A steering system for an autonomous or semi-autonomous vehicle is provided. The steering system includes a controller that is in communication with an electric power steering system and a transmission control system. The controller is programmed to, in response to a first signal indicative of a non-verified operator and a request to operate, place the electric power steering system in a standby mode and inhibit the transmission control system from changing at least one of a transmission operational state and a transmission operational position.

Patent
   10449927
Priority
Apr 13 2017
Filed
Apr 13 2017
Issued
Oct 22 2019
Expiry
May 11 2037
Extension
28 days
Assg.orig
Entity
Large
0
343
currently ok
1. A steering system, comprising:
an electric power steering system; and
a controller in communication with the electric power steering system and is configured to verify an operator, the controller being programmed to, in response to a first signal indicative of a non-verified operator and a request to operate the steering system, provide the first signal to the electric power steering system, and operate the electric power steering system to pivot a steerable wheel.
7. A steering system for an autonomous or semi-autonomous vehicle, comprising:
a controller in communication with an electric power steering system and a transmission control system, the controller being programmed to, in response to a first signal indicative of a non-verified operator and a request to operate, place the electric power steering system in a standby mode and inhibit the transmission control system from changing at least one of a transmission operational state and a transmission operational position.
12. A steering system for a vehicle, comprising:
an electric power steering system operatively connected to a steerable wheel; and
a controller in communication with the electric power steering system and a braking system operatively connected to at least one of the steerable wheel and a non-steerable wheel, the controller being programmed to, in response to a first signal indicative of a non-verified operator and a request to operate, provide the first signal to the electric power steering system, inhibit operation of the vehicle, and operate the braking system to inhibit rotation of at least one of the steerable wheel and the non-steerable wheel.
2. The steering system of claim 1, wherein the controller is further programmed to, in response to the first signal, to inhibit operation of another vehicle subsystem.
3. The steering system of claim 1, wherein the controller is integrated into a housing of the electric power steering system.
4. The steering system of claim 1, wherein the controller is further programmed to, in response to a second signal indicative of a verified operator, provide the second signal to at least one of the electric power steering system and another vehicle sub-system.
5. The steering system of claim 4, wherein the controller is further programmed to, provide power to the electric power steering system.
6. The steering system of claim 4, wherein the controller is further programmed to, in response to an application of power to at least one of the controller and the electric power steering system, absent at least one of the first signal and the second signal, operate the electric power steering system to pivot the steerable wheel.
8. The steering system of claim 7, wherein the controller is further programmed to, prior to placing the electric power steering system in the stand by mode, operate the electric power steering system to pivot a steerable wheel.
9. The steering system of claim 7, wherein the controller is further programmed to, in response to a second signal indicative of a verified operator and the request to operate, remove the electric power steering system from the standby mode.
10. The steering system of claim 9, wherein the controller is further programmed to, enable the transmission control system to change at least one of the transmission operational state and the transmission operational position.
11. The steering system of claim 10, wherein the controller is further programmed to, enable operation of the electric power steering system.
13. The steering system of claim 12, wherein the controller is further programmed to, in response to a second signal indicative of a verified operator and the request to operate, provide the second signal to the electric power steering system, enable operation of the vehicle, and operate the braking system to facilitate rotation of at least one of the steerable wheel and the non-steerable wheel.
14. The steering system of claim 12, wherein the controller is in further communication with a transmission control system.
15. The steering system of claim 14, wherein the controller is further programmed to inhibit the transmission control system from changing at least one of a transmission operational state and a transmission operational position.
16. The steering system of claim 15, wherein the controller is further programmed to, in response to a second signal indicative of a verified operator and the request, provide the second signal to the transmission control system and the electric power steering system, enable the electric power steering system to operate, and enable the transmission control system to change at least one of a transmission operational state and a transmission operational position.
17. The steering system of claim 12, wherein inhibiting operation of the vehicle includes inhibiting operation of at least one of the electric power steering system and another vehicle sub-system.
18. The steering system of claim 12, wherein the controller is further programmed to operate the electric power steering system to pivot the steerable wheel.

Vehicles are generally provided with an anti-theft system such as door locks, alarms, or a steering column lock. Vehicles provided advanced steering systems having wireless communication between the steering columns and vehicle wheels, some anti-theft systems may be ineffective against unauthorized use of the vehicle. Accordingly it is desirable to provide an anti-theft system for vehicles having advanced steering systems.

According to an embodiment of the present disclosure, a steering system is provided. The steering system includes an electric power steering system and a controller. The controller is in communication with the electric power steering system and is configured to verify an operator. The controller is programmed to, in response to a first signal indicative of a non-verified operator and a request to operate the steering system, provide the first signal to the electric power steering system and inhibit operation of the electric power steering system.

According to another embodiment of the present disclosure, a steering system for an autonomous or semi-autonomous vehicle is provided. The steering system includes a controller that is in communication with an electric power steering system and a transmission control system. The controller is programmed to, in response to a first signal indicative of a non-verified operator and a request to operate, place the electric power steering system in a standby mode and inhibit the transmission control system from changing at least one of a transmission operational state and a transmission operational position.

According to yet another embodiment of the present disclosure, a steering system for a vehicle is provided. The steering system includes an electric power steering system that is operatively connected to a steerable wheel and a controller. The controller is in communication with the electric power steering system and a braking system that is operatively connected to at least one of the steerable wheel and a non-steerable wheel. The controller is programmed to, in response to a first signal indicative of a non-verified operator and a request to operate, provide the first signal to the electric power steering system and inhibit operation of the vehicle.

These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.

The subject matter which is regarded as the present disclosure is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the present disclosure are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:

FIG. 1 a schematic illustration of a vehicle;

FIG. 2A is a flowchart illustrating a method of inhibiting unauthorized use of a vehicle; and

FIG. 2B is a continuation of the flowchart of FIG. 2A.

Referring now to the Figures, where the present disclosure will be described with reference to specific embodiments, without limiting same, it is to be understood that the disclosed embodiments are merely illustrative of the present disclosure that may be embodied in various and alternative forms. The figures are not necessarily to scale; some features may be exaggerated or minimized to show details of particular components. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present disclosure.

Referring to FIG. 1, a vehicle 10 is shown. The vehicle 10 may be a non-autonomous vehicle, an autonomous vehicle, a semi-autonomous vehicle, an autonomously driven vehicle, or a selectively autonomous vehicle. The vehicle 10 includes an automated driving assisted steering system (ADAS) 20, an electric power steering system 22, a vehicle system 24, a transmission control system 26, a braking system 28, and a controller 30.

The ADAS 20 enables the vehicle 10 to be fully controlled autonomously or to be at least partially autonomously controlled using sensing, steering, and/or braking technology without continuous input from a driver (e.g. steering, accelerating, braking, maneuvering, etc.). The ADAS 20 may be in communication with vehicle sub-systems such as the electric power steering system 22, the vehicle system 24, the transmission control system 26, the braking system 28, the controller 30, and other vehicle sub-systems that may affect operation of the vehicle 10. In at least one embodiment, the ADAS 20 is provided as part of the controller 30. A driver of the selectively autonomous vehicle is able to selectively activate or deactivate the ADAS 20 via a switch or other mechanism. A vehicle control system or monitoring system is able to selectively activate or deactivate the ADAS 20 in response to events occurring internal or external to the vehicle 10.

The ADAS 20 and the electric power steering system 22 may comprise a steering system of the vehicle 10. The electric power steering system 22 may include a steering wheel 40, a steering assembly 42, and a steerable wheel 44. The steering wheel 40 is connected to a steering column 46. The combination of the steering wheel 40 and the steering column 46 may be adjustable such that the combination is extendable or retractable along a longitudinal axis that extends from the steering column 46. The combination of the steering wheel 40 and the steering column 46 may be in the extended position while the ADAS 20 is deactivated. The combination of the steering wheel 40 and the steering column 46 may move from the extended position towards the retracted position in response to activation of the ADAS 20, such that the combination of the steerable wheel 44 and the steering column 46 are in the retracted position while the ADAS 20 is activated. The extended position corresponds to a position in which a driver of the vehicle 10 is able to provide steering input via the steering wheel 40. The retracted position corresponds to a position in which the driver of the vehicle 10 is not required to provide steering input via the steering wheel 40.

The steering wheel 40 is switchable between a rotatable condition and a non-rotatable condition. The steering wheel 40 is in a rotatable condition when the ADAS 20 is deactivated. The driver of the vehicle 10 is able to provide directional control of the vehicle 10 through the steering wheel 40 while the ADAS 20 is deactivated. The steering wheel 40 is in a non-rotatable condition while the ADAS 20 is activated. The steering wheel 40 is inhibited from rotating while in the non-rotatable condition. The steering wheel 40 is in the non-rotatable condition while the steering wheel 40 is operatively decoupled from the steering assembly 42. It is to be appreciated that decoupling the steering wheel 40 from the steering assembly 42 may be done mechanically, electrically, or a combination thereof.

The electric power steering system 22 may be configured or arranged as a steer-by-wire system such that the steering system of the vehicle 10 is a steer-by-wire steering system that does not have a direct mechanical connection between the steering wheel 40 and/or the steering column 46 and the steering assembly 42. The steering wheel 40 may be directly or indirectly selectively coupled to the steering assembly 42. The steerable wheel 44 may be directly or indirectly selectively coupled to the steering assembly 42 through a steering shaft or a wired or wireless connection via the controller 30. The steerable wheel 44 may be coupled to the steering assembly 42 while the ADAS 20 is deactivated. The steerable wheel 44 may be decoupled from the steering assembly 42 while the ADAS 20 is activated and controlling or maneuvering the vehicle 10.

The steering assembly 42 is arranged to pivot or turn the steerable wheel 44 in response to rotation of the steering wheel 40 or commands provided by the ADAS 20 to pivot or turn the steerable wheel 44.

The steering assembly 42 includes a housing 50 and a steering mechanism 52. In at least one embodiment, the housing 50 is arranged to receive the controller such that the controller 30 is disposed within the housing 50. The housing 50 is arranged to receive at least a portion of the steering mechanism 52. The steering mechanism 52 extends from the housing 50 and is arranged to pivot the steerable wheel 44 in response to rotation of the steering wheel 40 and/or commands provided by the ADAS 20. The steering mechanism 52 may be configured as a steering rack having rack and pinion steering, or the like.

The steering mechanism 52 includes a device, such as a rotary encoder, that interprets rotation of the steering wheel 40 and applies information to an actuator that rotates, translates, or pivots, a portion of the steering mechanism 52 to pivot the steerable wheel 44. The device provides a signal to the actuator while the ADAS 20 is deactivated. The device does not provide a signal or the signal is ignored by the actuator while the ADAS 20 is activated.

The vehicle system 24 is a system that is arranged to provide a request to operate the vehicle 10 and/or is arranged to verify an operator of the vehicle 10. The vehicle system 24 operates as a verification source to verify that an operator of the vehicle is authorized or verified to operate the vehicle 10. Should the vehicle system 24 not verify that an operator of the vehicle is authorized or verified operate vehicle 10, the vehicle system 24 may inhibit the operation of the vehicle 10.

The vehicle system 24 may include a vehicle ignition 60 that is arranged to receive a key. The acceptance of the key and the rotation or depression of the vehicle ignition 60 and the provision of a start signal via the vehicle ignition 60 or the controller 30 verifies that the holder of the key is a verified operator of the vehicle 10. The non-acceptance of the key or the non-rotation or inhibition of depression of the vehicle ignition 60 does not provide the start signal via the vehicle ignition 60 or the controller 30 and does not verify the thought of the key is verified operator of vehicle 10.

In other embodiments, the vehicle system 24 includes a key fob detector 62 and a fob ignition 64. The vehicle system 24 enables an operator of the vehicle 10 to provide a request to operate the vehicle 10 via the fob ignition 64 in response to the key fob detector 62 detecting a key fob that is paired with the vehicle 10. The vehicle system 24 inhibits an operator of vehicle 10 from providing a request to operate the vehicle 10 via the fob ignition 64 in response to the key fob detector 62 not detecting a key fob that is paired of the vehicle 10.

In other embodiments, the vehicle system 24 includes a driver verification system 66. The driver verification system 66 is arranged to verify the identity of an operator of the vehicle using biometrics, a pin code, a key fob, or the like. The vehicle system 24 enables an operator of the vehicle 10 to provide a request to operate the vehicle 10 via an ignition switch in response to the driver verification system 66 verify the identity of an operator of the vehicle 10. The vehicle system 24 inhibits an operator of the vehicle 10 from providing a request to operate the vehicle 10 via the ignition switch 68 in response to the driver verification system 66 not detecting a verified operator of the vehicle 10.

The vehicle system 24 is arranged to provide a first signal indicative of a non-verified operator of the vehicle 10 to a vehicle sub-system such as at least one of a fuel injection system, a transmission control module, an engine control module, the electric power steering system 22, the transmission control system 26, the braking system 28, and the controller 30, in response to the vehicle system 24 not detecting or not verifying a verified operator of the vehicle 10. In at least one embodiment, the vehicle system 24 is arranged to provide the first signal to at least one of the above mentioned vehicle sub-systems and another vehicle sub-system of the above mentioned vehicle sub-systems and inhibit operation of at least one of the above mentioned vehicle sub-systems and another vehicle sub-system of the above mentioned vehicle sub-systems. The vehicle system 24 is arranged to provide a second signal indicative of a verified operate the vehicle 10 to a vehicle sub-system such as at least one of a fuel injection system, a transmission control module, an engine control module, the electric power steering system 22, the transmission control system 26, the braking system 28, and the controller 30, in response to the vehicle system 24 detecting or verifying a verified operator of the vehicle 10. In at least one embodiment, the vehicle system 24 is arranged to provide the second signal to at least one of the above mentioned vehicle sub-systems and another vehicle sub-system of the above mentioned vehicle sub-systems and enable/facilitate operation of at least one of the above mentioned vehicle sub-systems and another vehicle sub-system of the above mentioned vehicle sub-systems.

The transmission control system 26 is in communication with a vehicle transmission. The transmission control system 26 is arranged to change at least one of a transmission operational state and a transmission operational position in response to a verified operator of the vehicle 10 requesting a change in the transmission operational state and or transmission operational position. The transmission control system 26 inhibits the vehicle transmission from being changed from a park state (park position) to a reverse state (reverse position), neutral state (neutral position) or drive state (drive position) in response to the vehicle system 24 providing a first signal indicative of a non-verified operate the vehicle 10. The transmission control system 26 enables the vehicle transmission to be changed from a park state (park position) to a reverse state (reverse position), neutral state (neutral position) or drive state (drive position) in response to the vehicle system 24 providing a second signal indicative of a verified operate the vehicle 10.

The braking system 28 is operatively connected to at least one of the steerable wheel 44 and a non-steerable wheel of the vehicle 10. The braking system 28 is in communication with a brake 74 that is arranged to selectively inhibit or facilitate rotation of at least one of the steerable wheel 44 and the non-steerable wheel. The brake 74 may be an electrically actuated parking brake. The braking system 28 is operated to actuate or operate the brake 74 to inhibit rotation of at least one of the steerable wheel 44 and a non-steerable wheel of the vehicle 10 in response to the vehicle system 24 providing a first signal indicative of a non-verified operator of the vehicle 10. The braking system 28 is operated to actuate or operate the brake 74 to facilitate or enable rotation of at least one of the steerable wheel 44 and a non-steerable wheel of the vehicle 10 in response to the vehicle system 24 providing a second signal indicative of a verified operator of the vehicle 10.

In at least one embodiment, the vehicle system 24 is arranged to provide a first signal indicative of a non-verified operator of the vehicle 10 to another vehicle sub-system such as at least one of a throttle control/fuel injector control for a vehicle having an internal combustion engine, a logic drive (MOSFET) control for a vehicle having an electric drive, and the controller 30 to inhibit operation of at least one of the throttle control/fuel injector control and the logic drive (MOSFET) control, in response to the vehicle system 24 not detecting or not verifying a verified operator of the vehicle 10. The vehicle system 24 is arranged to provide a second signal indicative of a verified operate the vehicle 10 to at least one of a throttle control/fuel injector control for a vehicle having an internal combustion engine, a logic drive (MOSFET) control for a vehicle having an electric drive, and the controller 30 to enable operation of at least one of the throttle control/fuel injector control and the logic drive (MOSFET) control, in response to the vehicle system 24 detecting or verifying a verified operator of the vehicle 10.

The controller 30 may be provided as a separate component of the vehicle 10. At least one embodiment, the controller 30 may be provided as part of the ADAS 20 or may be provided as part of the electric power steering system 22 such that it is integrated into the housing 50. The controller 30 is configured to receive information or signals from the ADAS 20, a sensor associated with the ADAS 20, the electric power steering system 22, the vehicle system 24, the transmission control system 26, and the braking system 28.

The controller 30 includes a microprocessor or central processing unit (CPU) in communication with various types of computer readable storage devices or media. Computer readable storage devices or media may include volatile and nonvolatile storage in read-only memory (ROM), random-access memory (RAM), and keep-alive memory (KAM), for example. KAM is a persistent or non-volatile memory that may be used to store various operating variables while the CPU is powered down. Computer-readable storage devices or media may be implemented using any of a number of known memory devices such as PROMs (programmable read-only memory), EPROMs (electrically PROM), EEPROMs (electrically erasable PROM), flash memory, or any other electric, magnetic, optical, or combination memory devices capable of storing data, some of which represent executable instructions, used by the controller 30 in providing antitheft capabilities for the vehicle 10.

The controller 30 is programmed to provide the first signal indicative of a non-verified operator of the vehicle 10 to at least one of the electric power steering system 22, the transmission control system 26, the braking system 28, and another vehicle sub-system, in response to receiving a first signal indicative of a non-verified operator of the vehicle 10 from the vehicle system 24 and a request to operate the vehicle 10.

The controller 30 provides a signal or a command to the electric power steering system 22 to inhibit the electric power steering system 22 from being operated. The electric power steering system 22 will not respond to steer by wire commands input through the steering wheel 40 while the electric power steering system 22 is inhibited from being operated. The signal or the command may inhibit the provision of power to the electric power steering system 22. In at least one embodiment, the controller 30 provide a signal or a command to the electric power steering system 22 to operate the electric power steering system 22 to pivot the steerable wheel 44. The steerable wheel 44 may be pivoted left or right all the way to an end of travel of the steering mechanism 52. The pivoting of the steerable wheel 44 prevents or inhibits the vehicle 10 from being placed in neutral and pushed or rolled away from its current location.

The controller 30 may also provide a signal or a command to the transmission control system 26 to inhibit the transmission control system 26 from being operated. The signal or the command may inhibit the transmission control system 26 from changing at least one of the transmission operational state and the transmission operational position. The inhibiting of changing at least one of the transmission operational state and the transmission operational position prevents or inhibits the transmission of the vehicle 10 from being placed in neutral and being pushed or rolled away from its current location.

The controller 30 may also provide a signal or command to the braking system 28 to operate the braking system 28. The braking system 28 may be operated to inhibit rotation of at least one of the steerable wheel 44 and the non-steerable wheel by operating the brake 74. The locking of at least one of the steerable wheel 44 and a non-steerable wheel of the vehicle 10 by the brake 74 prevents or inhibits the rotation of a vehicle wheel to inhibit the vehicle 10 from being pushed or rolled away from its current location.

In at least one embodiment, the controller 30 may place the electric power steering system 22 in a standby mode in which the electric power steering system 22 is inhibited from operating. In further embodiments, prior to placing the electric power steering system 22 in the standby mode, the controller 30 provides a signal or a command the electric power steering system 22 to operate electric power steering system 22 to pivot the steerable wheel 44. The electric power steering system 22 remains in standby mode until the vehicle 10 is restarted and an operator of the vehicle is verified. This ensures that the vehicle 10 is not actually shut down during operation and the check is only performed at startup.

The controller 30 is programmed to provide the second signal indicative of a verified operator of the vehicle 10 to at least one of the electric power steering system 22, the transmission control system 26, and the braking system 28, in response to receiving the second signal indicative of a verified operator of the vehicle 10 from the vehicle system 24 and a request to operate the vehicle 10.

The controller 30 provides a signal or a command to the electric power steering system 22 to enable the electric power steering system 22 to be operated. The electric power steering system 22 may respond to steer by wire commands input through the steering wheel 40 while the electric power steering system 22 is enabled to be operated. The signal or the command may request that power be provided to the electric power steering system 22. In at least one embodiment, the controller 30 provide a signal or a command to the electric power steering system 22 to operate the electric power steering system 22 to straighten the steerable wheel 44.

The controller 30 may also provide a signal or a command to the transmission control system 26 to enable the transmission control system 26 to be operated. The signal or the command may enable the transmission control system 26 to change at least one of the transmission operational state and the transmission operational position such that the transmission of the vehicle 10 may be moved away from the park position or park state.

The controller 30 may also provide a signal or command to the braking system 28 to operate the braking system 28. The braking system 28 may be operated to enable or facilitate rotation of at least one of the steerable wheel 44 and the non-steerable wheel by releasing or not operating the brake 74. The releasing or non-operation of the brake 74 enables or facilitates the rotation of a vehicle wheel to inhibit the vehicle 10 from being pushed or rolled away from its current location.

In at least one embodiment, the controller 30 may remove the electric power steering system 22 from the standby mode in response to the second signal indicative of a verified operator of the vehicle 10 and a request to operate the vehicle 10.

The controller is further programmed to inhibit operation of the electric power steering system 22 in response to the provision of power to at least one of the controller 30, another vehicle system, and the electric power steering system 22. Power may be provided to at least one of these systems during an attempt by a person to hotwire the vehicle 10. The application of power to at least one of the electric power steering system 22 and the controller 30 absent at least one of the first signal indicative of a non-verified operator of the vehicle 10 and the second signal indicative of a verified operator of the vehicle 10. The controller 30 may provide a signal or command to the electric power steering system 22 to operate electric power steering system 22 to pivot the steerable wheel 44 to a left extreme or a right extreme.

Referring to FIG. 2, a method of inhibiting unauthorized use of a vehicle is shown. As will be appreciated by one of ordinary skill in the art, the flowchart represents control logic that may be implemented or affected in hardware, software, or a combination of hardware and software. The various functions may be affected by a programmed microprocessor provided with the controller 30 or provided separately from the controller 30. The control logic may be implemented using any of a number of known programming and processing techniques or strategies and is not limited to the order or sequence illustrated. For instance, interrupt or event driven processing may be employed in real-time control applications rather than a purely sequential strategy is illustrated. Likewise, parallel processing, multitasking, or multi-threaded systems and methods may be used.

The method may be executed by the controller 30 and may be implemented as a closed loop control system. For brevity, the method will be described in the context of a single iteration of the method. The method may be performed prior to or during a start sequence of the vehicle 10.

At block 100, the method assesses whether a request to operate the vehicle 10 is provided. If a request to operate the vehicle 10 is not provided, the method may end. Should a request to operate the vehicle 10 be provided, the method continues to block 102.

At block 102, the method determines whether an operator of the vehicle is verified or not. If an operator of the vehicle is not verified by the vehicle system 24, the vehicle continues to block 104.

At block 104, the vehicle system 24 provides a first signal indicative of a non-verified operator of the vehicle 10 to a vehicle sub-system such as at least one of the electric power steering system 22, the transmission control system 26, the braking system 28, a throttle control/fuel injector control, and a logic drive (MOSFET) control. The method may then proceed to perform at least one or a combination of the following processes: inhibit operation of the electric power steering system 22, at block 106; operate the electric power steering system 22 to pivot the steerable wheel 44, at block 108; inhibit operation of the transmission control system 26, at block 110; and operate the braking system 28, block 112.

At block 114, the method may place the electric power steering system 22 in a standby mode awaiting a subsequent request to operate the vehicle 10 and a signal indicative of a verified operator of the vehicle 10.

At block 116, the method assesses whether a subsequent request to operate the vehicle 10 is received and is provided by a verified operator of the vehicle 10. If a subsequent request to operate the vehicle 10 is not received or is not provided by a verified operator of the vehicle 10, the method returns to block 114 and the electric power steering system 22 remains in standby mode. Should a subsequent request to operate the vehicle 10 be received and is provided by a verified operator of the vehicle 10, the method provides the second signal indicative of a verified operator of the vehicle 10 to at least one of the electric power steering system 22, the transmission control system 26, and the braking system 28, at block 118. The method then removes the electric power steering system 22 from the standby mode at block 120.

Returning to block 102, the method determines whether an operator of the vehicle 10 is verified. Should an operator of the vehicle be verified, the vehicle 10 continues to block 122. At block 122, the method provides the second signal indicative of a verified operator of the vehicle 10 to a vehicle sub-system such as at least one of the electric power steering system 22, the transmission control system 26, the braking system 28, a throttle control/fuel injector control, and a logic drive (MOSFET) control.

The method may then proceed to perform at least one of or a combination of the following processes: enable operation of the electric power steering system 22, at block 124; wherein enabling operation of the electric power steering system 22 includes providing power to the electric power steering system 22, at block 126; enable operation of the transmission control system 26, at block 128; and operate the braking system 28 to enable or facilitate rotation of at least one of the steerable wheel 44 and a non-steerable wheel, at block 130.

While the present disclosure has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the present disclosure is not limited to such disclosed embodiments. Rather, the present disclosure can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the scope of the present disclosure. Additionally, while various embodiments of the present disclosure have been described, it is to be understood that aspects of the present disclosure may include only some of the described embodiments. Accordingly, the present disclosure is not to be seen as limited by the foregoing description.

Collier, Bruce M., Simon, Daniel C.

Patent Priority Assignee Title
Patent Priority Assignee Title
10040330, Mar 15 2013 ACADIA WOODS PARTNERS, LLC; FRANKLIN STRATEGIC SERIES - FRANKLIN GROWTH OPPORTUNITIES FUND; FRANKLIN TEMPLETON INVESTMENT FUNDS - FRANKLIN U S OPPORTUNITIES FUND; FRANKLIN STRATEGIC SERIES - FRANKLIN SMALL CAP GROWTH FUND; NEWVIEW CAPITAL FUND I, LP; WIL FUND I, L P ; BRIDGESTONE AMERICAS, INC ; MICROSOFT GLOBAL FINANCE; FHW LIMITED PARTNERSHIP; TEW LIMITED PARTNERSHIP; THE PRIVATE SHARES FUND; BRILLIANCE JOURNEY LIMITED Active vehicle suspension system
10137929, Jan 24 2013 Toyota Jidosha Kabushiki Kaisha Electric power steering device for vehicle
4315117, Mar 10 1979 Kabushiki Kaisha Tokai Rika Denki Seisakusho Electrical switch device
4337967, Jun 25 1979 Toyota Jidosha Kogyo Kabushiki Kaisha Steering device
4503300, Aug 03 1983 ROSTRA PRECISION CONTROLS, INC Control assembly with multi-axis mounting connection
4503504, Aug 21 1981 Aisin Seiki Kabushiki Kaisha Attitude controlling device for a steering wheel
4561323, Feb 09 1984 Chrysler Corporation Adjustable steering column assembly and mechanism therefor
4691587, Dec 20 1985 General Motors Corporation Steering column with selectively adjustable and preset preferred positions
4836566, Jun 08 1988 General Motors Corporation Four-wheel steering system
4921066, May 23 1986 GRUMBO, ELDON C ; GRUMBO, MARSHA C Dual control driving system
4962570, Feb 07 1984 Nissan Motor Company Limited Throttle control system for internal combustion engine with vehicle driving condition-dependent throttle angle correction coefficient variable
4967618, Apr 17 1987 Nippon Seiko Kabushiki Kaisha Electric steering apparatus
5240284, Jun 07 1989 Fuji Kiko Company, Limited Steering column assembly with horizontal position adjustment mechanism
5295712, Dec 11 1991 NISSAN MOTOR CO , LTD Control of a vehicle restraining system having an air bag in a retractable steering column
5319803, May 20 1991 Steering wheel assembly with communication keyboard
5488555, May 27 1993 MID-AMERICA COMMERCILIZATION CORPORATION, A KANSAS CORP Method and apparatus for four wheel steering control
5618058, Mar 22 1995 Daewoo Electronics Co., Ltd. Collapsible steering column apparatus of a motor vehicle
5668721, Oct 02 1995 Steering Solutions IP Holding Corporation Electric power steering motor control
5690362, Jul 03 1995 Daimler AG Longitudinal adjusting arrangement on a casing tube telescope of a steering spindle in a motor vehicle
5765116, Aug 28 1993 Lucas Industries public limited company Driver assistance system for a vehicle
5893580, May 22 1996 UNIQUE TECHNOLOGIES, L P Motor vehicle steering column safety device
5911789, Aug 13 1997 Steering Solutions IP Holding Corporation Linear actuator for motor vehicle steering column
6138788, Dec 11 1997 Daimler AG Vehicle steering system
6170862, May 22 1996 UNIQUE TECHNOLOGIES, L P Motor vehicle steering column safety device
6212453, Sep 11 1998 Honda Giken Kogyo Kabushiki Kaisha Vehicle steering control system
6227571, Nov 03 1999 TRW Vehicle Safety Systems Inc. Telescoping vehicle steering column apparatus for helping to protect a vehicle driver
6256561, Oct 12 1998 Honda Giken Kogyo Kabushiki Kaisha Vehicle steering control system
6301534, May 19 1998 TEXAS A&M UNIVERSITY SYSTEM, THE Method and system for vehicle directional control by commanding lateral acceleration
6354622, Jul 16 1997 Takata-Petri AG Steering wheel with an airbag module
6360149, Dec 09 1998 Autoliv Development AB Dual position vehicle steering command module
6373472, Oct 13 1995 Lear Automotive Dearborn, Inc Driver control interface system
6381526, Aug 30 1999 Suzuki Motor Corporation Torque detection apparatus
6390505, Apr 19 2000 INTERNATIONAL TRUCK INTELLECTUAL PROPERTY COMPANY, L L C ; International Truck Intellectual Property Company, LLC Steering column adjustment system using force feedback system
6481526, Nov 13 2000 Delphi Technologies, Inc. Steer-by-wire handwheel actuator incorporating mechanism for variable end-of-travel
6575263, Apr 26 2001 WHITE DRIVE MOTORS AND STEERING GMBH Torque device for electronic steer-by wire steering systems
6578449, Feb 18 2002 Delphi Technologies, Inc. Snap-on steering column shroud
6598695, Jan 30 2002 Steering Solutions IP Holding Corporation Drive-by wire steering systems having a stop mechanism
6612392, Feb 10 2001 Korea Advanced Institute of Science and Technology Steer-by-wire system using semi-active actuator
6612393, Jan 17 2001 DaimlerChrysler AG Steering system for motor vehicles
6778890, Dec 12 2000 Nissan Motor Co., Ltd. Lane-keeping control with steering torque as a control input to a vehicle steering system
6799654, Feb 05 2002 Steering Solutions IP Holding Corporation Hand wheel actuator
6817437, Jun 19 2001 Steering Solutions IP Holding Corporation Steer-by wire handwheel actuator
6819990, Dec 23 2002 Matsushita Electric Industrial Co., Ltd.; MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD Touch panel input for automotive devices
6820713, Jul 17 2002 Steering Solutions IP Holding Corporation Hand wheel actuator with steering-feel enhancement
6889792, Aug 01 2002 TRW Inc Electrically assisted power steering system with anti-theft capability
7021416, Apr 11 2000 SKF ENGINEERING AND RESEARCH CENTRE B V Vehicle control with manual back up
7048305, May 07 2002 THYSSENKRUPP PRESTA AG Safety steering and mechanism and a method of operating
7062365, Sep 03 2003 Personal computer for automobiles
7295904, Aug 31 2004 GOOGLE LLC Touch gesture based interface for motor vehicle
7308964, Oct 02 2003 Nissan Motor Co., Ltd. Vehicle steering apparatus
7428944, Mar 22 2005 KNORR-BREMSE SYSTEME FUER NUTZFAHRZEUGE GMBH Drive train for a compressor and a hydraulic pump
7461863, May 11 1998 THYSSENKRUPP PRESTA AG Safety steering column, motor vehicle with a safety system and safety method
7495584, Dec 22 2005 Wireless steering column switch levers
7628244, Mar 03 2006 Nissan Motor Co., Ltd. Steering device
7719431, Oct 05 2007 Steering Solutions IP Holding Corporation Systems, methods and computer products for drowsy driver detection and response
7735405, Mar 14 2008 Autoliv ASP, Inc. Pyrotechnic actuator for retracting a piston
7793980, Oct 25 2007 Retractable steering mechanism
7862079, Mar 09 2007 Toyota Jidosha Kabushiki Kaisha Steering column device with knee airbag device
7894951, Oct 21 2005 iRobot Corporation Systems and methods for switching between autonomous and manual operation of a vehicle
7909361, Jun 10 2008 GM Global Technology Operations LLC Vehicular steering wheel and column assembly including torsional damper device
8002075, Jul 20 2005 JOYSON SAFETY SYSTEMS GERMANY GMBH Steering device for a superposition steering system
8027767, Nov 30 2006 Steering Solutions IP Holding Corporation Method for controlling a vehicle steering system
8055409, Jul 25 2005 Toyota Jidosha Kabushiki Kaisha Power steering system and control method of the same
8069745, Jul 10 2008 Steering Solutions IP Holding Corporation Power steering device including a compliant gear
8079312, Oct 01 2007 Steering wheel table
8146945, Nov 07 2002 Daimler AG Motor vehicle steering column
8150581, Dec 01 2005 Toyota Jidosha Kabushiki Kaisha Driving assistance system and driving assistance method
8170725, Feb 18 2009 GM Global Technology Operations LLC Vehicle stability enhancement control adaptation to driving skill based on highway on/off ramp maneuver
8170751, Dec 17 2008 GM Global Technology Operations LLC Detection of driver intervention during a torque overlay operation in an electric power steering system
8260482, Apr 28 2010 GOOGLE LLC User interface for displaying internal state of autonomous driving system
8352110, Apr 28 2010 Waymo LLC User interface for displaying internal state of autonomous driving system
8452492, May 11 2007 Robert Bosch GmbH Driver assistance device and method for controlling it
8479605, Sep 19 2008 GM Global Technology Operations, Inc Rotary-to-linear mechanism having an isolator
8548667, Dec 15 2011 Steering Solutions IP Holding Corporation Hands on steering wheel detect in lane centering operation
8606455, Oct 10 2009 Daimler AG Method and device for automatically operating a vehicle in an autonomous driving mode requiring no user action
8632096, Oct 12 2012 GM Global Technology Operations LLC Systems and methods for hand wheel torsional vibration attenuation
8634980, Oct 05 2010 GOOGLE LLC Driving pattern recognition and safety control
8650982, Jun 29 2010 Fuji Kiko Co., Ltd. Electric telescopic steering apparatus
8670891, Apr 28 2010 Waymo LLC User interface for displaying internal state of autonomous driving system
8695750, May 17 2012 R.H. SHEPPARD CO., INC. Dual hydraulic power steering system
8725230, Apr 02 2010 Joyson Safety Systems Acquisition LLC Steering wheel with hand sensors
8798852, Mar 14 2013 Gogoro, Inc. Apparatus, system, and method for authentication of vehicular components
8818608, Nov 30 2012 GOOGLE LLC Engaging and disengaging for autonomous driving
8825258, Nov 30 2012 Waymo LLC Engaging and disengaging for autonomous driving
8825261, Apr 28 2010 GOOGLE LLC User interface for displaying internal state of autonomous driving system
8843268, Feb 03 2009 Volkswagen AG Motor vehicle
8874301, Jul 09 2013 Ford Global Technologies, LLC Autonomous vehicle with driver presence and physiological monitoring
8880287, Mar 06 2013 GM Global Technology Operations LLC Steering-wheel-hold detection for lane keeping assist feature
8881861, May 16 2012 JTEKT Corporation Steering system
8899623, Jul 25 2012 Audi AG Motor vehicle with retractable steering wheel
8909428, Jan 09 2013 Waymo LLC Detecting driver grip on steering wheel
8948993, Mar 08 2013 Method and system for controlling the behavior of an occupant of a vehicle
8950543, Aug 16 2011 HL Mando Corporation Electric power steering apparatus
8994521, Jun 29 2011 GM Global Technology Operations LLC Steering wheels for vehicle control in manual and autonomous driving
9002563, Nov 17 2011 GM Global Technology Operations LLC Steering wheel device for indicating required supervisory control of a vehicle and method for use
9031729, Nov 29 2012 Volkswagen AG Method and system for controlling a vehicle
9032835, Oct 08 2010 TRW STEERING SYSTEMS POLAND SP Z O O ; TRW Limited Steering column assembly
9045078, Jan 09 2011 Audi AG Arrangement for covering a component, component and motor vehicle
9073574, Nov 20 2013 Ford Global Technologies, LLC Autonomous vehicle with reconfigurable interior
9092093, Nov 27 2012 Neonode Inc Steering wheel user interface
9108584, Nov 20 2013 Ford Global Technologies, LLC Multi-stage airbag in vehicle with reconfigurable interior
9134729, Apr 28 2010 GOOGLE LLC User interface for displaying internal state of autonomous driving system
9150200, Apr 24 2012 Ford Global Technologies, LLC Method and apparatus for changing an autonomously travelling motor vehicle to a safe state
9150224, Sep 24 2013 Ford Global Technologies, LLC Transitioning from autonomous vehicle control to to driver control to responding to driver control
9159221, May 25 2012 Steering wheel with remote control capabilities
9164619, Mar 04 2014 Panasonic Automotive Systems Company of America, Division of Panasonic Corporation of North America Configurable touch screen LCD steering wheel controls
9174642, Feb 06 2012 Audi AG Motor vehicle having a driver assistance device and method for operating a motor vehicle
9186994, Oct 31 2011 HONDA MOTOR CO , LTD Vehicle input apparatus
9193375, Aug 10 2005 Hyundai Motor Company; Kia Corporation Steering apparatus
9199553, Nov 20 2013 Ford Global Technologies Autonomous vehicle with reconfigurable seats
9227531, Nov 20 2013 Ford Global Technologies, LLC Autonomous vehicle with reconfigurable seats
9233638, Oct 23 2012 Joyson Safety Systems Acquisition LLC Steering wheel light bar
9235111, Oct 01 2012 Canon Kabushiki Kaisha Projection display apparatus
9235211, Sep 12 2013 Volvo Car Corporation Method and arrangement for handover warning in a vehicle having autonomous driving capabilities
9235987, Nov 17 2011 GM Global Technology Operations LLC System and method for closed-loop driver attention management
9238409, Aug 06 2009 Volkswagen AG Steering wheel and integrated touchpads for inputting commands
9248743, Jun 01 2012 Audi AG Motor vehicle with a control device for an extravehicular computer system
9260130, Apr 10 2013 Aisin Seiki Kabushiki Kaisha Vehicle steering apparatus
9290174, Oct 23 2014 GM Global Technology Operations LLC Method and system for mitigating the effects of an impaired driver
9290201, Jan 09 2013 GOOGLE LLC Detecting driver grip on steering wheel
9298184, Oct 30 2013 Volkswagen AG Process and device to enable or disable an automatic driving function
9308857, Oct 23 2012 Joyson Safety Systems Acquisition LLC Steering wheel light bar
9308891, Feb 14 2014 Slingshot IOT LLC Limitations on the use of an autonomous vehicle
9315210, Nov 22 2013 Oshkosh Corporation Steering control system for a towed axle
9333983, Mar 15 2013 Volkswagen AG; Audi AG Dual-state steering wheel/input device
9352752, Nov 30 2012 Waymo LLC Engaging and disengaging for autonomous driving
9360865, Sep 20 2013 Ford Global Technologies, LLC Transitioning from autonomous vehicle control to driver control
9725098, Aug 11 2014 Ford Global Technologies, LLC Vehicle driver identification
9845109, Mar 25 2015 Steering Solutions IP Holding Corporation Continuous estimation of surface friction coefficient based on EPS and vehicle models
9852752, Aug 12 2016 Headway Technologies, Inc. Plasmon generator with metallic waveguide blocker for TAMR
9868449, May 30 2014 Ultrahaptics IP Two Limited; LMI LIQUIDATING CO , LLC Recognizing in-air gestures of a control object to control a vehicular control system
20020016661,
20030046012,
20030094330,
20030227159,
20040016588,
20040046346,
20040099468,
20040129098,
20040133330,
20040182640,
20040204808,
20040262063,
20050001445,
20050081675,
20050155809,
20050197746,
20050275205,
20060224287,
20060244251,
20060271348,
20070021889,
20070029771,
20070046003,
20070046013,
20070241548,
20070284867,
20080009986,
20080238068,
20090024278,
20090189373,
20090256342,
20090276111,
20090292466,
20100152952,
20100222976,
20100228417,
20100228438,
20100250081,
20100280713,
20100286869,
20100288567,
20110098922,
20110153160,
20110167940,
20110187518,
20110224876,
20110266396,
20110282550,
20120136540,
20120150388,
20120197496,
20120205183,
20120209473,
20120215377,
20130002416,
20130087006,
20130158771,
20130218396,
20130233117,
20130253765,
20130292955,
20130325202,
20140012469,
20140028008,
20140046542,
20140046547,
20140070933,
20140111324,
20140152551,
20140156107,
20140168061,
20140172231,
20140277896,
20140277945,
20140300479,
20140306799,
20140309816,
20140354568,
20150002404,
20150006033,
20150014086,
20150032322,
20150032334,
20150051780,
20150060185,
20150120124,
20150120141,
20150120142,
20150123947,
20150210273,
20150246673,
20150251666,
20150283998,
20150314804,
20150324111,
20150338849,
20160009332,
20160071418,
20160075371,
20160082867,
20160185387,
20160200246,
20160200343,
20160200344,
20160207538,
20160209841,
20160229450,
20160231743,
20160244070,
20160280251,
20160288825,
20160291862,
20160318540,
20160318542,
20160347347,
20160347348,
20160355207,
20160362084,
20160362117,
20160362126,
20160364003,
20160368522,
20160375860,
20160375923,
20160375925,
20160375926,
20160375927,
20160375928,
20160375929,
20160375931,
20170029009,
20170029018,
20170066473,
20170101032,
20170101127,
20170113712,
20170151977,
20170151978,
20170158055,
20170158222,
20170203785,
20170225704,
20170232998,
20170240204,
20170293306,
20170297606,
20170305425,
20170305458,
20180015948,
20180029632,
20180072341,
20180093700,
20180105198,
20180107214,
20180136727,
20180148087,
CN101037117,
CN101041355,
CN101596903,
CN102027458,
CN102320324,
CN102452391,
CN102939474,
CN103158699,
CN103419840,
CN103448785,
CN103677253,
CN103777632,
CN103818386,
CN104024084,
CN104968554,
CN1722030,
CN1736786,
CN202563346,
DE102005032528,
DE102005056438,
DE102006025254,
DE102008057313,
DE102010025197,
DE102011056042,
DE102012010887,
DE102013110865,
DE102014204855,
DE102014223128,
DE10212782,
DE19523214,
DE19923012,
EP1559630,
EP1606149,
EP1783719,
EP1932745,
EP2384946,
EP2426030,
EP2489577,
EP2604487,
FR2862595,
FR3016327,
JP2007253809,
JP2011043884,
JP20174099,
JP2768034,
JP5162652,
JP60157963,
JP60164629,
KR20100063433,
WO147762,
WO2006099483,
WO2007034567,
WO2010082394,
WO2010116518,
WO2013080774,
WO2013101058,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 11 2017SIMON, DANIEL C Steering Solutions IP Holding CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0420000957 pdf
Apr 11 2017COLLIER, BRUCE M Steering Solutions IP Holding CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0420000957 pdf
Apr 13 2017Steering Solutions IP Holding Corporation(assignment on the face of the patent)
Date Maintenance Fee Events
Apr 24 2023M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Oct 22 20224 years fee payment window open
Apr 22 20236 months grace period start (w surcharge)
Oct 22 2023patent expiry (for year 4)
Oct 22 20252 years to revive unintentionally abandoned end. (for year 4)
Oct 22 20268 years fee payment window open
Apr 22 20276 months grace period start (w surcharge)
Oct 22 2027patent expiry (for year 8)
Oct 22 20292 years to revive unintentionally abandoned end. (for year 8)
Oct 22 203012 years fee payment window open
Apr 22 20316 months grace period start (w surcharge)
Oct 22 2031patent expiry (for year 12)
Oct 22 20332 years to revive unintentionally abandoned end. (for year 12)