A light emitting diode (led) sensor including a first led device disposed on a support and configured to emit a radiation, and a second led device disposed on the support and configured to receive the emitted radiation. A structure is formed on the support, the first led device, and the second led device. The structure defines a contoured surface. A material is located adjacently to the contoured surface, wherein the material includes a property adapted to reflect the emitted radiation from the first led to the second led. The structure includes an ellipsoid and the contoured surface defines an ellipsoidal surface. first and second foci are defined by the ellipsoid, wherein emitted radiation from the first led device converges at the first foci and the second foci and is reflected to the second led device. The device is configured to determine a temperature or a chemical property of an analyte.
|
15. A light emitting diode (led) sensor comprising:
a first led junction constructed to emit a radiation;
a second led junction constructed to receive a radiation and provide a detectable electronic response responsive to the received radiation;
a contoured surface; and
a material located adjacently to the contoured surface, wherein the material is constructed to include a property, wherein the property includes reflecting or absorbing and re-emitting the emitted radiation to the second led, and wherein the material includes a chromic sensing material that modulates sensible characteristics of the radiation.
12. A light emitting diode (led) sensor comprising:
a first led junction constructed to emit a radiation;
a second led junction constructed to receive a radiation and provide a detectable electronic response responsive to the received radiation;
a contoured surface; and
a material located adjacently to the contoured surface, wherein the material is constructed to include a property, wherein the property includes reflecting or absorbing and re-emitting the emitted radiation to the second led, wherein the material includes a color change dye fixed in a gel, and wherein the emitted radiation travels through the gel.
1. A light emitting diode (led) sensor comprising:
a first led junction constructed to emit a radiation;
a second led junction constructed to receive a radiation and provide a detectable electronic response responsive to the received radiation;
a package encapsulating the first led junction and the second led junction, wherein the package defines a contoured envelope having a contoured surface; and
a material located adjacently to the contoured surface, wherein the material is constructed to include a property, wherein the property includes reflecting or absorbing and re-emitting the emitted radiation to the second led, wherein the property includes reflecting an external radiation and preventing the external radiation from being received by the second led, wherein the material includes a layer that includes a palladium alloy constructed to change optical reflectivity due to hydrogen absorption, and wherein the led sensor is configured to detect the presence of hydrogen.
4. A light emitting diode (led) sensor comprising:
a support;
a first led device disposed on the support and including a single led junction constructed to emit a radiation;
a second led device disposed on the support and including a single led junction constructed to receive a radiation and provide a detectable electronic response responsive to the received radiation;
a structure formed on the support, the first led device, and the second led device, wherein the structure defines a contoured surface; and
a material located adjacently to the contoured surface, wherein the material is constructed to include a property, wherein the property includes reflecting the emitted radiation from the first led to the second led, wherein the property includes reflecting an external radiation and preventing at least a portion of the external radiation from being received by the second led, wherein the material includes a layer constructed to change optical reflectivity due to absorption of an analyte, and wherein the led sensor is configured to detect the presence of the analyte.
2. The led sensor of
3. The led sensor of
5. The led sensor of
6. The led sensor of
7. The led sensor of
8. The led sensor of
9. The led sensor of
10. The led sensor of
11. The led sensor of
19. The led sensor of
|
The present invention generally relates to light emitting diode (LED) devices, and more particularly to an LED sensor device adapted to determine the properties of an analyte.
An LED device is a semiconductor device that includes an interface, or junction, between two types of semiconductor material, one being a p-type semiconductor and the other being an n-type semiconductor. The LED is a special type of diode that emits light. When biased in one direction, a current flows through the device, but when biased in an opposite direction, current does not flow unless in a reverse saturation current mode.
With an appropriate voltage applied across two leads of the device, a light (radiation) is produced which includes a color corresponding to the type of material used to make the semiconducting material of the LED. The LED device has applications in many industries and many types of devices. Since the LED is widely used, the cost of LED devices is generally very low and cost effective. Consequently, the LED device can be found in many different types of electrical products and devices due its ability perform as a low-cost switch or low-cost source of light. Furthermore, it is known in the art, though less well appreciated, that LEDs can absorb radiation to produce an electrical signal though they are seldom used for this application.
It is known in the art that LEDs are relatively selective in both an emission spectrum of light at a particular wavelength, and an absorption spectrum or reception of light of a particular wavelength. LEDs typically absorb radiation with a spectrum that is higher energy and smaller wavelength than the spectrum at which the light is emitted.
Because LEDs also detect light, there are various mechanisms for determining the content of optical signals incident upon an LED junction. For instance, it is possible to measure the light levels incident upon an LED while it is emitting light by measuring the difference it creates in junction impedance. For an LED junction which is not emitting light, it is possible to measure a current which flows with the diode in an under reversed biased condition. For instance it is possible to measure this current directly (e.g. with a picoammeter). Another mechanism for measuring incident light flux is to directly measure the photovoltage generated by illumination. Another mechanism for measuring incident light flux integrated over time is to apply a known reverse bias across the junction (as a capacitive stored charge) and then measure the decay of this voltage value over time. This last mechanism provides a mechanism for simplifying the electronics needed and reducing noise by providing an intrinsically time-integrated data output.
LED behavior can also depend upon the junction temperature of the device. In some embodiments, temperature can be monitored to enable dynamic referencing and calibration for the device. As is known in the art, the temperature measurement and/or control of an LED may be accomplished in a variety of ways.
Even though LED operating characteristics and behaviors are known, LEDs are inefficient absorbers and therefore are generally not used as such for the determination of the characteristics of a physical environment including chemical and physical environments. Consequently, there is a significant need for the unique LED devices, methods, systems and techniques disclosed herein. In addition, there is a significant need for the unique apparatuses, methods, systems and techniques disclosed herein.
Exemplary embodiments include unique systems, methods, techniques and apparatuses for systems to detect physical and chemical characteristics of the environment to which it is exposed. Further embodiments, forms, objects, features, advantages, aspects and benefits of the disclosure shall become apparent from the following description and drawings.
In the present disclosure, a single LED package including one or more LEDs serves as both a light emitter and a light receiver for performing chemical, physical, and/or environmental detection and thereby reduces or eliminates the need for additional optics, such as lenses, and the associated costs that result. In one embodiment, the LED package is placed in an immediate proximity to a material system which acts to return light back in to the LED package and which alters the sensed characteristics of the returned light (e.g. intensity, wavelength, etc.) in response to environmental stimuli or an analyte (e.g. concentration of a chemical, pH, temperature, etc.). In one or more embodiments, a single LED packages encases multiple LED junctions. In some embodiments, this plurality of junctions includes a set of junctions that interact with light having different spectral characteristics. In some embodiments, this plurality of junctions includes a set of junctions, all of which interact with light with substantially the same spectral characteristics.
In one embodiment, there is provided an LED sensor including a first LED junction configured to emit a radiation and a second LED junction configured to receive a radiation. A package encapsulates the first LED junction and the second LED junction, wherein the package defines a contoured envelope. A material is located adjacently to the contoured envelope, wherein the material includes a property adapted to reflect the emitted radiation to the second LED. In another embodiment, the contoured envelope is configured to absorb and to re-emit light to the second LED when the envelope includes phosphorescent/fluorescent materials.
In another embodiment, there is provided an LED sensor including a support and a first LED device disposed on the support. The first LED device includes a single LED junction configured to emit a radiation. A second LED device is disposed on the support and includes a single LED junction configured to receive a radiation. A structure is formed on the support, the first LED device, and the second LED device, wherein the structure defines a contoured surface. A material is located adjacently to the contoured surface, wherein the material includes a property adapted to reflect the emitted radiation from the first LED to the second LED.
For the purposes of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications in the described embodiments, and any further applications of the principles of the invention as described herein are contemplated as would normally occur to one skilled in the art to which the invention relates.
In the embodiment of
Additionally, the thickness of each of the layers 26 and 28, in different embodiments, is determined based on the desired function of the sensor. For instance, each of the layers 26 and 28, in different embodiments, includes the same thickness. In
The structure 16 of the LED sensor 10 is coated or encapsulated with a material that is optically responsive to a particular environmental condition which is desirable to test. In other embodiments, the structure 16 is embedded with the desired material. Such material systems include, but are not limited to: i) reflective and/or partially reflective films which alter reflective properties (e.g. efficiency, spectrum, specularity/diffuseness, etc.) upon exposure to environmental stimuli; and ii) fluorescent and/or phosphorescent films which alter returned light characteristics (e.g. yield, spectrum, time constant, etc. for emission). In other embodiments, color change dyes are fixed into the material layer 25, which is configured as a permeable layer (e.g. a polymer layer, a gel, etc.). For instance, a halochromic dye, a thermochromic dye, or other dyes, are fixed in a gel which is placed in proximity to the LED structure 16. In such embodiments, incorporation of the dye into a larger body allows light to travel through the gel and then reflects the light back to the LED, as will be further described below.
In some embodiments, additional optical material is incorporated, in addition to, or instead of, the environmentally sensitive optical material to enhance the signal characteristics of the overall device. For instance, an optically absorbing film is used over the top of an environmentally responsive optically reflecting film to reduce secondary light reflections. In another configuration, an optically reflective film is used over the top of a fluorescent and/or phosphorescent film to maximally return an optical signal back in to the receiving LED for detection. In still another embodiment, an optically reflective film is used over the top of a layer containing chromic sensing materials (e.g. halochromic, ionochromic, solvatochromic, etc.) so that the reflective film returns light to the receiving LED and the chromic layer modulates the sensible characteristics (e.g. intensity, spectrum, etc.). In these and other embodiments, overcoating films are constructed to enable permeation of analytes through the overcoating film to the sensing layer. In some embodiments, both functions or absorption and reflection are incorporated into a single layer—for instance a chromic material is incorporated into an analyte permeable material layer (e.g. a polymer) which is configured to be reflective (e.g. as a dielectric wavelength-matching reflective coating).
In one embodiment, the LED 62 includes an emitting blue LED junction having an emission peak of approximately 450 nm. The LED 64 includes an absorbing yellow LED junction having an emission peak of approximately 585 nm. In one embodiment, the LED's absorption spectrum is substantially insensitive to the light spectrum emitted by the blue LED 62. Each of the LEDs 62 and 64, in this embodiment, are encased inside of the structure 66 in which the layer 70 is coated on the surface of the structure 66 as a thin layer of a phosphor which absorbs the blue radiated light and which emits as a yellow radiation wherein this absorption/re-emission process is quenched by external oxygen (O2) to detect the presence of O2.
As used herein, foci refers to the two points enclosed in the ellipsoid which possess the characteristic that a ray which leaves one of the foci and is transmitted from one LED, specularly reflected from the ellipsoidal surface, and travels to the other foci located at the other LED. The regions immediately adjacent to each foci is referred to as a “focal region” and specular reflection from the ellipsoidal surface will act to direct most of the light, but not necessarily one hundred percent of the light, which is emitted from one focal region to the other focal region. These focal regions are the spatial regions occupied by LEDs 112 and 114 and the immediate vicinity of LEDs 112 and 114. The focal regions do not lie on the surface of the ellipsoids, but are instead located on or near the LEDs 112 and 114 such that the illustrated rays are illustrative of many rays which are emitted from LED 112 and then reflected from the surface of the ellipsoid and back to LED 114.
The various embodiments, therefore, include a structure configured to increase the amount of applied incident light directed to a receiver LED. These configurations not only increase the amount of a photovoltage signal generated by the receiver LED, but also reduce the amplitude of the noise present in the signal being measured. Thus, the use of higher lighting levels is advantageous and improves the signal quality provided by the LED sensor. Furthermore, the use of such focusing structures, such as an ellipsoid, which concentrates the amount of light delivered to a receiver LED, is advantageous to enhance the signal to noise ratio of the delivered signal.
Each of LEDs 112 and 114 are placed at one of the focal regions of the ellipsoid. Light emitted from the LED 112 is internally reflected and absorbed by the junction of LED 114, which is placed at the other focal region of the ellipse, where this reflected light creates a detectable electronic response. The ellipsoidal geometry of the packaging maximizes the light delivered to the second LED 114 from the first LED 112. The structure 118 includes a material layer 123. The material layer 123 encases the structure 118 and modulates reflectivity in response to an environmental stimulus and thereby alters the illumination levels impinging upon the sensing LED 114. The structure 118 includes an ellipsoid and the contoured surface defines an ellipsoidal surface. First and second foci are defined by the ellipsoidal surface.
While
In other embodiments, multiple intersecting ellipsoids share a single focal point at the intersection. One such embodiment includes a “flower” geometry where multiple ellipsoids intersect to provide a single focal point. In another embodiment, a “chained” geometry includes multiple ellipsoids which intersect in a geometric sequence. For examples, one “chained” geometry includes three ellipsoids A, B, and C and three focal points 1, 2, 3, with focal point 1 being shared by ellipsoid A and C, focal point 2 being shared by A and B, and focal point 3 being shared by B and C.
In one or more embodiments, the LED packaging structure is constructed to maximize the amount of environmentally signaling light that the system returns to the absorbing LED. For instance, in systems using a variable reflectance film coated onto the top of the structure encapsulating the LEDs, the structure is constructed into an ellipsoidal or partially ellipsoidal morphology as described with respect to
In this and other embodiments, one or more of the LEDs includes an encasing layer which provides an optical conversion layer (e.g. fluorescent, phosphorescent) incorporated in immediate proximity to the LED to provide the optimized geometric characteristics for the point-like light-source and receiver geometry. The encasing layer provides an optical output of a particular wavelength for sensing by another LED. The encasing layer, however, acts a filter such that light reflected back to the LED source is not of a suitable wavelength to be absorbed by the emitter LED which tends to mitigate potential interference (e.g. due to LED light source output instabilities) caused by reflected light back into the emitting LED.
As shown in
In the embodiment of
As described herein, one or more LED junctions of one or more LEDs are encased within a structure comprising a single unitary packaging. Light is emitted from the LED junction and then encounters a material layer, located in close proximity to the structure, which returns light back to the one or more LEDs in a manner which is analyzed to determine the characteristics of the environment (analyte) being tested. This returned light is absorbed by one or more of the LED junctions, and thereby creates a sensible electronic response which is modulated by environmental stimuli. Appropriate electrical test equipment is electrically coupled to the LEDs to enable the LEDs to transmit light (radiation) and to receive light (radiation) for analysis. In some embodiments, these devices are operated utilizing a time-modulated emission signal (e.g. ‘blinking’). This can be utilized to improve several performance aspects of these devices including increasing the effective useful lifetime of the LED or reducing the heat generation by the device.
In one or more embodiments, these LED sensors having a packaging housing which encases multiple LEDs and is constructed in such a way as to provide independent electronic connection to these various LEDs within the package so that the signals from the various devices may be directly and unambiguously distinguished.
In still other embodiments, LEDs having differentiated spectrums as emitter-absorber pairs are used. In some embodiments, multiple absorber LEDs with differentiated spectra are provided; for instance, using two absorbers where one has the same (emission) spectrum as the emitter and the other has an (emission) spectrum which is shifted slightly toward the red so that the spectral distribution of the generated signal can be analyzed. Furthermore, in some instances the environment may cause alterations to the spectrum which is returned to the LED sensor—e.g. due to selective absorption, fluorescence, phosphorescence, etc. In such instances, multiple absorbers which have differentiated spectral selectivity are used for characterizing the optical signal. Furthermore, in some embodiments, it may be useful to utilize multiple LEDs to enable the measurement of multiple parameters within the same system e.g. the measurement of local temperature and of a chemical concentration by the same LED sensor package through using different types of LEDs and different types of a material layer to provide a variety of response combinations.
In additional embodiments, the LED sensor package is joined to a conduit which conducts the light to and from a distal location. Such conduits are well known in the art and may include optical fiber, “light pipe”, and others. Optical fibers include, but are not limited to, single mode optical fibers, multi-mode optical fibers, bundles of optical fibers, very large diameter optical fibers (often up to multiple mm in diameter). As is well known in the art, there are several methods by which such fibers can be connected to the LED package including lens-coupled mechanical mounts, and gluing the fiber directly to the LED package.
In some embodiments, particularly for sensors based upon specular optical dynamics, the packaging structure may be constructed into a geometry which enables light emitted from the emitter LED to be reflected multiple times from the surface of the packaging structure before being re-focused onto the sensor LED in order to enhance the detectable signal level produced by the system. One such embodiment is illustrated in
In some embodiments, the LED sensor package is constructed to enable the device to measure multiple environmental parameters simultaneously. In one embodiment, this embodiment provides referencing of the device.
In some embodiments, the LED sensor packages are constructed to enable direct internal optical referencing of the device.
In other embodiments, the LED package sensor is constructed so that fluctuations in unmeasured environmental parameters (such as temperature) are calibrated for and/or compensated by the structure of the device. For instance, by utilizing a device which has a symmetric double-ellipsoidal geometry and where one elliptical arm has a film that is responsive to an environmental parameter and the other elliptical arm has a film that is insensitive to said environmental parameter, such an assembly provides built-in referencing characteristics which are symmetric with respect to environmental parameter changes (e.g. temperature). Furthermore, through use of suitable designs with compact geometric forms stabilized by robust materials (e.g. small polymer castings on fiberglass board substrates) effects from environmental parameters such as temperature changes can be minimized.
In still other embodiments, the LED packaging structure is constructed to minimize the amount of light which is produced and re-absorbed within the LED packaging without interacting with the environment. This configuration reduces the baseline optical signal to enable enhanced sensitivity from the device (improved signal-to-baseline). For instance, the embodiment of
In some preferred embodiments, the LED and packaging structure will be encased within a structure to regulate and/or modify the environment to which the sensor is directly exposed. For instance, the LED and packaging structure may be encapsulated within a membrane to concentrate particular analytes for determination and/or to reduce the presence of contaminants/interferences in the active proximity of the sensor. Various selective membranes are selected to form a physical barrier physically proximate to the sensor device, which selectively enables certain analytes to reach the sensor element while inhibiting the presence of other analytes. In one embodiment for instance, a membrane takes the form of a permeable hydrophobic layer such as a thin layer of teflon, or a self-assembled layer of perfluorosilane onto a silica surface. Thin layers (approximately 0.5 to 20 nm) of silicon oxide are applied to discriminate (e.g. between hydrogen and oxygen permeation). Ion selective membranes are formed, in different embodiments, using layers of from various inorganic (e.g. ion exchange silicate or chalcogenide glasses) or organic (e.g. valinomycin) compositions.
In some embodiments, the external surface of the packaging structure includes micro-structuring or other diffractive elements to induce diffractive effects in the incident light in order to direct some or all of the light onto one or more receiver elements. For instance, the package surface, in one embodiment, is formed as a holographic reflective “lens” (rather than as a structured contour) to direct the path of the light within the package. In some embodiments, this configuration is made using holographic imprinting, as is well known in the art. Such imprinted holograms are formed during casting of the package material. In other embodiments, the imprinted holographic element is comprised partially or completely from materials that are materially responsive so that it may alter the functionality of the holographic e.g. by altering the strength or positioning of the reflection that it creates. In some embodiments, such holographic lens elements are utilized to direct different portions of the spectrum of the light utilized within the system to different spaces within the cell (e.g. onto different sensing LEDs with different spectral sensitivities). This micro-structuring is in contrast with illustrated embodiments described herein in which the exterior surface of the structure is smooth.
In some embodiments, the packaging structure is constructed into a geometry which possesses an optical resonance matching a wavelength utilized by the system (e.g. the wavelength emitted by the LED). In such embodiments the LED or LEDs, which are in electromagnetic contact with the packaging structure, are utilized to populate and detect the resonant optical states associated with the packaging structure.
It will be apparent to those skilled in the art that similar package integration of similar emitter detector pairs (e.g. an LED paired with a photodetector in a single package in proximity to a sensing material/structure) may be utilized to obtain advantages in device simplicity and cost.
While the present disclosure has been illustrated and described in detail in the drawings and foregoing description, the same is to be considered as illustrative and not restrictive in character, it being understood that only certain exemplary embodiments have been shown and described and that all changes and modifications that come within the spirit of the present disclosure are desired to be protected. It should be understood that while the use of words such as preferable, preferably, preferred or more preferred utilized in the description above indicate that the feature so described may be more desirable, it nonetheless may not be necessary and embodiments lacking the same may be contemplated as within the scope of the present disclosure, the scope being defined by the claims that follow. In reading the claims, it is intended that when words such as “a,” “an,” “at least one,” or “at least one portion” are used there is no intention to limit the claim to only one item unless specifically stated to the contrary in the claim. The term “of” may connote an association with or a connection to another item as well as a belonging to or a connection with the other item as informed by the context in which it is used. The terms “coupled to,” “coupled with”, and the like include indirect connection and coupling and further include but do not require a direct coupling or connection unless expressly indicated to the contrary. When the language “at least a portion” and/or “a portion” is used the item can include a portion and/or the entire item unless specifically stated to the contrary.
Liu, Yixin, Sharma, Saumya, Nicholas, Nolan W.
Patent | Priority | Assignee | Title |
11636870, | Aug 20 2020 | DENSO International America, Inc. | Smoking cessation systems and methods |
11760169, | Aug 20 2020 | DENSO International America, Inc. | Particulate control systems and methods for olfaction sensors |
11760170, | Aug 20 2020 | DENSO International America, Inc. | Olfaction sensor preservation systems and methods |
11813926, | Aug 20 2020 | DENSO International America, Inc. | Binding agent and olfaction sensor |
11828210, | Aug 20 2020 | DENSO International America, Inc. | Diagnostic systems and methods of vehicles using olfaction |
11881093, | Aug 20 2020 | DENSO International America, Inc. | Systems and methods for identifying smoking in vehicles |
Patent | Priority | Assignee | Title |
4564756, | Jan 06 1984 | International Business Machines Corporation | Proximity sensor with a light-emitting diode which simultaneously emits and detects light |
5035508, | Jan 05 1987 | British Technology Group Limited | Light absorption analyser |
6608360, | Dec 15 2000 | UNIVERSITY OF HOUSTON | One-chip micro-integrated optoelectronic sensor |
7042341, | Aug 12 2003 | Overhead Door Corporation | Device including light emitting diode as light sensor and light source |
7052180, | Jan 04 2002 | LED junction temperature tester | |
7557690, | Aug 12 2003 | Overhead Door Corporation | Device including light emitting diode as light sensor and light source |
7598949, | Oct 22 2004 | New York University | Multi-touch sensing light emitting diode display and method for using the same |
7847301, | Dec 08 2004 | Keysight Technologies, Inc | Electronic microcircuit having internal light enhancement |
7897057, | Sep 04 2001 | Optech Ventures, LLC | Sensor for detection of gas such as hydrogen and method of fabrication |
8714778, | Sep 14 2010 | EPISTAR CORPORATION | Light-emitting diode (LED) module with light sensor configurations for optical feedback |
20060043270, | |||
20060072319, | |||
20060118807, | |||
20110001422, | |||
20150179827, | |||
20160018065, | |||
20180245753, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 31 2017 | ABB Schweiz AG | (assignment on the face of the patent) | / | |||
Aug 21 2018 | NICHOLAS, NOLAN W | ABB Schweiz AG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 047055 | /0810 | |
Aug 21 2018 | SHARMA, SAUMYA | ABB Schweiz AG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 047055 | /0810 | |
Aug 21 2018 | LIU, YIXIN | ABB Schweiz AG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 047055 | /0810 |
Date | Maintenance Fee Events |
Apr 19 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 29 2022 | 4 years fee payment window open |
Apr 29 2023 | 6 months grace period start (w surcharge) |
Oct 29 2023 | patent expiry (for year 4) |
Oct 29 2025 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 29 2026 | 8 years fee payment window open |
Apr 29 2027 | 6 months grace period start (w surcharge) |
Oct 29 2027 | patent expiry (for year 8) |
Oct 29 2029 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 29 2030 | 12 years fee payment window open |
Apr 29 2031 | 6 months grace period start (w surcharge) |
Oct 29 2031 | patent expiry (for year 12) |
Oct 29 2033 | 2 years to revive unintentionally abandoned end. (for year 12) |