A spring seal for a joint assembly pivotally joining a lever arm to a machine frame includes an annular body having a W-shaped cross section. The W-shaped cross section includes a first cantilevered arm, a parallel and spaced apart second cantilevered arm, and a spring leg joining the first and second cantilevered arms. The spring seal is disposed between a bearing surface on the lever arm and a lug on the frame. The W-shaped cross section of the spring seal can collapse and relax to accommodate movement between the lever arm and the frame lug. A second spring seal can be disposed between a second bearing surface on the lever arm and a second frame lug opposite the first lug.
|
13. A method of pivotally connecting a pitman arm of a steering assembly having a first end and a distal second end operatively connected to a linkage of the steering assembly and delineating an extension of the pitman arm to a frame of a machine comprising:
providing a monolithic frame joint attached to a frame of a machine, the monolithic frame joint including a first lug fixed to the frame and defining a first aperture and a second lug fixed to the frame and defining a second aperture, the first lug and the second lug spaced apart to define a minimum lug height and arranged so the first aperture and second aperture are aligned along a pivot axis;
disposing a sleeve joint included at the first end of the pitman arm between the first lug and the second lug such that a sleeve bore disposed in the sleeve joint is aligned with the pivot axis;
the sleeve joint including a first bearing surface and a second bearing surface defining a maximum sleeve height less than the minimum lug height;
providing a first spring seal having an annular body with a W-shaped cross-section between the first bearing surface of the sleeve joint and the first lug, the first spring seal circumscribing the sleeve bore; and
providing a second spring seal having an annular body with a W-shaped cross-section between the second bearing surface of the sleeve joint and the second lug, the second spring seal circumscribing the sleeve bore;
compressing first spring seal by axially moving the sleeve joint toward the first lug; and
relaxing the second spring seal to maintain sealing contact between the second bearing surface and the second lug.
1. A joint assembly for a steering assembly comprising:
a frame of a machine, the frame including a monolithic frame joint having a first lug fixed to the frame and defining a first aperture and a second lug fixed to the frame and defining a second aperture, the first lug and the second lug spaced apart to define a minimum lug height and arranged with the first aperture and the second aperture axially aligned along a pivot axis;
a pitman arm having a first end and a distal second end operatively connected to a linkage of the steering system and delineating an extension of the pitman arm, the first end including a sleeve joint defining a sleeve bore transverse to the extension, wherein the sleeve joint has a maximum sleeve height less than the minimum lug height and is received between the first lug to provide a first gap and the second lug to provide a second gap with the sleeve bore axially aligned with the first aperture and the second aperture along the pivot axis, the first and second gaps provided by a difference between the minimum lug height and the maximum sleeve height allowing axial motion between the sleeve joint and the first and second lugs;
a pin disposed through the first aperture, the second aperture, and the sleeve bore pivotally joining the pitman arm to the first lug and the second lug;
a first spring seal and a second spring seal each including an annular body having a W-shaped cross section with a first cantilevered leg, a second cantilevered leg spaced apart and parallel to the first cantilevered leg, and a spring leg joined to and connecting the first cantilevered leg and the second cantilevered leg; wherein
the first spring seal disposed between the sleeve joint and the first lug and circumscribing the sleeve bore; and
the second spring seal disposed between the sleeve joint and the second lug and circumscribing the sleeve bore.
16. A joint assembly for a steering system comprising:
a frame of a machine, the frame including a monolithic frame joint having a first lug fixed to the frame and defining a first aperture and a second lug fixed to the frame and defining a second aperture, the first lug having a first lug face and the second lug having a second lug face in spaced apart relation such that the first aperture and the second aperture are axially aligned along a pivot axis and the first lug face and the second lug face are located opposite of and directed towards each other;
a pitman arm having a first end and a distal second end connected to a linkage of the steering system and delineating an extension of the pitman arm, the first end including a sleeve joint having a first bearing surface and a second bearing surface formed on opposite side of the first bearing surface, the sleeve joint defining a sleeve bore disposed through the first and second bearing surfaces and transverse to the extension, the sleeve joint being received between the first lug and the second lug with the sleeve bore axially aligned with the first aperture and the second aperture along the pivot axis;
a pin disposed through the first aperture, the second aperture, and the sleeve bore pivotally joining the pitman arm to the first lug and the second lug;
first spring seal and a second spring seal each including an annular body having a W-shaped cross section with a first cantilevered leg, a second cantilevered leg spaced apart and parallel to the first cantilevered leg, and a spring leg joined to and connecting the first cantilevered leg and the second cantilevered leg; wherein
the first spring seal is accommodated in a first three-sided annular groove formed in one of the first lug face and the first bearing surface to circumscribe the sleeve bore, the first spring seal forming an axial seal between the first lug and the sleeve joint and the first three-sided annular groove having an inner diameter blocking radial contact between the first spring seal and the pin; and
the second spring seal is accommodated in a second three-sided annular groove formed in one of the second lug face and the second bearing surface to circumscribe the sleeve bore, the second spring seal forming an axial seal between the second lug and the sleeve joint and the second three-sided annular groove having an inner diameter blocking radial contact between the second spring seal and the pin.
2. The joint assembly of
3. The joint assembly of
4. The joint assembly of
5. The joint assembly of
6. The joint assembly of
7. The joint assembly of
8. The joint assembly of
9. The joint assembly of
10. The joint assembly of
11. The joint assembly of
12. The joint assembly of
14. The method of
15. The method of
accommodating the first spring seal in a first groove disposed into the sleeve joint with second cantilevered leg in frictional contact with a first groove bottom; and
accommodating the second spring seal in a second groove disposed into the sleeve joint with the second cantilevered leg in frictional contact with a second groove bottom.
17. The joint assembly of
18. The joint assembly of
19. The joint assembly of
20. The joint assembly of
the first spring seal contacts all sides of the first annular three-sided groove when compressed therein by relative axial motion between the first lug and the sleeve joint; and
the second spring seal contacts all sides of the second annular three-sided groove when compressed therein by relative axial motion between the second lug and the sleeve joint.
|
This patent disclosure relates generally to a compressible seal for sealing a mechanical joint of a machine, and more particularly, to a dry spring seal assembly adapted to form a seal between two pivoting members without the need for reoccurring lubrication of the joint.
Machines often include moving joints where parts or members of the machine are configured to move or articulate with respect to each other. One example may be the steering and suspension system for an off-highway machine or vehicle that enables the wheels to move with respect to the frame to propel and/or steer the machine. For example, to steer the machine, the steering system in one common configuration may include a component called a pitman arm which resembles a lever that is pivotally attached at one end to the steering box in which the steering column operatively associated with the steering wheel terminates. The opposite end of the pitman arm is connected through linkages to the steering arms that are typically associated with the front wheels of the machine. When the operator turns the steering wheel to change the course of the machine, the pitman arm pivots towards one side of the machine or the other side causing the wheels to turn or tilt with respect to the frame.
To prevent the interconnected parts of the steering system that move with respect to each other from wearing due to friction against each other or due to dirt and/or contaminants that may enter the joint, it is known to apply a lubricant such as grease to the joints. However, lubricants may eventually break down or be expelled from the joint due to motion between the members. Accordingly, the joints of the machine may require replenishment of the lubricant, such as is done through re-greasing the parts. This results in maintenance downtime for the machine and incurs productivity losses and the like.
In addition to or as an alternative to using lubricants, seals can be used to protect the joints. In some instances, the seal may prevent the lubricant from being expelled from the joint and in other instances may facilitate relative motion of the parts. One example of a seal is disclosed in U.S. Pat. No. 4,364,572 (“the '572 patent”), assigned to Kabushiki Kaisha Komatsu Seisakusho of Japan. The '572 patent describes a seal assembly that includes a seal ring having a highly curved or undulating cross-sectional shape that the '572 patent describes as generally being w-shaped and is adapted to fit around a load ring. The seal ring and load ring can be placed in a counterbore formed between two different components of a machine that are joined together. When the two components are pressed against each other, the curved cross-section of the seal ring wraps partially around and is compressed against the load ring thereby forming a seal between the components. The present application is similarly directed to a seal having a particular cross-sectional shape for sealing the moving joints of a machine.
The disclosure describes, in one aspect, a joint assembly for joining a lever arm to a frame of the machine. The joint assembly includes a frame joint for attachment to the frame of the machine. The frame joint has an upper first lug defining a first aperture and a lower second lug defining a second aperture, where the first lug and the second lug are spaced apart from each other and axially aligned along a pivot axis. The joint assembly also includes a lever arm having a first end and a distal second end designating the extension of the lever arm. A sleeve joint is disposed on the first end and defines a sleeve bore transverse to the extension of the lever arm. The sleeve joint is received between the first lug and the second lug with the sleeve bore axially aligned along the pivot axis with the first and second apertures. To pivotally join the lever arm to the first and second lugs, a pin can be disposed through the first aperture, the second aperture, and the sleeve bore. To seal the parts, a first spring seal is disposed between the sleeve joint and the first lug and a second spring seal is disposed between the sleeve joint and the second lug, both arrange to circumscribe the sleeve bore. The first spring seal and the second spring seal each include an annular body having a W-shaped cross section with a first cantilevered leg, a spaced apart second cantilevered leg extending parallel to the first cantilevered leg, and a spring leg joined to and connecting the first and second cantilevered legs and adapted to maintain sealing contact with the frame join and the sleeve joint.
In another aspect, the disclosure provides a method for pivotally connecting a lever arm to a frame of a machine. The method provides a frame joint attached to a frame that includes a first lug defining a first aperture and a second lug defining a second aperture. The first and second lugs are spaced apart from each other with the first and second apertures aligned along a pivot axis. A sleeve joint formed on the lever arm is disposed between the first lug and the second lug such that a sleeve bore disposed in the sleeve joint is aligned with the pivot axis. The method further provides a first spring seal and a second spring seal each having an annular body with a W-shaped cross-section. The first spring seal is disposed between a first bearing surface of the sleeve joint and the first lug and the second spring seal is disposed between a second bearing surface of the sleeve joint and the second lug, with both spring seals arranged to circumscribe the sleeve bore. According to the method, a first spring seal is compressed by axially moving the sleeve joint toward the first lug while the second spring seal is relaxed to still maintain sealing contact between the second bearing face and the second lug.
In yet another aspect, the disclosure provides a spring seal for sealing between a planar frame face of a first body and a groove disposed on a second body. The spring seal includes an annular body circumscribing a center axis and having a W-shaped cross-section formed by a first cantilevered leg, a spaced apart second cantilevered leg extending parallel to the first cantilevered leg, and a spring leg connecting the first and second cantilevered legs. A first annular sealing surface is provided on the first cantilevered leg for making sliding contact with the planar face. Likewise, a second annular sealing surface is arranged on the second spring leg for making sealing contact with a groove bottom of the groove. Further, the annular body has an uncompressed height between the first annular sealing surface and the second annular sealing surface adapted to be greater than a depth of the groove.
This disclosure relates to seal assemblies and methods for sealing joints between moving parts or components on machines such as work machines for performing an operation or a task. Referring to the FIGS., wherein like reference numbers refer to like elements, an example of such a machine 100 is illustrated in
To facilitate operation of the illustrated embodiment in hauling materials in, for example, a mining operation, the machine 100 can include a forwardly located operator's cab 102 for the operator of the machine and a rearwardly located dump body 104 for accommodating materials such as soil or earth. Both the operator's cab 102 and the dump body 104 can be supported on a chassis or frame 106 of the machine. The frame 106 can be made of strong, rigid materials such as metal trusses or the like for sufficient strength for its hauling and load bearing functions. The operator's cab 102 can accommodate various controls, interfaces, and readouts that are used for operating the machine. For holding the material, the dump body 104 can be a walled structure defining a volume in which the material is contained. To dispense the material when desired, the dump body 104 can be tilted upwardly with respect to the frame 106 from the normal horizontal position to an articulated position by hydraulic cylinders 108 or the like so that material dispenses from the rear.
To propel the machine 100 about the worksite with respect to the ground, the frame 106 can be supported on a plurality of wheels including a pair of forward wheels 110 and a pair of rearward wheels 112 that contact and are able to rotate across the ground. However, in other embodiments, different propulsion mechanisms for machines rather than wheels may be used. In addition, the wheels may be fitted with inflatable tires to enhance performance or, in other embodiments, may be solid. The rear wheels 112 can be the drive wheels that receive motive power to drive the machine 100 from a power source 114 such as an internal combustion engine, although in other embodiments other power sources can include hybrid engines, electric engines, and the like. The rear wheels 112 can be operatively associated with the power source 114 through a suitable power train for powered rotation over the ground. To direct or change the course of travel of the machine 100, the front wheels 110 can be the steer wheels that are able to turn or tilt toward one side of the machine or toward the other side. To enable the operator to steer the front wheels 110, the machine includes a steering system 120 or steering mechanism. The steering system 120 can include a control device like a steering wheel 122 or a similar operator interface located in the operator's cab 102 operatively associated with the front wheels 110 as explained below. In addition to the ability to steer the machine, in various embodiments, the front wheels 110 may also be driven wheels such as in a four-wheel drive configuration.
Referring to
To link the lever arm 128 or pitman arm to the front wheels 110 in a manner that enables the wheels to turn, the steering system 120 can include additional linkage components such as rods, pivots, ball joints, and the like. For example, the steering system 120 may include a centrally disposed track rod 132 that connects to the lever arm 128 and that may be generally displaced in a side-to-side motion along the direction of the arrow 130. As will be familiar to those of skill in the art, movable idler arms can support the track rod 132 in a laterally movable manner with respect to the frame. Tie rods 134 can be connected toward each of the ends of the track rod 132 and can be operatively associated with each of the front wheels 110. In particular, each of the front wheels 110 can be associated with a steering arm 136 that connects to the respective tie rod 134 via a ball-and-socket joint or the like and is shaped to turn the wheels at the desired relative angles with respect to the frame 106. The steering system 120 can further be configured to adjust the steering ratio and to provide a mechanical advantage to increase the rotational work input through the steering wheel 122 that is converted into the lateral movement of the track rod 132. To perform as described, the components of the steering system are rigid bodies and can be made from metal rods, forgings, and/or castings.
Referring to
Referring to
To enable the frame joint 152 to pivotally connect with the sleeve joint 146, there can be a first aperture 166 vertically disposed through the first lug 160, which may be circular in shape, while an identical second aperture 168 can be disposed vertically through the second lug 162. The first aperture 166 and the second aperture 168 can be axially aligned with the pivot axis 156. To join the lever arm 128 and frame 106 via the sleeve joint 146 and the frame joint 152, a cylindrical, rod-like pin 170 can be inserted through the similarly shaped first and second apertures 166, 168 and the sleeve bore 148, thereby maintaining alignment of the apertures and sleeve bore with the pivot axis 156. The length or height of the pin 170 preferably is such that the pin can substantially protrude through the sleeve bore 148 and both the first and second apertures 166, 168. The diameter of the pin 170 forming the cylindrical exterior 171 is less that the corresponding diameter of the sleeve bore 148. The pin 170 further enables the lever arm 128 to pivot or revolve around the pivot axis providing for a single degree an angular motion. Referring back to
Accordingly, it will be apparent to those of skill in the art that the joint assembly 150 is a friction-generating component with multiple parts moving relative to each other. In some embodiments, the pin 170 may be fixed to the first and second lugs 160, 162 with set screws or the like with the sleeve joint 146 rotating about the pin, while in other embodiments the pin and sleeve joint may be fixed and pivot within the first and second apertures 166, 168 disposed in the lugs. Further, in some embodiments, all the components of the joint assembly 150 may move freely with respect to each other and the pin 170 can be secured from dislodging from the assembly by cotter pins or the like. To facilitate relative motion of the parts and to prevent contamination of the joint assembly 150, a lubricant such as grease may be applied to the joint assembly and accommodated in the sleeve bore 148 and the first and second apertures 166, 168. However, over the course of extended operation, the lubricant may be expelled from the bore and apertures due to motion of the parts. Additionally, the lubricant may become contaminated with particulates resulting in increased friction and possibly damaging the joint assembly. The lubrication may be replenished, but because of the location of the joint assembly, replenishment may be inconvenient and result in lost productivity for the machine due to maintenance downtime.
Therefore, in accordance with the disclosure, seals in the form of mechanical packings can be provided to protect and facilitate pivoting of the joint assembly. The spring seals can be configured for dry operation without the need for additional lubricants. Referring to
When the sleeve joint 146 is disposed between the first and second lugs 160, 162, the first bearing surface 172 faces toward and is generally adjacent to the first lug face 176 while the second bearing surface 174 likewise faces towards and is generally adjacent to the second lug face 178. To enable the adjacent bearing surfaces and lug faces to move with respect to each other, a first spring seal 180 is located between the first bearing surface 172 and the first lug face 176 while a second spring seal 182 is located between the second bearing surface 174 and second lug face 176. It will be appreciated that the first and second spring seals 180, 182 generally surround the pin 170 and can thereby prevent dirt and/or contaminants from penetrating along the interface between the bearing surfaces and lug faces. It will be further appreciated that the difference between the sleeve height 149 and the lug height 164 can be such that a first gap 184 and a second gap 186 can be formed between the sleeve joint 146 and the lugs 160, 162 and the first and second spring seals 180, 182 can be located in the gaps. By way of example only, the first gap 184 and the second gap 186 may be on the order of 6.35 millimeters (0.25 inches) in dimension. The first and second spring seals 180, 182 can be generally resilient and can be dimensioned to span the first and second gaps 184, 186 and urge against and contact the opposing bearing surfaces and lug faces. To provide the resilient characteristic, the first and second spring seals can be made from a suitable resilient material such as, for example, polyurethane.
To accommodate the first and second spring seals 180, 182 and facilitate functioning of the spring seals, a first groove 190 can be disposed into the first bearing surface 172 of the sleeve joint 146 and a corresponding second groove 192 can be disposed into the second bearing surface 174. The first and second grooves 190, 192 can be three-sided formations and can each include a respective wall corresponding to the groove bottoms 194, 196 that may be parallel to and spaced apart from the corresponding first and second bearing surfaces 172, 174. The distance between the groove bottoms 194, 196 and the corresponding first and second bearing surfaces 172, 174 thereby defines a groove depth 198, which may be the same or different between the first groove and second groove 190, 192. In an embodiment, the groove depth 198 can be on the order of 5.6 millimeters (0.22 inches). Although in the illustrated embodiment, the first and second grooves 190, 192 are disposed in the sleeve joint 146 of the lever arm 128, it will be appreciated that the grooves can be likewise formed in the first and second lugs 160, 162 in a reversal of orientation. Furthermore, the grooves may have different shapes than the illustrated three-walled construction.
Referring to
For example, in the embodiment illustrated in
To interconnect the first cantilevered leg 220 and the second cantilevered leg 222, the annular body 200 can include a spring leg 230 disposed between and joining the two cantilevered legs. In the illustrated embodiment, the spring leg 230 can be joined to the first and second cantilevered legs 220, 222 at an inner circumferential edge 232 of the annular band 210 that extends as a circle about the center axis 202. The inner circumferential edge 232 therefore corresponds to the inner diameter 206 of the annular body 200. The first and second cantilevered legs 220, 222 extend radially outward from the inner circumferential edge to a distally located outer circumferential edge 234 that corresponds to the outer diameter 204 and thus provides the cantilevered appearance to the cantilevered legs. The spring leg 230 can include a first sub-leg 236 that is joined to the first cantilevered leg 220 proximate the inner circumferential edge 232 and that extends outward toward the outer circumferential edge 234 at an inclined angle with respect to the first cantilevered leg. The spring leg 230 can also include a second sub-leg 238 joined to the second cantilevered leg 222 proximate the inner circumferential edge 226 and that extends outward toward the outer circumferential edge 234 at an inclined angle with respect to the first cantilevered leg.
Further, both the first and second sub-legs 236, 238 converge toward each other and intersect at a sub-leg intersection 240 that may have a radius or rounded peak. The sub-leg intersection 240 can be located axially midway between the first annular surface 224 and the second annular surface 226 and at a point radially between the inner circumferential edge 232 and the outer circumferential edge 234. The parallel arrangement of the first and second cantilevered legs 220, 222 and the inclined orientation of the first and second sub-legs 236, 238 of the spring leg 230 between the cantilevered legs provides the annular band 210 with the W-shaped cross section. As explained below, the first and second cantilevered legs 220, 222 and the sub-legs 236, 238 of the spring leg 230 can collapse and articulate with respect to each other to provide the resilient spring characteristic to the spring seals 180, 182.
In an embodiment, the annular body 200 making up the spring seals 180, 182 can include a peripheral lip 242 that extends radially from the outer circumferential edge 234 of the first cantilevered leg 220. The peripheral 242 lip can be substantially thinner than the thickness of the first cantilevered leg 220 and located on the side of the leg opposite the first annular surface 224. In an embodiment, the peripheral lip can extend 0.7 millimeters (0.027 inches) or less. The peripheral lip 242 may designate the first cantilevered leg 220 from the second cantilevered leg 222, which may have different shapes, thickness, or properties. For example, the first cantilevered leg 220 may have a thickness, designated by reference number 244, of about 1.78 millimeters (0.07 inches) while the second cantilevered leg 222 may have a thickness 245 of about 1.80 millimeters (0.078 inches). The different thicknesses may facilitate the sealing function of the spring seals.
Referring to
To maintain sealing contact as the lever arm pivots, a first thrust washer 250 can be located in the interface between the sleeve joint 146 and the first lug 160 and a second thrust washer 252 can be located at interface between the sleeve joint and the second lug 162. The thrust washers 250, 252 can be annular, disk shaped parts made from a low fiction material demonstrating a substantially low coefficient of friction with respect to the material of the lever arm and frame. Examples of low friction materials may include PTFE or a Teflon® composite materials. The first and second thrust washer 250, 252 are placed adjacent the respective first and second lugs 160, 162 and can be dimensioned to circumscribe the sleeve bore 148 disposed through the sleeve joint 146. When the lever arm is pivoted in the direction indicted by arrow 254, the first and second spring seals 180, 182 can be held in a fixed relation in the respective first and second grooves 190, 192 to rotate with the sleeve joint 146. The first and second thrust washers 250, 252 can be held in a fixed relation adjacent the first and second lugs 160, 162 so that the first cantilevered legs 220 of the spring seals slides along the surface of the thrust washers while maintaining sealing contact. The second cantilevered legs 222, which may be thicker than the first cantilevered legs 220, remain in frictional contact with the groove bottoms.
In the illustrated embodiment, the sleeve joint 146 may be spaced apart from the first lug 160 such that the first spring seal 180 is in a relaxed state with the first and second cantilevered arms 220, 222 separated by the expand spring leg 230. As indicated in Detail 7A, when the spring leg 230 is expanded, the first sub-leg 236 and the second sub-leg 238 are in their inclined and converging orientations. As mentioned above, the height of the spring seal 180 between the cantilevered legs 220, 222 should be sufficient to project across both the gap 184 between the first lug 160 and the first bearing surface 172 of the sleeve joint 146 and the groove depth 198 and preferably is such that the spring seal simultaneously urges against the first lug 160 and the groove bottom 194. This ensures the first spring seal maintains contact with both the sleeve joint and the first lug to seal the sleeve bore 148 that normally accommodates the pin and functions as the pivot point of the joint assembly.
In addition to sealing the sleeve bore 148, the first and second spring seals can cooperate to accommodate relative axial motion between the sleeve joint 146 and first and second lugs 160, 162 of the frame joint 152 with respect to the pivot axis 156. In particular, referring to the lower half of
The resilient characteristic of the first and second spring seals 180, 182 further facilitates reciprocal motion of the sleeve joint 146 between the first and second lugs 160, 162 along the axial direction delineated by the pivot axis 156. In particular, if the sleeve joint 146 moves axially toward the first lug 160, the resiliency enables the first spring seal 180 to collapse into the first groove with the first and second cantilevered legs 220, 222 and spring leg 230 compressed together so that the first spring seal 180 appears as in Detail 7B. To promote sealing by filling the groove, the peripheral tab 242 can be pulled into the groove and folds over the distal end of the first cantilevered leg 220. Likewise, the second spring seal 182 resiliently expands back to the relaxed state with the expanded W-shaped cross section while maintaining sealing contact between the groove bottom 196 of the second groove 192 and the second lug 162, as would be indicated by Detail 7A.
As indicated schematically in
The present disclosure is applicable to sealing a joint assembly that pivots a lever arm such as a pitman arm used in the steering assembly of a machine. The joint assembly according to the disclosure results in a substantially maintenance free joint for a pivoting lever arm. Referring to
To accommodate axial motion of the sleeve joint 146 with respect to the frame joint 152, the first and second spring seals 180, 182 can be formed with W-shaped cross sections allowing them to compress and relax in a manner changing the seal height. Referring to
To enable the sleeve joint 146 to pivot, the W-shaped spring seals 180, 182 are partially retained in a groove disposed in, for example, the sleeve joint with the first cantilevered leg 220 projecting above the groove and the second cantilevered leg 222 bearing against the groove bottom. In addition, thrust washers 250, 252 of a low friction material can be located at the interfaces and arranged to contact the projecting first cantilevered leg 220. When the sleeve joint 146 pivots, the spring seals 180, 182 rotate with the sleeve joint due to frictional contact with the groove and maintains sliding contact with the thrust washers 250, 252. The foregoing arrangement has been found to facilitate +/−50 degrees of pivotal rotation of the lever arm with respect to the frame joint. Further, frictionless sliding motion between rigid components and resilient seal materials can eliminate the need for lubricants and reduce downtime for maintenance.
It will be appreciated that the foregoing description provides examples of the disclosed system and technique. However, it is contemplated that other implementations of the disclosure may differ in detail from the foregoing examples. All references to the disclosure or examples thereof are intended to reference the particular example being discussed at that point and are not intended to imply any limitation as to the scope of the disclosure more generally. All language of distinction and disparagement with respect to certain features is intended to indicate a lack of preference for those features, but not to exclude such from the scope of the disclosure entirely unless otherwise indicated.
Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context.
Accordingly, this disclosure includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the disclosure unless otherwise indicated herein or otherwise clearly contradicted by context.
Chapagain, Pradeep, Mathew, Sunil I., Hudson, Charles Taylor
Patent | Priority | Assignee | Title |
11473266, | Mar 28 2018 | Caterpillar Inc. | Articulation joint for a machine |
Patent | Priority | Assignee | Title |
2576721, | |||
3292957, | |||
3294409, | |||
3909076, | |||
3975028, | Apr 16 1974 | Kabushiki Kaisha Komatsu Seisakusho | Apparatus for sealing a track shoe |
4043564, | May 28 1974 | Garlock Inc. | Pitman shaft boot seal |
4364572, | Sep 10 1979 | Kabushiki Kaisha Komatsu Seisakusho | Seal assembly with load ring |
5374115, | Dec 07 1990 | Intertractor Aktiengesellschaft | Sealing arrangement for hinges of track chains |
6951373, | Nov 02 2000 | HITACHI CONSTRUCTION MACHINERY CO , LTD | Crawler belt and seal for use therein |
8651497, | Jun 17 2011 | RAYTHEON TECHNOLOGIES CORPORATION | Winged W-seal |
9327783, | May 07 2013 | Deere & Company | Cartridge joint with convoluted seal |
20120119567, | |||
EP1375316, | |||
EP1669647, | |||
FR2216868, | |||
FR2985220, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 26 2015 | HUDSON, CHARLES TAYLOR | Caterpillar Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035290 | /0333 | |
Mar 27 2015 | MATHEW, SUNIL I | Caterpillar Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035290 | /0333 | |
Mar 30 2015 | Caterpillar Inc. | (assignment on the face of the patent) | / | |||
Mar 30 2015 | CHAPAGAIN, PRADEEP | Caterpillar Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035290 | /0333 |
Date | Maintenance Fee Events |
Mar 21 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 15 2022 | 4 years fee payment window open |
Apr 15 2023 | 6 months grace period start (w surcharge) |
Oct 15 2023 | patent expiry (for year 4) |
Oct 15 2025 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 15 2026 | 8 years fee payment window open |
Apr 15 2027 | 6 months grace period start (w surcharge) |
Oct 15 2027 | patent expiry (for year 8) |
Oct 15 2029 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 15 2030 | 12 years fee payment window open |
Apr 15 2031 | 6 months grace period start (w surcharge) |
Oct 15 2031 | patent expiry (for year 12) |
Oct 15 2033 | 2 years to revive unintentionally abandoned end. (for year 12) |