actuated state;
wherein the control circuit is configured to be in an inactive state in response to the auxiliary switch being in an open state; wherein, in the inactive state, the control circuit is configured to prevent electric current from passing from the battery to the motor to prevent the motor from driving the cutting element whether the main switch is in the actuated state or an unactuated state;
wherein the auxiliary switch includes a suspension element mounted on the housing through a load sensor, the suspension element disposed at a rear end of the housing of the tool that is opposite the cutting end of the housing where the cutting element is supported, the load sensor configured to cause, based on a force applied to the load sensor, the auxiliary switch to be in the open state to cause the control circuit to change to the inactive state.
13. A battery-powered portable cutting tool, comprising: a housing,
a cutting element supported by the housing, an electric motor coupled to the cutting element so as to drive the cutting element to cut,
a battery electrically coupled to the motor so as to supply electric current to the motor,
a chain brake comprising a brake handle operable by a user to brake movement of the cutting element, and
a control circuit coupled to the battery and the motor to control the supply of electric current to the motor from the battery,
in which the control circuit comprises a main switch operable by the user and an auxiliary switch also operable by the user;
in which the control circuit has:
an active state in which the auxiliary switch is in a first state, in which operation of the main switch to an actuated state by the user allows electric current to flow from the battery to the motor so as to cause the cutting element to be driven; and
an inactive state in which the auxiliary switch is in a second state, in which operation of the main switch to the actuated state does not allow electric current to flow from the battery to the motor and so the motor does not drive the cutting element;
in which, while the main switch is in the actuated state, operation of the auxiliary switch from the first state to the second state causes the control circuit to change from the active state to the inactive state;
wherein the auxiliary switch includes a suspension element extending outward and away from the housing of the tool and a load sensor configured to determine whether a force applied to the load sensor, by linear motion of the suspension element, in a direction away from the housing satisfies a predetermined load limit and, if so, the auxiliary switch causes the control circuit to change to the inactive state.
7. A battery-powered portable cutting tool, comprising:
a housing,
a cutting element supported by the housing and extending from a cutting end of the housing,
an electric motor coupled to the cutting element so as to drive the cutting element to cut,
a battery electrically coupled to the motor so as to supply electric current to the motor,
a chain brake operable by a user to brake movement of the cutting element, and
a control circuit coupled to the battery and the motor to control the supply of electric current to the motor from the battery,
in which the control circuit comprises a main switch operable by the user and an auxiliary switch also operable by the user;
in which the control circuit has:
an active state in which the auxiliary switch is in a first state, in which operation of the main switch to an actuated state by the user allows electric current to flow from the battery to the motor so as to cause the cutting element to be driven; and
an inactive state in which the auxiliary switch is in a second state, in which operation of the main switch to the actuated state does not allow electric current to flow from the battery to the motor and so the motor does not drive the cutting element;
in which, while the main switch is in the actuated state, operation of the auxiliary switch from the first state to the second state causes the control circuit to change from the active state to the inactive state;
wherein the auxiliary switch includes a suspension element extending outward and away from the housing of the tool at a rear end of the housing of the tool that is opposite the cutting end of the housing where the cutting element is supported and a load sensor configured to determine whether a force applied to the load sensor, by linear motion of the suspension element, in a direction away from the housing satisfies a predetermined load limit and, if so, the auxiliary switch causes the control circuit to change to the inactive state.
1. A battery-powered chainsaw, comprising:
a housing,
a cutting chain supported by the housing,
an electric motor coupled to the cutting chain so as to drive the cutting chain to cut,
a battery electrically coupled to the motor so as to supply electric current to the motor,
a chain brake operable by a user to brake movement of the cutting chain, and
a control circuit coupled to the motor and the battery to control the supply of electric current to the motor from the battery,
in which the chain brake comprises a chain brake handle via which the chain brake is operable by the user;
in which the control circuit comprises a main switch operable by the user and first and second auxiliary switches also operable by the user;
in which the control circuit has:
an active state in which the first auxiliary switch and the second auxiliary switch are in a first state, in which operation of the main switch to an actuated state by the user allows electric current to flow from the battery to the motor so as to cause the cutting chain to be driven; and
an inactive state in which at least one of the first auxiliary switch and the second auxiliary switch is in a second state, in which operation of the main switch to the actuated state does not allow electric current to flow from the battery to the motor and so the motor does not drive the cutting chain;
in which, while the main switch is in the actuated state and the first auxiliary switch and the second auxiliary switch are in the first state, subsequent operation of the first auxiliary switch or second auxiliary switch to the second state causes the control circuit to change from the active state to the inactive state;
in which the first auxiliary switch is operated by operating the chain brake handle; and
in which the second auxiliary switch includes a suspension element extending outward and away from the housing of the chainsaw and a load sensor configured to determine whether a force applied to the load sensor, by the suspension element, in a direction away from the housing satisfies a predetermined load limit and, if so, the second auxiliary switch changes to the second state causing the control circuit to change to the inactive state.
2. The chainsaw of
3. The chainsaw of
4. The chainsaw of
5. The chainsaw of
9. The tool of
10. The tool of
11. The tool of
|
This invention relates to battery-powered portable cutting tools, such as chainsaws.
Chainsaws and other battery-powered portable cutting tools, such as hedge trimmers, generally comprise a housing supporting a battery, a motor and a cutting element. The battery powers the motor, which in turns drives the cutting element to cut. In a chainsaw, the blade is an endless chain loop carrying cutting elements, and the motor drives the chain along its length, such that the cutting elements will be driven through whatever is to be cut.
It is desirable to attempt to ensure that the tool activates only when desired; otherwise, a user could be surprised by an inadvertent activation of the chainsaw, particularly if that user is inexperienced in the use of such tools. With petrol- or gasoline-powered portable cutting tools, it is obvious when such tools are potentially active, as the engine that powers those tools makes noise when idle. A battery-powered cutting tool, on the other hand, makes no noise when idle.
According to a first aspect of the invention, there is provided a battery-powered portable cutting tool, comprising: a housing, a cutting element supported by the housing, an electric motor coupled to the cutting element so as to drive the cutting element to cut, a battery electrically coupled to the motor so as to supply electric current to the motor and a control circuit arranged to control the supply of electric current to the motor from the battery,
Thus, the act of suspending the tool will cause it to become inactive; a user cannot be surprised by cutting element being driven should the main switch be inadvertently activated.
The hook may be pivotally mounted on the housing and may have a protruding position, in which the tool can be suspended from the hook, and a folded-in position, where the hook is folded further in towards the housing relative to the protruding position; for example, in the folded-in position, the hook may be flat against the housing. The action of folding the hook into the folded-in position may cause the control circuit to move into the active state.
Alternatively, the hook may be mounted on the housing by means of a load sensor, the auxiliary switch causing the control circuit to change to the inactive state should the load on the hook through the load sensor exceed a predetermined limit, which may be the weight, or at least 50%, 75% or 90% of the weight, of the tool. As such, this can sense whether the tool is being suspended through the hook, and deactivate the tool if so.
The tool may be a chainsaw or a hedge trimmer.
According to a second aspect of the invention, there is provided a battery-powered chainsaw, comprising: a housing, a cutting chain supported by the housing, an electric motor coupled to the cutting chain so as to drive the cutting chain to cut, a battery electrically coupled to the motor so as to supply electric current to the motor, a chain brake operable by a user to brake movement of the chain, and a control circuit arranged to control the supply of electric current to the motor from the battery,
in which the control circuit comprises a main switch operable by a user and an auxiliary switch also operable by a user;
in which the control circuit has:
Thus, if the chain brake is applied, the chainsaw may, typically immediately, be placed into the inactive state, reducing the potential for further movement of the blade.
The auxiliary switch may be coupled to the chain brake handle such that application of the chain brake places the control circuit in the inactive state; releasing the chain brake may place the control circuit in the active state, either directly after releasing the brake or by pulling the brake handle towards a switching position which is preferably located towards the housing.
According to a third aspect of the invention, there is provided a battery-powered portable cutting tool, comprising: a housing, a cutting element supported by the housing, an electric motor coupled to the cutting element so as to drive the cutting element to cut, a battery electrically coupled to the motor so as to supply electric current to the motor and a control circuit arranged to control the supply of electric current to the motor from the battery,
With using this type of switch connected to the auxiliary switch does allow for a very intuitive handling of the activation and deactivation of the battery powered cordless tool. As with this configuration the user has always to move the switch into the same direction for activation and into the other direction for deactivation of the tool.
According to a forth aspect of the invention, there is provided a battery-powered portable cutting tool, comprising: a housing, a cutting element supported by the housing, an electric motor coupled to the cutting element so as to drive the cutting element to cut, a battery electrically coupled to the motor so as to supply electric current to the motor and a control circuit arranged to control the supply of electric current to the motor from the battery,
in which the control circuit has:
The tool may be a chainsaw or hedge trimmer.
Thus, the auxiliary switch can be used to deactivate the tool should it not be in an appropriate position for use. As such, this can prevent inadvertent activation of such a tool. One of various different inappropriate states for a cutting tool is the situation in which this cutting tool is in suspended position.
In one example, the auxiliary switch may be arranged to determine whether the tool is being suspended; as such, the tool may be one according to the first aspect of the invention. Alternatively, where the tool is a chainsaw having a chain brake operable by a user to brake movement of the chain, the auxiliary switch may be arranged to determine whether the chain brake has been applied and, if so, place the control circuit in the inactive position; as such, the tool may be one according to the second aspect of the invention.
For any of the preceding aspects of the invention, the control circuit may be arranged with the main switch and the auxiliary switch in series; thus, in order for current to flow through the control circuit, both switches must be opened.
The control circuit may be arranged to enter the inactive state if the main switch is not activated for a pre-determined period of time. This means that if the tool is not used for the period, action will need to be taken by the user in order to reactivate it, thus reducing the chance of the user being surprised by an inadvertent operation.
In such a case, the control circuit may be arranged such that manipulation of the auxiliary switch after the control circuit has deactivated after the passage of the period of time causes the control circuit to enter the active state. This is a convenient way of waking a dormant tool.
There now follows, by way of example only, embodiments of the invention, described with reference to the accompanying drawings, in which:
A chainsaw according to an embodiment of the invention is shown in the accompanying drawings. It comprises a housing 1 supporting a cutting element 2 (shown only in
In order to drive the cutting chain 4, a battery 5 and a motor 6 (both shown in
The main control a user has over the operation of the chainsaw is by the use of the main switch 8. The user must squeeze both parts 8a, 8b of the main switch in order to allow current to flow from the battery 5 to the motor 6 and so drive the cutting chain 3 to cut.
The chainsaw is also provided with a chain brake 17, which acts to physically brake the rotation of the drive wheel 7. This is activated by the user pushing forwards (that is, towards the blade, and to the left in the Figures) a chain brake handle 13. This is useful if the user wishes to stop the chainsaw quickly. The chain brake 17 may also active through the action of inertia should a kickback event occur.
However, in order to prevent inadvertent activation of the chainsaw, the chainsaw is provided with a control circuit 9, which controls the passage of current from the battery 5 to the motor 6. This is shown in more detail in
The first switch in the series is the main switch 8; this functions as discussed above, with the user squeezing the two parts 8a, 8b in order to activate the chainsaw and so cause the chainsaw to cut.
The remaining two switches 10, 11 are first and second auxiliary switches respectively. If either of these two switches are open, then the control circuit 9 is in an inactive state; activation of the main switch 8 will not cause the chainsaw to cut. However, if both of the auxiliary switches 10, 11 are closed, then the control circuit 9 is in an active state, and the main switch will function to operate the chainsaw.
The first auxiliary switch 10 comprises a hook 12 pivotally mounted on the rear (that is, the end opposite the cutting element 2) of the housing 1. The hook 12 therefore has two positions: a folded-in position, shown in
As it is undesirable that the chainsaw operates whilst being suspended from the hook 12, the first auxiliary switch 10 is electrically open when the hook 12 is in the protruding position of
In alternative embodiment, the first auxiliary switch 110 is as shown in
Returning now to the embodiment of
Thus, by providing the second auxiliary switch 11 coupled to the chain brake handle 13, the motor can be stopped at the same time that the chain brake is being used to stop the chain, which may lead to quicker stopping of the chain. Furthermore, if the chain brake is applied a user is unlikely to desire to activate the motor against the brake, and so the inactive state is appropriate, as it will prevent any inadvertent activation of the motor against the brake, which could lead to overheating of the motor.
Additionally or alternatively, the second auxiliary switch can be coupled to the chain brake handle, but be activatable not only when the chain brake is activated. Thus, the chain brake handle may have three positions: a first position pushed fully away from the user towards the chain, where the chain brake is activated and at the same time the control circuit of the chainsaw is put into the inactive state; a second, neutral and intermediate, position in which the chain saw can be used, and a third, switching position pulled closest to the user and the housing 1. Movement of the chain brake handle into this third switching position can act to either switch the control circuit of the chainsaw into the active state, or can act to toggle the chainsaw between the inactive and active states. Preferably the chain brake handle will not be stable in this third switching position and will tend to return to the second position.
Thus this aspect of the invention allows for different alternatives how the chainsaw can be activated or deactivated using the chain brake handle.
In the preferred embodiment the chainsaw will always be put into the inactive state when the user is pushing the chain brake handle into the first position towards the chain. Pulling the chain brake handle back into the intermediate (working) second position will keep the chainsaw inactive. By further pulling the chain brake handle into the third position closest to the user the chain saw will be put into its active state again. Preferably the chain brake handle will be spring biased in a way that this third position is not a stable position, thus the chain brake handle will automatically move back from the third position into the second position when the user releases it. With this very intuitive configuration a pushing of the chain brake handle will result in putting the chainsaw into an inactive mode whilst a pulling action will place the chainsaw into the active state to an activation of the chainsaw.
In an alternative embodiment the movement of the chain brake handle between the second and third position could toggle the chainsaw between the active and the inactive state. Thus if the chain brake handle is in the second position and the chainsaw is in the inactive state the pulling of the chain brake handle towards the third position will put the chainsaw into active state. In case that the chain brake handle is in the second position and the chainsaw is in active state the pulling of the chain brake handle into the third position would put the chainsaw into an inactive state. With this embodiment or in a further alternative embodiment the movement of the chain brake handle from the first position towards the second position could already put the chainsaw into an active state.
In addition, a power switch 20 can be provided, which can cut all power from the chainsaw; alternatively, this switch 20 can act as a further auxiliary switch, arranged to toggle the chainsaw between the active and inactive states, as described with the third embodiment of the invention. In this case switch 20 incorporates at least 3 different switching positions. Preferably this kind of switch is combined with the activation and deactivation procedure as described above connected to the chain brake handle 13. Specially then it is of advantage if the switch 20 is oriented on the chainsaw as shown with
In a further embodiment extending the present embodiment, the control circuit has been extended as shown in
In this embodiment, the functioning of the chainsaw is largely as described above. A control circuit 59 comprises a main switch 58 and first and second auxiliary switches 60 and 61. However, a third auxiliary switch 70 is provided, together with a timing circuit 71. The timing circuit is coupled to the main switch 58; if the main switch is not activated within a predetermined period (say anything from 30 seconds to 5 minutes), then the timing circuit will open the third auxiliary switch 70, thus placing the control circuit 59 in the inactive state.
This is useful in making a chainsaw that has not been used for a period of dormant time. A user is therefore less likely to be surprised should they inadvertently operate the main switch 58.
In order to provide for reactivating the chainsaw, the timing circuit 71 is also coupled to the first auxiliary switch 60, such that, should the user move the hook 12, the timing circuit will close the third auxiliary switch 70. Accordingly, in order to put the chainsaw back into the active state, all a user need to do is move the hook from the folded-in position to the protruding position and back again. Alternatively, the third auxiliary switch 70 may be directly engagable by a user; for example, if the device is dormant, then by manipulating the power switch 20 of
Svennung, Johan, Martinsson, Pär, Björnlinger, Johan
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4152833, | Jun 22 1977 | Crow, Lytle, Gilwee, Donoghue, Adler and Weineger | Chain saw braking mechanism |
4370810, | Jun 02 1979 | Andreas, Stihl | Portable motor chain saw |
4432139, | Oct 28 1980 | Andreas Stihl | Safety device on a power saw |
4543723, | May 03 1982 | Andreas Stihl | Safety arrangement for a hand-held, power-driven portable tool |
4656985, | Jun 19 1984 | Aktiebolaget Electrolux | Arrangement in a motor saw |
5150523, | Jul 11 1991 | RYOBI NORTH AMERICA, INC | Deadman switch arrangement for a hedge trimmer |
5510589, | |||
5685080, | Apr 22 1996 | Makita Corporation | Battery powered chain saw |
5709032, | May 16 1995 | Makita Corporation | Chain stop device for an electromotive chain saw |
5724737, | Nov 25 1992 | Black & Decker Inc. | Switch mechanism |
6144307, | Jul 22 1997 | Street Crane Company Limited | Monitor and/or overload means |
6878888, | Mar 24 2004 | HUSQVARNA AB | Safety device for activating electric tools |
20040098869, | |||
20040181951, | |||
20050028375, | |||
20060230870, | |||
20070120696, | |||
20090193669, | |||
EP743147, | |||
EP1946899, | |||
RE37832, | Sep 04 1995 | Makita Corporation | Electromotive chain saw |
WO2007147157, | |||
WO2009142334, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 01 2010 | HUSQVARNA AB | (assignment on the face of the patent) | / | |||
Sep 29 2011 | MARTINSSON, PAR | HUSQVARNA AB | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027094 | /0525 | |
Sep 29 2011 | SVENNUNG, JOHAN | HUSQVARNA AB | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027094 | /0525 | |
Sep 29 2011 | BJORNLINGER, JOHAN | HUSQVARNA AB | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027094 | /0525 |
Date | Maintenance Fee Events |
Mar 08 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 01 2022 | 4 years fee payment window open |
Apr 01 2023 | 6 months grace period start (w surcharge) |
Oct 01 2023 | patent expiry (for year 4) |
Oct 01 2025 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 01 2026 | 8 years fee payment window open |
Apr 01 2027 | 6 months grace period start (w surcharge) |
Oct 01 2027 | patent expiry (for year 8) |
Oct 01 2029 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 01 2030 | 12 years fee payment window open |
Apr 01 2031 | 6 months grace period start (w surcharge) |
Oct 01 2031 | patent expiry (for year 12) |
Oct 01 2033 | 2 years to revive unintentionally abandoned end. (for year 12) |