A method and equipment for detecting with smart glasses used by the operator an target intended by the operator; detecting a driving command given by the operator; and responsively to the detection of the driving command steering the loading member or the load towards said target.
|
1. A method for controlling a lifting device that is an industrial crane, comprising:
detecting with smart glasses used by an operator a target intended by the operator;
detecting a driving command given by the operator; and
responsively to the detection of the driving command, steering a loading member of the lifting device or a load towards said target;
presenting with the smart glasses to the operator during the use of the lifting device data relating to the use of the lifting device; and
selecting the target intended by the operator by, in the operational range of the lifting device, using preset positioning signs that are imaged with a camera included in the smart glasses and detected automatically.
10. A control device for controlling a lifting device that is an industrial crane, comprising:
a processor;
a memory; and
program code, stored in the memory, to control the operation of the control device when executed by the processor, to cause:
receiving from smart glasses used by an operator the detection of a target intended by the operator;
detecting a driving command given by the operator;
responsively to the detection of the driving command steering a loading member of the lifting device, or a load, towards said target;
presenting with the smart glasses to the operator during the use of the lifting device data relating to the use of the lifting device; and
automatically selecting the target intended by the operator by, in the operational range of the lifting device, using preset positioning signs that are imaged with a camera included in the smart glasses and detected automatically.
2. The method according to
3. The method according to
4. The method according to
5. The method according to
6. The method according to
7. The method according to
8. The method according to
9. The method according to
11. A control device system, wherein the control device system comprises the control device of
12. The control device system according to
13. A lifting system comprising the control device system according to
14. The lifting system according to
|
The aspects of the disclosed embodiments generally relate to controlling a lifting device. The present disclosure relates particularly, though not exclusively, to controlling an industrial crane from the floor level with a control device.
An industry crane typically moves along rails mounted close to the ceiling in the longitudinal direction. A trolley moving laterally along the main girder enables a lateral movement. The lifting device has a loading member for grabbing a load e.g. via a hook, a rope, a wire, or a lifting sling. The loading member may also comprise a lifting boom, to which a hook, grab, chain sling, round sling or a rope can be attached. The loading member can be lifted and lowered. Hence, the loading member can be controlled in the directions of a right-angled coordinate system XYZ within the operational range of the crane.
Industrial cranes are commonly controlled from the floor level. A user of the crane, i.e. the operator, positions himself so that he can readily see the load and its surroundings. Especially through radio control, the operator of the crane can position himself in a safe place with a good line-of-sight of the steering direction, the loading member, the load, and the surroundings.
Using the crane efficiently requires getting used to the operation of the control device of the crane and more generally to the operation of the crane. On using the crane, consideration should be given to the free space required by the load, the obstacles in the surroundings, people, the acceleration of the crane and the effect of the inertia of mass on the loading member, on the load and on the crane, and the mechanisms causing oscillation. Oscillation can occur in relation to the X and Y directions. In some locations the operational range of the crane may be restricted in order to avoid damage, in which case a restricted area or areas, into which the crane cannot be steered, are defined in the crane.
The present disclosure aims to improve the ease and/or the efficiency of operating a crane, to improve the safety, or at least to offer a new technical alternative.
According to a first aspect of the disclosed embodiments there is provided a method for controlling a lifting device, the method comprising:
detecting with smart glasses used by an operator a target intended by the operator;
detecting a driving command given by the operator; and
responsively to the detection of the driving command, steering a loading member of the lifting device, or a load, towards said target.
The smart glasses may be means for augmented reality.
The steering of the loading member of the lifting device or a load, towards said target, may be continued until a determined time period has elapsed from the last time a driving command given by the operator was detected. The determined time period can at the maximum be: 10 milliseconds (ms), 20 ms, 50 ms, 200 ms, 500 ms or 1 s.
Data relating to the use of the lifting device may be presented with smart glasses to the operator during the use of the lifting device.
Said target intended by the operator may be selected using preset positioning signs in the operational range of the lifting device, wherein the positioning signs are imaged with a camera included in the smart glasses and identified automatically. The positioning points corresponding to the positioning signs, or the locations of the positioning points may be stored in a memory, e.g. in the memory of the lifting device.
The target intended by the operator may be detected from sensor data measured from the surroundings. The target intended by the operator may be detected based on a 3D point cloud formed from the images taken by the camera included in the smart glasses.
Automatic detection and selection of a target may be performed on any of the following targets: a detectably shaped load, a shelf or warehouse location, a machine tool, a vehicle, a loading area, a loading platform, general objects (e.g. a geometrical shape, such as an angle, a center, a mesh point), or a virtual target, such as a target of the augmented reality shown by the smart glasses. Also human figures or geometric shapes may be detected automatically for selecting a target or defining a safety area.
Product information and balance, which are received from a system of customer, may be shown to the operator from the shelf locations during the use of the lifting device.
The operator may be provided with a task list through the smart glasses e.g. for collecting products in a warehouse.
The operator may be provided with assistive data. The assistive data may comprise one or several of the following: route directions as a map; the distance and the direction to the target; route to the target drawn into a space; and highlighting of the target location. The target location may be highlighted with frames around the target. The frames may be highlighted with glow.
Steering of the lifting device may be continued without requiring the operator's gaze to be continuously directed towards the target.
If the operator directs the smart glasses towards a positioning point corresponding to the desired target, the locking of this positioning point may be implemented with a determined delay. The delay may be indicated by the smart glasses clearly distinguishably e.g. with a changing pattern or a countdown timer. The positioning point being locked may be indicated to the operator. The operator may be allowed to reject the target location being locked. The positioning point being locked may be rejected by directing the smart glasses elsewhere. Driving to the locked positioning point may be performed with a driving command control, such as a button. After stopping the use of the driving command control the operator may via the smart glasses lock the steering to a new positioning point and continue driving the lifting device towards the new locked positioning point.
In addition to, or instead of, using a delay, the positioning point may be locked with gesture control, voice control, or with a command from the control device.
When one task has been performed with the lifting device, the operator may be provided with an opportunity to take an image of the transferred load with the camera function of the smart glasses in order to assure quality. The image may be saved. The image may be stored in a customer system. The image may be stored in another system, such as the lifting device system.
The space surrounding the lifting device may be provided with a dense mesh, wherein the target intended by the operator may be freely selected from the set of positioning points in the mesh and the lifting device commanded to drive from one positioning point to another.
The smart glasses may be equipped with a viewfinder, directing which towards a space surrounding the lifting device creates a new positioning point to which the lifting device may be driven.
The system may be arranged to have the ability to learn. The system may be arranged to suggest the next position based on previous historical data, when a certain load is lifted from a certain position. The system may be arranged to show with the smart glasses the suggested route/position.
According to a second aspect of the disclosed embodiments there is provided a control device for a lifting device comprising:
According to a third aspect of the disclosed embodiments there is provided a control unit of a lifting device comprising:
a processor;
a memory;
a control device channel for data transfer with a control device of the lifting device; and
program code stored in the memory to cause, when executed by the processor:
maintaining data of the position and speed of the loading member of the lifting device;
receiving from the control device channel an indication of the target selected by the operator; and
sending steering commands to the control device channel to steer the loading device to said target selected by the operator.
The program code may additionally be defined to cause the reception of data of the load being transferred, and to account for the size and/or weight of the load when steering the loading device to the target selected by the operator.
According to a fourth aspect of the disclosed embodiments there is provided a control device system comprising said control device and said smart glasses adapted to be capable of data transfer with each other.
According to a fifth aspect of the disclosed embodiments there is provided a lifting device, and arranged to control it a control device according to the second aspect of the disclosed embodiments or a control device system according to the third aspect of the disclosed embodiments.
The lifting device may be an electric overhead travelling crane.
According to a sixth aspect of the disclosed embodiments there is provided a system comprising a lifting device and a control device system according to any of the preceding aspects of the disclosed embodiments.
According to a seventh aspect of the disclosed embodiments there is provided a computer program comprising program code defined to cause the execution of any method according to the first aspect of the disclosed embodiments by the control device of the lifting device.
According to an eighth aspect of the disclosed embodiments there is provided a memory medium comprising the program code of the second, third or seventh aspect of the disclosed embodiments.
The different embodiments of the present disclosure are described or have been described only in one or in some of the aspects of the disclosed embodiments. A person skilled in the art understands that any embodiment of any aspect of the present disclosure may be applied in any embodiment of the same or a different aspect of the present disclosure, alone or together with other embodiments of the present disclosure.
The present disclosure is now described illustratively with reference to the accompanying drawings, in which:
In the following description, like reference signs denote like elements or steps. It should be noted that the figures presented are not to scale in their entirety, and that they mainly serve only an illustrative purpose.
The lifting device 110 comprises a hoist 111 which is laterally movable with a trolley 112 along the main girder 113. The main girder 113 rests from its ends on rails 114 along which the lifting device 110 is movable in the longitudinal direction. A loading device 116, such as the hook drawn in
The smart glasses 130 may be means of augmented reality containing a screen and possibly also a camera 131. The smart glasses may e.g. be Sony SmartEyeglass™ Epson Moverio BT-200™; Google Glass™, Vizix M100 Smart Glasses™, or GlassUp™. With the camera 131 data of each lifting event may be saved, and the data of the lift integrated to the stock management and quality management systems. Data recorded in the images may also be used in data collection for maintenance, e.g. in the extent in which parts and views of the lifting device itself are recorded. The data collection for maintenance may be joined to a fixed automation channel 420 with a wire or wirelessly.
detecting 210 with smart glasses used by an operator a target intended by the operator;
detecting 220 a driving command given by the operator 140; and
responsively to the detection of the driving command steering 230 a loading member of the lifting device, or a load, towards said target.
The steering of the loading member of the lifting device or a load, towards said target, may be continued until a determined time period has elapsed from the last time a driving command given by the operator was detected. The determined time period can at the maximum be: 10 milliseconds (ms), 20 ms, 50 ms, 200 ms, 500 ms or 1 s.
Based on the route of the load, swaying may be automatically controlled by taking into account the impulses causing swaying that originate from the route.
Data relating to the use of the lifting device may be presented with smart glasses to the operator during the use of the lifting device. The data relating to the use of a lifting device may comprise one or several of the following:
Said target intended by the operator may be selected using preset positioning signs corresponding to the positioning points which are imaged with the camera included in the smart glasses and detected automatically. The positioning signs may include a QR (quick response) code. At a detected positioning sign data relating to the particular positioning point may be shown, such as the name of the positioning point, the name of the shelf location, or data of the material located in the positioning point. The positioning sign may comprise a pattern formed on a pre-existing surface. The positioning sign may comprise a movable piece into which a pattern automatically detected by the camera of the smart glasses has been formed. The pattern may be printed. The printed pattern may be coated. The positioning sign may comprise a transparent sheet to protect the pattern. The positioning sign may be created e.g. by printing a QR code on a sticker and pasting to the wall or shelf or other structure of the storage location. The positioning point may be attached to a fixed or moving target, such as a piece being moved in an automated warehouse. The operation of the system is facilitated if movements of the moving target are implemented automatically. The positioning point may also be indicated to the operator with the smart glasses without a visible positioning sign, e.g. with a infra-red sign or signs or with 3D tracking or with coordinate data.
Product information and balance, which are received from a system of customer, may be shown from the shelf locations. The operator may be provided with a task list through the smart glasses e.g. for collecting products in a warehouse.
The operator may be provided with assistive data, such as route directions as a map, a distance and a direction, a route drawn into a space, highlighting of the target location (e.g. frames highlighted with glow around the target).
The steering of the lifting device may be continued without requiring the operator's gaze to be continuously directed towards the target. This way the operator may perform controlling of the lifting device by giving, continuously or repeatedly with a sufficient frequency, a driving command e.g. by pushing continuously or with a sufficient frequency a button, and the operator may safely with his gaze follow the movement of the lifting device or load. In an embodiment of the present disclosure, a simple repeat run is done e.g. by saving 2, 3, or 4 positioning points and simply driving the lifting device from one point to another with one accepting command, if the work order comprises repetitive driving between two or more positioning points. At each point, attaching and/or detaching of the load may be performed e.g. manually. The desired positioning points may for this purpose first be selected with the smart glasses. The work cycle of the repeat run may be exited with a separate stop command of the repeat run. A button may be provided to start and/or stop the repeat run. In one embodiment of the invention, the starting of a repeat run may be indicated e.g. by selecting the same target twice in a row during a determined time period.
If the operator directs the smart glasses to a positioning point corresponding to the target intended by the operator, the locking of the particular positioning point may be implemented with a determined delay (or in another way, such as with gesture or voice control or with a command from the control device). The delay may be indicated by the smart glasses clearly distinguishably e.g. by using a moving or visually changing indicator showing the elapsing of the delay. The driving command control of the control device 117, such as a button, may be employed to drive to the locked positioning point. After stopping the use of the driving command control, the operator may lock through the smart glasses the steering to a new positioning point and continue to drive the lifting device towards the new locked positioning point.
When a task given by the system has been performed, the operator may be provided with an opportunity to take an image of the transferred load with the camera function of the smart glasses in order to assure quality. The image can be stored e.g. in a customer system.
A dense mesh may be provided in a space, wherein the operator can freely select the positioning point corresponding to the target intended by the operator from the set of positioning points of the mesh, and to command the lifting device to drive from one positioning point to another, by making the mesh denser a precise positioning is achieved.
The smart glasses can be equipped with a viewfinder, directing which towards a space creates a new positioning point to which the lifting device can be driven. The aim of the view finder can be shown to the operator and to other persons e.g. with a laser sight attached to the smart glasses which forms a visible sign on the positioning point, such as a point or cross.
Signposts assisting the operator, such as (starting of the lifting device), manuals (beginners guide), orientation functionalities (training mode in which the lifting device is only ran virtually for learning purposes), can be presented with the glasses.
a processor 310;
a memory 320; and
program code 321, stored in the memory, to control the operation of the control device when executed by the processor 310, to cause:
detecting 210 with the smart glasses 130 used by the operator 140 a target intended by the operator;
detecting 220 a driving command given by the operator 140; and
responsively to the detection of the driving command steering 230 the loading member 116 of the lifting device or the load 150 towards said target.
The control device comprises further a data transfer unit I/O 330 to transfer data with the control device 117 and the lifting device 110 or with the loading member 116 of the lifting device, and to transfer data between the control device 117 and the smart glasses 130, a user interface 340 comprising presentation means 341, such as e.g. a screen and/or indicator lights, and input means 342, such as e.g. one or several buttons, touch detection on the screen or on other parts, or keys or a keyboard.
The program code can be installed to the control device 117 from the memory device. The memory device may e.g. be a USB stick or a CD-ROM or a DVD disk. Optionally, the program code can be downloaded from an information network, such as the Internet.
The foregoing description provides non-limiting examples of some embodiments of the present disclosure. It is however clear to a person skilled in the art that the present disclosure is not limited by the details of the embodiments presented in the foregoing, but that the present disclosure can be implemented in other equivalent ways. E.g. the control device can be integrated with the smart glasses, or some parts described as one part can be implemented using several parts (such as several processors or memories instead of one), or parts described separately can be implemented as parts with several functions.
Some of the features of the afore-disclosed embodiments of this present disclosure may be used to advantage without the corresponding use of other features. As such, the foregoing description shall be considered as merely illustrative of the principles of the present disclosure, and not in limitation thereof. The scope of the present disclosure is only restricted by the appended patent claims.
Tarkiainen, Johannes, Rantala, Kimmo
Patent | Priority | Assignee | Title |
10913638, | Aug 31 2017 | RUENTEX ENGINEERING & CONSTRUCTON, CO , LTD ; RUENTEX ENGINEERING & CONSTRUCTION CO , LTD | Device for fixing gantry crane rails in factory buildings and gantry crane system using the same |
11198391, | Jul 13 2018 | EPSILON Kran GmbH | Crane control comprising a visualisation apparatus |
11554939, | Sep 26 2017 | Palfinger AG | Loading crane controller with user worn remote control input and dispaly device |
11897734, | Apr 12 2021 | STRUCTURAL SERVICES, INC | Systems and methods for guiding a crane operator |
Patent | Priority | Assignee | Title |
4546443, | Sep 30 1981 | Kabushiki Kaisha Sankyo Seiki Seisakusho | Operation control apparatus for industrial robot |
6474922, | May 10 2000 | Del Mar Avionics | Remote operation auxiliary hoist control and precision load positioner |
7185774, | May 08 2002 | Northwestern University | Methods and apparatus for manipulation of heavy payloads with intelligent assist devices |
20030043268, | |||
20030076293, | |||
20040101192, | |||
20050007553, | |||
20110066335, | |||
20110121068, | |||
20120194553, | |||
20140118250, | |||
20140184643, | |||
20150168727, | |||
20150212576, | |||
20150227222, | |||
20150329333, | |||
20160052755, | |||
20160379051, | |||
20170283223, | |||
20170343308, | |||
20180141751, | |||
20180282131, | |||
CN102906623, | |||
CN2138306, | |||
DE102009002677, | |||
EP913790, | |||
JP2008143701, | |||
JP6293495, | |||
JP9194186, | |||
WO2007097738, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 19 2016 | Konecranes Global Oy | (assignment on the face of the patent) | / | |||
Feb 28 2018 | RANTALA, KIMMO | Konecranes Global Oy | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045752 | /0373 | |
Feb 28 2018 | TARKIAINEN, JOHANNES | Konecranes Global Oy | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045752 | /0373 |
Date | Maintenance Fee Events |
Feb 20 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
May 30 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 03 2022 | 4 years fee payment window open |
Jun 03 2023 | 6 months grace period start (w surcharge) |
Dec 03 2023 | patent expiry (for year 4) |
Dec 03 2025 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 03 2026 | 8 years fee payment window open |
Jun 03 2027 | 6 months grace period start (w surcharge) |
Dec 03 2027 | patent expiry (for year 8) |
Dec 03 2029 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 03 2030 | 12 years fee payment window open |
Jun 03 2031 | 6 months grace period start (w surcharge) |
Dec 03 2031 | patent expiry (for year 12) |
Dec 03 2033 | 2 years to revive unintentionally abandoned end. (for year 12) |