A method of making a flexible device comprises providing a rigid substrate and a flexible substrate, disposing a layer of print adhesive on the rigid substrate, and micro-transfer printing micro-devices onto the print adhesive. Each of the micro-devices comprises a micro-device substrate separate, independent, and distinct from the rigid substrate and from the flexible substrate. A bonding layer is provided to bond the flexible substrate to the micro-devices such that (i) the bonding layer is disposed between the flexible substrate and the micro-devices and (ii) the micro-devices are disposed between the rigid substrate and the flexible substrate (e.g., forming a device structure). The flexible substrate is separated from the rigid substrate so that the micro-devices remain bonded to the flexible substrate providing a flexible device. The micro-devices can comprise at least a portion of a micro-device tether.
|
1. A method of making a flexible device, comprising:
providing a rigid substrate and a flexible substrate;
disposing a layer of print adhesive on the rigid substrate;
transfer printing micro-devices onto the print adhesive, wherein each of the micro-devices comprises a micro-device substrate separate, independent, and distinct from the rigid substrate and from the flexible substrate;
providing a bonding layer;
bonding the flexible substrate to the micro-devices with the bonding layer such that (i) the bonding layer is disposed between the flexible substrate and the micro-devices and (ii) the micro-devices are disposed between the rigid substrate and the flexible substrate; and
separating the flexible substrate from the rigid substrate so that the micro-devices remain bonded to the flexible substrate,
wherein separating the flexible substrate from the rigid substrate comprises exposing the print adhesive to electromagnetic radiation and dissociating the rigid substrate from the micro-devices, from the bonding layer, and from the bonded flexible substrate.
21. A method of making a flexible device, comprising:
providing a rigid substrate and a flexible substrate;
disposing a layer of print adhesive on the rigid substrate;
transfer printing micro-devices onto the print adhesive, wherein each of the micro-devices comprises a micro-device substrate separate, independent, and distinct from the rigid substrate and from the flexible substrate;
providing a bonding layer;
bonding the flexible substrate to the micro-devices with the bonding layer such that (i) the bonding layer is disposed between the flexible substrate and the micro-devices and (ii) the micro-devices are disposed between the rigid substrate and the flexible substrate; and
separating the flexible substrate from the rigid substrate so that the micro-devices remain bonded to the flexible substrate,
wherein each of the micro-devices comprises two or more micro-elements disposed on the micro-device substrate and each of the one or more micro-elements comprises a micro-element substrate separate, independent, and distinct from the rigid substrate, from the flexible substrate, from the micro-device substrate, and from any other micro-element substrate.
2. The method of
3. The method of
4. The method of
5. The method of
wherein, prior to the micro-transfer printing, each of the micro-devices is physically connected to the native micro-device source wafer by the at least one micro-device tether.
6. The method of
7. The method of
8. The method of
9. The method of
wherein, prior to the micro-transfer printing, each of the one or more micro-elements is physically connected to the native micro-element source wafer by the at least one micro-element tether.
10. The method of
wherein, prior to the micro-transfer printing, each micro-device is physically connected to a native micro-device source wafer with the at least one micro-device tether.
11. The method of
12. The method of
wherein, prior to the micro-transfer printing the micro-controller is physically connected to a native micro-controller source wafer with the at least one micro-controller tether and the micro-controller comprises a micro-controller substrate separate, independent, and distinct from the rigid substrate, from the flexible substrate, from the micro-device substrate, from any micro-iLED substrate, and from any other micro-controller substrate.
13. The method of
15. The method of
16. The method of
17. The method of
18. The method of
19. The method of
|
The present invention relates generally to structures and methods for flexible devices, such as displays, constructed using transfer printing (e.g., micro-transfer printing).
Electronic and optical systems typically include a variety of electronic or optical components assembled on a substrate. For example, integrated circuits, resistors, capacitors, discrete transistors, inductors, voltage regulators, and electrical connectors are often mounted together on printed-circuit boards. As electronic and optical systems become smaller and more highly integrated, ever-smaller components must be assembled on substrates. For example, surface-mount components as small as 400 microns in length can be assembled on circuit boards using pick-and-place equipment.
Electronic and optical components are usually constructed on wafers using photolithographic methods and materials. Different wafer materials are well-suited for different device types, for example silicon wafers are used to make digital integrated circuits and sapphire or SiC substrates are commonly used with light-emitting diodes. Individual components can be removed from their native substrate, for example by dicing the wafer, packaging the components, and assembling the packaged components on a printed circuit board. However, such components and methods are most useful with relatively large electrical devices, for example greater than 200 microns, 500 microns, or 1 mm in a dimension.
Alternatively, devices such as light-emitting diodes (LEDs) are removed from their native substrate by laser lift off, for example as described in Large-area laser-lift-off processing in microelectronics, by Delmdahl et al. in Physics Procedia 41 (2013) pp. 241-248. This work describes UV laser lift-off delamination using 248 nm excimer laser sources to remove GaN LEDs from sapphire substrates. These devices must still be placed after lift-off.
Flexible electronic systems typically include a variety of electrical devices, either rigid or flexible, disposed on a flexible substrate. The flexible substrates can be very thin, for example less than 200 microns thick. Since equipment used in fabrication, for example photolithographic processing equipment, often relies on flat, rigid substrates in their manufacturing processes, one approach to making flexible electronic equipment relies on temporarily adhering a flexible substrate to a rigid substrate carrier, for example as also described in Delmdahl et al. in
In another approach to making flexible electronic devices, a flexible substrate is adhered directly to a native semiconductor wafer comprising the electrical devices, for example as described in Delmdahl et al. in
Small micro-devices having dimensions less than 100 microns, for example, can be assembled using micro-transfer printing techniques. For example, U.S. Pat. No. 8,722,458 describes transferring light-emitting, light-sensing, or light-collecting semiconductor elements from a wafer substrate to a destination substrate using a patterned elastomer stamp whose spatial pattern matches the location of the semiconductor elements on the wafer substrate. Small integrated circuit chips or chiplets are typically formed on a native silicon substrate using photolithographic processes. The silicon substrate facilitates the formation of anchors on the wafer and tethers between the wafer and the chiplet that are broken or separated during an exemplary micro-transfer printing process.
Micro-transfer printing can be used with a wide variety of component types in a wide variety of electronic and optical system, including processors, sensors, and energy emitters such as light-emitting diodes (LEDs). For example, CMOS devices are typically formed in silicon wafers, high-power transistors are often made using compound semiconductors such as gallium arsenide, and light-emitting devices such as light-emitting diodes are constructed in doped compound semiconductors such as gallium nitride, gallium phosphide, or gallium arsenide. These various components require a corresponding variety of materials and processing methods for making micro-transfer printable devices that can be directly micro-transfer printed from a native source substrate or wafer to a destination substrate. Devices that are not directly micro-transfer printed from a native wafer can be alternatively bonded to a handle wafer (for example as taught in U.S. Pat. No. 8,934,259) or transferred using two stamp transfer steps (for example as taught in U.S. Pat. No. 8,889,485).
There is a need, therefore, for methods and materials for constructing flexible electronic devices comprising a variety of different small electrical or opto-electronic devices at a high resolution and with improved accuracy.
According to some embodiments of the present invention, a method of making a flexible device comprises providing a rigid substrate and a flexible substrate, disposing a layer of print adhesive on the rigid substrate, micro-transfer printing micro-devices onto the print adhesive, wherein each of the micro-devices comprises a micro-device substrate separate, independent, and distinct from the rigid substrate and from the flexible substrate, providing a bonding layer, bonding the flexible substrate to the micro-devices with the bonding layer such that (i) the bonding layer is disposed between the flexible substrate and the micro-devices and (ii) the micro-devices are disposed between the rigid substrate and the flexible substrate, and separating the flexible substrate from the rigid substrate so that the micro-devices remain bonded to the flexible substrate.
In some embodiments, separating the flexible substrate from the rigid substrate comprises exposing the print adhesive to electromagnetic radiation and dissociating the rigid substrate from the micro-devices, bonding layer, and from the bonded flexible substrate.
In some embodiments, the rigid substrate is glass, quartz, sapphire, or a semiconductor, the flexible substrate is plastic, or the rigid substrate is glass, quartz, sapphire, or a semiconductor and the flexible substrate is plastic.
In some embodiments, the micro-devices comprise a first micro-device comprising one or more first material(s) and a second micro-device comprising one or more second material(s) that are different from the one or more first material(s).
In some embodiments, each of the micro-devices comprises at least a portion of a micro-device tether.
In some embodiments, the method comprises micro-transfer printing each micro-device from a native micro-device source wafer to the print adhesive disposed on the rigid substrate, thereby breaking (e.g., fracturing), or separating at least one micro-device tether, wherein, prior to the micro-transfer printing, each of the micro-devices is physically connected to the native micro-device source wafer by the at least one micro-device tether.
In some embodiments, each of the micro-devices is an inorganic micro-light-emitting diode (micro-iLED) and the micro-device substrate is a micro-iLED substrate separate, independent, and distinct from the rigid substrate, from the flexible substrate, and from any other micro-iLED substrate.
In some embodiments, each of the micro-devices comprises one or more micro-elements disposed on the micro-device substrate and each of the one or more micro-elements comprises a micro-element substrate separate, independent, and distinct from the rigid substrate, from the flexible substrate, from the micro-device substrate, and from any other micro-element substrate.
In some embodiments, each micro-element of the one or more micro-elements comprises at least a portion of a micro-element tether.
In some embodiments, the method comprises micro-transfer printing each of the one or more micro-elements from a native micro-element source wafer to the micro-device substrate, thereby breaking or separating at least one micro-element tether, wherein, prior to the micro-transfer printing, each of the one or more micro-elements is physically connected to the native micro-element source wafer by the at least one micro-element tether.
In some embodiments, each micro-device is physically connected to a native micro-device source wafer with at least one micro-device tether, and the method comprises micro-transfer printing each micro-device from the native micro-device source wafer to the print adhesive, thereby breaking or separating the at least one micro-device tether.
In some embodiments, the micro-devices are pixels and one or more of the one or more micro-elements are inorganic micro-light-emitting diodes (micro-iLEDs), and for each of the one or more micro-elements that is an inorganic micro-iLED, the micro-element substrate is a micro-iLED substrate separate, independent, and distinct from the rigid substrate, from the flexible substrate, from the pixel substrate, and from any other micro-iLED substrate.
In some embodiments, each of the micro-devices comprises a micro-controller and the method comprises micro-transfer printing the micro-controller from a native micro-controller source wafer to the micro-device substrate of the micro-device, thereby breaking at least one micro-controller tether or separating at least one micro-controller tether, wherein, prior to the micro-transfer printing the micro-controller is physically connected to a native micro-controller source wafer with the at least one micro-controller tether and the micro-controller comprises a micro-controller substrate separate, independent, and distinct from the rigid substrate, from the flexible substrate, from the micro-device substrate, from any micro-iLED substrate, and from any other micro-controller substrate.
In some embodiments of the present invention, the one or more micro-elements comprises a first micro-element comprising one or more first material(s) and a second micro-element comprising one or more second material(s) that are different from the one or more first material(s).
In some embodiments, the method comprises disposing electrical conductors on the flexible substrate.
In some embodiments of the present invention, each of the micro-devices comprises one or more connection posts electrically connected to a micro-device circuit and the method comprises electrically connecting each connection post to an electrical conductor by micro-transfer printing and bonding the micro-devices to the flexible substrate.
In some embodiments, the micro-devices each comprise electrical contacts electrically connected to the micro-device circuits and the method comprises electrically connecting the electrical contacts of each of the micro-devices to the electrical conductors on the flexible substrate.
In some embodiments, the method comprises forming vias through the bonding layer and forming at least one electrical connection through the vias.
In some embodiments, the micro-devices each comprise micro-device contact pads and the method comprises disposing electrical conductors on the bonding layer and electrically connecting the electrical conductors to the micro-device contact pads.
In some embodiments, a device structure comprises a rigid substrate, a layer of print adhesive disposed on the rigid substrate, micro-devices disposed on or in the print adhesive, wherein each micro-device comprises a micro-device substrate separate, independent, and distinct from the rigid substrate and at least a portion of a micro-device tether, a bonding layer, and a flexible substrate bonded to the micro-devices, wherein (i) the bonding layer is disposed between the flexible substrate and the micro-devices and (ii) the micro-devices are disposed between the rigid substrate and the flexible substrate, and (iii) the micro-device substrate of each of the micro-devices is separate, independent, and distinct from the flexible substrate.
In some embodiments, one or more micro-elements are disposed on the micro-device substrate of each of the micro-devices. Each of the one or more micro-elements comprises a micro-element substrate separate, independent, and distinct from the rigid substrate, from the flexible substrate, from the micro-device substrate, and from any other micro-element substrate, wherein the one or more micro-elements each comprise at least a portion of a micro-element tether.
In some embodiments of the present invention, a flexible device comprises a flexible substrate, a bonding layer, micro-devices bonded to the flexible substrate with the bonding layer, wherein each micro-device comprises a micro-device substrate separate, independent, and distinct from the flexible substrate and comprises at least a portion of a micro-device tether. The micro-devices are exposed to the environment.
Embodiments of the present invention provide flexible devices and structures that are more suitable for micro-transfer printing, have improved location precision for micro-devices, a wider variety of micro-device structures, materials, and functions, and a wider variety of flexible device materials.
The foregoing and other objects, aspects, features, and advantages of the present disclosure will become more apparent and better understood by referring to the following description taken in conjunction with the accompanying drawings, in which:
The features and advantages of the present disclosure will become more apparent from the detailed description set forth below when taken in conjunction with the drawings, in which like reference characters identify corresponding elements throughout. In the drawings, like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements. The figures are not drawn to scale since the variation in size of various elements in the Figures is too great to permit depiction to scale.
The present invention provides, inter alia, structures, materials, and methods for constructing flexible devices with increased resolution and accuracy and comprising a wider variety of materials, devices, and structures. The flexible devices can comprise micro-devices, such as micro-devices that are transferred from a source substrate or native source wafer using transfer printing, for example micro-transfer printing. The micro-devices can be relatively rigid compared to the relatively flexible device and can themselves comprise one or more transfer printed micro-elements. The micro-devices and micro-elements can comprise different micro-devices and micro-elements having a variety of materials and functions.
According to some embodiments of the present invention, and as illustrated in the flow diagram of
A layer of print adhesive 12 is disposed on a rigid substrate 10 in step 130 as shown in
In step 120, a micro-device source wafer or substrate 21 comprising a plurality of micro-devices 20 (one of which is shown on a micro-device source wafer 21 in
In step 110 and as shown in
A bonding layer 14 is provided and disposed between a flexible substrate 30 and micro-devices 20 in step 140 of
Thus, according to some embodiments of the present invention, a flexible device 99 comprises a flexible substrate 30, a bonding layer 14, and micro-devices 20 bonded to flexible substrate 30 with bonding layer 14 (as shown in
A bonding layer 14 can be any suitable adhesive, for example a curable (e.g., by heat or radiation) or a non-curable adhesive and can be coated by spin coating, slot coating, syringe coating, lamination or other suitable coating methods. A suitable coating method can depend, for example, on surface characteristics of flexible substrate 30 or micro-devices 20. In some embodiments, a suitable bonding layer 14 comprises Permabond UV360. Adhesion of a flexible substrate 30 to micro-devices 20 and print adhesive 12 with a bonding layer 14 can proceed from a point or line at a central location on a surface of flexible substrate 30 or array of micro-devices 20 and proceed to an edge of flexible substrate 30 or array of micro-devices 20, for example by rolling over the surface of the flexible substrate 30 with a roller from the central location to the edge, to eliminate bubbles in the bonding layer 14. Ensuring that bubbles are removed from a bonding layer 14 can assist further processing steps on a surface of bonding layer 14 as discussed in more detail below. A bonding layer 14 can be an organic adhesive or an inorganic adhesive and can be relatively thin compared to the thickness of a rigid substrate 10 or a flexible substrate 30 and can be at least as thick as any of micro-devices 20.
As shown in
Referring again to
According to some embodiments of the present invention, micro-devices 20 can be a single structure or element comprising a single material or single set of materials. In some embodiments, a plurality of micro-devices 20 comprises a variety of different materials and the different micro-devices 20 can, for example, have any combination of different structures, sizes, and functions. Thus, in some embodiments, a first micro-device 20 comprises one or more first material(s) and a second micro-device 20 comprises one or more second material(s) that are different from the one or more first material(s).
According to some embodiments of the present invention, micro-devices 20 each comprise a single device, structure, or integrated circuit. In some embodiments, however, and referring to the flow diagram of
In some embodiments of the present invention, micro-elements 24 can be different each other within a single micro-device 20 and each micro-element 24 is sourced from a different micro-element source wafer. For example, as shown in
Referring to
As shown in
Methods and structures according to some embodiments of the present invention provide or are a display or display system. In some embodiments, micro-devices 20 are pixels, a micro-device substrate 22 is a pixel substrate, and one or more of the one or more micro-elements 24 are inorganic micro-light-emitting diodes (micro-iLEDs). Each inorganic micro-iLED can comprise a micro-iLED substrate separate, independent, and distinct from rigid substrate 10, from flexible substrate 30, from a pixel substrate (micro-device substrate 22), and from any other micro-iLED substrate. Each pixel (micro-device 20) can comprise a micro-controller 24C comprising a micro-controller substrate separate, independent, and distinct from rigid substrate 10, from flexible substrate 30, from micro-device substrate 22, from any micro-iLED substrate, and from any other micro-controller substrate (micro-element substrate). A micro-controller 24C is a micro-element 24. Each micro-controller 24C can be micro-transfer printed from a native micro-controller source wafer (micro-element source wafer) to a micro-device substrate 22, for example, thereby breaking at least one micro-controller tether (micro-element tether 26) or separating at least one micro-controller tether (micro-element tether 26) from the native micro-element source wafer to which the micro-controller was physically connected prior to printing. Thus, a micro-device 20 that is a pixel can comprise multiple, different micro-transfer printed micro-elements 24 electrically connected with micro-device wires 58 on a micro-device substrate 22.
In some embodiments, micro-devices 20 or micro-elements 24 are micro-light-emitting diodes (micro-LEDs) or photo-sensors, for example having light-emissive or light-sensitive areas of less than 10, 20, 50, or 100 square microns. In some embodiments, micro-elements 24 such as micro-LEDs have physical dimensions that are less than 200 μm, less than 150 μm, or less than 100 μm, for example having at least one of a width from 2 to no more than 5 μm, 5 to no more than 10 μm, 10 to no more than 20 μm, or 20 to no more than 50 μm, a length from 2 to no more than 5 μm, 5 to no more than 10 μm, 10 to no more than 20 μm, or 20 to no more than 50 μm, and a height from 2 to no more than 5 μm, 5 to no more than 10 μm, 10 to no more than 20 μm, or 20 to no more than 50 μm. In some embodiments, micro-elements 24 can have a lateral size of one square micron to 500 square microns. Micro-iLED micro-elements 24 have the advantage of a small light-emissive or light-sensitive area compared to their brightness or sensitivity. Moreover, inorganic micro-light-emitting diodes can provide excellent color purity, highly saturated colors, and a substantially Lambertian emission providing a wide viewing angle.
In some embodiments in which micro-devices 20 or micro-elements 24 are light emitters such as light-emitting diodes, the light-emitting diodes can emit light through flexible substrate 30 or in a direction opposite from flexible substrate 30. In some embodiments, light emitters emit light (e.g., a portion or substantially all of light that is emitted) in a direction opposite from flexible substrate 30, which is then reflected back through the flexible substrate 30. In some embodiments, light-emitting diodes can emit light through a micro-device substrate 22 or in a direction opposite from a micro-device substrate 22.
Referring to the cross section of
A carrier substrate 80 can be adhered (step 310) to flexible substrate 30 at a variety of different times according to various embodiments of the present invention. In some embodiments, a carrier substrate 80 is temporarily adhered to a flexible substrate 30 in step 310 before the flexible substrate 30 is bonded to micro-devices 20 in step 160. In some embodiments, a carrier substrate 80 is temporarily adhered to a flexible substrate 30 in step 310 before a rigid substrate 10 is separated from micro-devices 20 and flexible substrate 30 in step 170. In some embodiments, a carrier substrate 80 is temporarily adhered to a flexible substrate 30 in step 310 before print adhesive 12 is exposed to electromagnetic radiation 40 from a laser in step 175 or rigid substrate 10 is separated from micro-devices 20 and flexible substrate 30 in step 177. In some embodiments, a carrier substrate 80 is temporarily adhered to a flexible substrate 30 in step 310 after a rigid substrate 10 is separated in step 170 and before any subsequent processing in step 190, for example to form electrical connections on the back side 23. In some embodiments, a carrier substrate 80 is temporarily adhered to a flexible substrate 30 in step 310 after remaining print adhesive 12 is removed in step 180 and before any subsequent processing in step 190, for example to form electrical connections on the back side 23.
Just as a carrier substrate 80 can be temporarily adhered to flexible substrate 30 at various times, the carrier substrate 80 can be separated from a flexible substrate 30 at various times. Referring to
Micro-devices 20 in a flexible device 99 can be electrically connected using a variety methods and in a variety of structures. In some embodiments, as shown in the cross section of
Referring to the flow diagram of
The methods of
Patterned electrical conductors 50 can be formed at a lower, coarser resolution than a relatively higher resolution of wires (e.g., fine interconnections) provided in micro-devices 20 (e.g., micro-device wires 58 (shown in
In some embodiments of the present invention, and as illustrated in the cross sections of
A semiconductor device 27 can be an integrated circuit formed in, on, or disposed on micro-device substrate 22. In some embodiments, a micro-device 20 comprises multiple semiconductor devices 27 (e.g., micro-elements 24), electrodes 410 extend onto micro-device substrate 22, and connection posts 430 extend from electrodes 410 on micro-device substrate 22. Patterned dielectric structures 400 can comprise silicon dioxide and electrodes 410 can comprise a metal. Light shield 470 can protect micro-devices 20 from exposure to electromagnetic radiation 40, for example from a laser in step 175 (as shown in
In some embodiments of the present invention and as illustrated in
Certain embodiments of the present invention provide advantages over methods and structures of the prior art. For example, in a prior-art method, a flexible substrate is temporarily adhered to a rigid carrier to provide a rigid structure suitable for some manufacturing processes, and then separated from the rigid carrier after processing to provide a flexible structure. However, many manufacturing processes are incompatible with flexible substrate materials, for example process temperatures over 120 degrees C. can be problematic for some plastic materials. Furthermore, a surface of a flexible substrate can have characteristics that are less suitable for some manufacturing processes than a surface of a rigid substrate. For example, the coefficient of thermal expansion (CTE) of rigid materials tends to be much smaller than the CTE of flexible materials. For example, the CTE of fused quartz is 0.55 (×10E-6/K) over a range of 20-1000 degrees C. and the CTE of polyethylene terephthalate (PET) is 59.4 (×10E-6/K) so that high-resolution process alignment and precision (for example, within one or two microns) at different temperatures can be difficult to achieve because of the different thermal expansion rates of the different materials. Thus, in certain embodiments, micro-transfer printing on or over a surface of a rigid glass, sapphire, or quartz substrate can provide higher accuracy disposition of micro-devices 20 than micro-transfer printing directly on or over a surface of a plastic material such as PEN or PET.
Other prior-art methods use a flexible carrier substrate adhered to a native wafer having micro-devices, such as a semiconductor wafer, and then the native wafer substrate is removed, for example by grinding or etching, leaving the micro-devices adhered to the flexible carrier substrate. However, this prior-art method limits the micro-devices to those formed and arranged on a single native wafer. In many applications, a greater variety of micro-devices arranged in patterns different from micro-device patterns found on a native source wafer are desired. For example, it can be useful to arrange micro-devices 20 on a flexible substrate 30 with a spacing much greater than the spacing of micro-devices on a native source wafer (e.g., micro-devices 20 on a micro-device source wafer 21 as shown in
Thus, certain embodiments of the present invention, in which a flexible substrate 30 is applied after at least some process steps are completed or micro-devices 20 disposed, can enable a greater variety of materials, especially flexible substrate materials, a greater variety of micro-devices 20, greater precision in the final disposition of micro-devices 20, and fewer limitations on the arrangement of micro-devices 20 on a flexible substrate 30 (or a combination thereof). Furthermore, because micro-devices 20 can be very small, for example having at least one of a length and a width less than 200 microns, 100 microns, 50 microns, 20 microns, 10 microns, five microns, two microns, or one micron, and are spaced apart on a flexible substrate 30, even if the micro-devices 20 are relatively rigid compared to the flexible substrate 30, a flexible device 99 is still relatively flexible since the great majority of the flexible substrate 30 is between rigid micro-devices 20 and maintains its flexibility even when micro-devices 20 are disposed on the flexible substrate 30. Relatively rigid and small micro-devices 20 incorporating integrated circuits enable the use of mono-crystalline semiconductor materials, such as silicon or various compound semiconductors, in the micro-devices 20 for a flexible device 99. Such crystalline integrated circuits have an electron mobility that is orders of magnitude greater than flexible semiconductor materials, such as polythiophene. Thus, certain embodiments of the present invention provide flexible devices 99 that have greater performance, particularly for integrated circuits.
Certain embodiments of the present invention also enable back-side processing of micro-devices 20. Once rigid substrate 10 and any undesired remaining print adhesive 12 are removed, a back side 23 of the micro-devices 20 is exposed to the environment and can be processed, for example using photolithographic processes and materials compatible with the flexible substrate 30 to form active or passive structures, such as electrical conductors electrically connected to or integrated with micro-devices 20.
Methods according to some embodiments of the present invention are useful for constructing flexible devices 99 and device structures, for example flexible display devices. One or more steps of some such methods a device structure 98 (e.g., as shown in
Micro-devices 20 can comprise but are not limited to any combination of electronic, optical, or opto-electronic devices, such as integrated circuits, CMOS circuits, bipolar circuits, sensors, photo-sensors, photo-transistors, piezo devices, optical filters, energy emitters such as electromagnetic radiation emitters, light emitters, or light-emitting diodes. Micro-devices 20 can comprise not only a micro-device substrate 22 material, but also other materials, for example materials in one or more emitting or sensing layers, micro-device contact pads 420 comprising metal, a patterned dielectric structure 400 comprising silicon dioxide, and electrodes 410 comprising a metal. Materials can include, for example, semiconductor materials, compound semiconductor materials, dielectrics, conductors, metals, transparent conductive oxides, silicon dioxide, or silicon nitride, and can include light-absorbing additives such as dyes or pigments or light-emitting additives (e.g., color conversion additives) such as phosphors or quantum dots. Materials can be crystalline, polycrystalline, or amorphous.
Referring to
In an optional step, a dissociated interface is etched to remove disturbed or decomposed detritus from the interface. In various embodiments of the present invention, the etching is any one or more of liquid etching, gas etching, plasma etching, or inductively coupled plasma etching. The etchant can be a gas, liquid, or plasma. The etchant can be or comprise any one or more of HCl, Cl2, BCl3, H2O2, XeF2, TMAH (trimethylammonium hydroxide), and oxygen plasma, individually, sequentially, or in any combination.
In certain embodiments, micro-transfer printable micro-elements 24 or micro-devices 20 are provided on a micro-transfer-printable device source wafer. In a method according to some embodiments of the present invention, a stamp is pressed against a micro-device 20 or micro-element 24 to adhere the micro-device 20 or micro-element 24 to the stamp. The stamp can be planar or cylindrical, for example in a roll-to-roll-type process configuration. The stamp is then removed from the micro-transfer-printable device source wafer with micro-devices 20 or micro-elements 24 and transported to a destination substrate such as print adhesive 12 and rigid substrate 10. The removal of micro-devices 20 or micro-elements 24 from the source substrate separates micro-devices 20 or micro-elements 24 from anchors 60. Where the micro-devices 20 or micro-elements 24 are physically connected to anchors 60 with micro-device tethers 28 or micro-element tethers 26, the micro-device or micro-element tethers 28, 26 are broken (e.g., fractured) or separated to release the micro-devices 20 or micro-elements 24 from the source substrate. Micro-devices 20 or micro-elements 24 are then pressed against and adhered to the destination substrate with the stamp and the stamp is removed to micro-transfer print the micro-devices 20 or micro-elements 24 from the source substrate to the destination substrate.
In certain embodiments of micro-transfer printing, micro-structured stamps (e.g., elastomeric, electrostatic stamps, or hybrid elastomeric/electrostatic stamps) can be used to pick up micro-devices 20 or micro-elements 24, transport micro-devices 20 or micro-elements 24 to a destination substrate such as print adhesive 12 on a rigid substrate 10, and print micro-devices 20 or micro-elements 24 onto the destination substrate. In some embodiments, surface adhesion forces are used to control the selection and printing of these micro-devices 20 or micro-elements 24 onto the destination substrate. This process may be performed massively in parallel. A stamp may be designed to transfer a single micro-device 20 or micro-element 24 or hundreds to thousands of discrete structures in a single pick-up and print or roll printing operation. See U.S. Pat. Nos. 7,622,367, 8,722,458, and 8,506,867 for a discussion of micro-transfer printing generally, the disclosure from each of which is hereby incorporated by reference in its entirety. Moreover, these micro-transfer printing techniques may be used to print micro-devices 20 or micro-elements 24 at temperatures compatible with assembly on plastic polymer destination substrates. In addition, semiconductor materials may be printed onto large areas of substrates thereby enabling continuous, high speed printing of complex integrated electrical circuits over large substrate areas.
In some embodiments, at least one anchor 60 is disposed laterally adjacent to each micro-device 20 or micro-element 24. As shown, micro-devices 20 or micro-elements 24 can comprise tethers 28, 26. For example a micro-device substrate 22, micro-element substrate, or a patterned dielectric structure 400 can define a micro-device or micro-element tether 28, 26 that physically connects a micro-device 20 or micro-element 24 to an anchor 60.
In some embodiments of the present invention, at least one anchor 60 is disposed between a micro-device 20 or micro-element 24 and a source substrate, for example beneath micro-device 20 or micro-element 24. Disposing an anchor 60 beneath a micro-device 20 or micro-element 24 enables a higher density of micro-devices 20 or micro-elements 24 to be disposed on a micro-transfer-printable device source wafer, since anchors 60 do not occupy space on the wafer as when laterally disposed between micro-devices 20 or micro-elements 24.
In some embodiments of the present invention, micro-devices 20 or micro-elements 24 comprise one or more semiconductor layers formed on a micro-device substrate 22 or a micro-element substrate. Semiconductor layer(s) can include an n-doped semiconductor layer (also known as an n-type semiconductor layer). A p-doped semiconductor layer (also known as a p-type semiconductor layer) can be deposited on the n-doped semiconductor layer. In some embodiments of the present invention, the n- and p-doped semiconductor layers are compound semiconductor layers such as III-V or II-VI semiconductor layers (for example, GaN). Other semiconductors and compound semiconductors are contemplated in certain embodiments of the present invention. The p-doped semiconductor layer can be thinner than the n-doped semiconductor layer. Micro-devices 20 or micro-elements 24 can be or comprise light-emitting diodes.
N-doped and p-doped semiconductor layers or other device materials can be disposed on a micro-device substrate 22 or micro-element substrate, in some embodiments, by forming crystalline layers using molecular beam epitaxy (MBE), metal organic chemical vapor deposition (MOCVD) or other epitaxial, chemical vapor deposition, or atomic layer deposition techniques, for example. In some embodiments, n-doped and p-doped semiconductor layers are further processed to provide crystalline semiconductor layers. Other materials can be deposited by evaporation, sputtering, or coating, for example.
In some embodiments, n-doped and p-doped semiconductor layers are crystalline GaN. The GaN material can be doped, for example, with magnesium to form a p-type semiconductor layer or with silicon or oxygen to form an n-type semiconductor layer. The n-doped and p-doped semiconductor layers can be formed having sub-layers with different concentrations of different material, for example, to provide different sub-layers having different electrical properties. In some embodiments, semiconductor layers include a current-transport semiconductor layer doped to provide increased electrical conductivity or transparency and one or more other semiconductor layers are doped to provide light-emitting properties in response to an electrical current passing through the semiconductor crystal (e.g., n-doped and p-doped semiconductor layers).
Micro-device contact pads 420 can be electrically conductive, can be electrically connected to an electrode 410. Micro-device contact pads 420 or electrodes 410 can supply current to a micro-device 20 or semiconductor layers (or be used to extract current from a micro-device 20, e.g., if it is a photovoltaic micro-device). Micro-device contact pads 420 or electrodes 410 can be a single layer or can include multiple sub-layers. Micro-device contact pads 420 or electrodes 410 can be transparent, semi-transparent, or reflective and can include conductive materials such as metal oxides, indium tin oxide, aluminum zinc oxide, metals, silver, tin, aluminum, gold, titanium, tantalum, nickel, tin, platinum, palladium, or combinations or alloys thereof of these or other conductive materials. Micro-device contact pads 420 or electrodes 410 can include conductive polymers and can be formed using physical vapor deposition, annealing, or photolithographic processing.
At times, the present disclosure describes formation of a single micro-device 20 or micro-element 24. The same techniques and methods may be used to form arrays of these elements, devices, and/or structures such that multiple micro-devices 20 or micro-elements 24 may be micro transfer printed to a destination substrate (e.g., a layer of print adhesive 12 on a rigid substrate 10) from a single source wafer using a planar or rotary stamp. Thus, the present disclosure contemplates the formation and micro-transfer printing of arrays of micro-devices 20 or micro-elements 24 on a source substrate using the methods and techniques described herein (e.g., as described in relation to a single micro-device 20 or micro-element 24). When formation of a single structure is described herein, it is contemplated that the same steps may be performed to an array of structures at the same time, thereby enabling the formation of arrays of micro-devices 20 or micro-elements 24 for micro-transfer printing to a destination substrate. For example, micro-LEDs can be formed on their native substrate with a resolution of approximately 3000 micro-LEDs per square inch (e.g., 2500-3100 or 2900-3500 micro-LEDs per square inch). Micro-devices 20 or micro-elements 24 can have at least one of a length and width of no more than 5, no more than 10, no more than 15, no more than 20, no more than 30, no more than 50, no more than 100, no more than 250, or no more than 500 μm. In certain embodiments, micro-devices 20 and/or micro-elements 24 have a width from 1-8 μm, 8-16 μm, or 16-50 μm. In certain embodiments, micro-devices 20 and/or micro-elements 24 have a length from 5-10 μm, 10-20 μm, 20-50 μm, or 50-250 μm. In certain embodiments, micro-devices 20 and/or micro-elements 24 have a height (thickness or depth) from 0.5-3 μm, 3-10 μm, or 10-25 μm.
According to various embodiments, flexible devices 99, for example as used in a display or sensor array, include a variety of designs having a variety of resolutions, micro-device 20 sizes, and a range of flexible substrate 30 areas. For example, flexible substrate 30 areas ranging from 1 cm by 1 cm to 1 m by 1 m (or larger) in size are contemplated. In general, larger micro-devices 20 are most useful with, but are not limited to, larger flexible substrate 30 areas. The resolution of micro-devices 20 over a flexible substrate 30 can also vary, for example from 50 micro-devices 20 per inch to hundreds of micro-devices 20 per inch, or even thousands of micro-devices 20 per inch. For example, a three-color display can have one thousand 10 μm×10 μm micro-devices 20 per inch (on a 25-micron pitch). Thus, certain embodiments of the present invention have application in both low-resolution and very high-resolution displays or sensor arrays. Flexible devices 99 as disclosed herein have been successfully constructed.
In some embodiments, micro-devices 20 are separately formed in a semiconductor wafer. The micro-devices 20 are then removed from the wafer and transferred, for example using micro transfer printing, to a print adhesive 12 layer on a rigid substrate 10. Such a method has the advantage of enabling use of a crystalline semiconductor substrate that provides higher-performance integrated circuit components than can be made in the amorphous or polysilicon semiconductor available on a large substrate such as the flexible substrate 30. Furthermore, in certain embodiments, the relatively small size of micro-devices 20 compared to the relatively large size of a flexible substrate 30 enables flexibility in a flexible device 99, even when the micro-devices 20 themselves are relatively rigid compared to the flexible substrate 30. Moreover, micro-devices 20 comprising monocrystalline silicon have a much greater electronic or opto-electronic performance than flexible circuits made using relatively large printed organic electronic structures and materials.
In certain embodiments, by employing a multi-step transfer or assembly process, increased yields are achieved and thus production costs for flexible devices 99 or device structures 98 are reduced. Additional details useful in understanding and performing aspects of certain embodiments of the present invention are described in U.S. Pat. No. 9,520,537 filed Jun. 18, 2015, entitled Micro-Assembled Micro LED Displays and Lighting Elements.
In an exemplary method according to certain embodiments of the present invention, micro-elements 24 are formed and disposed on a micro-device substrate 22 and the micro-device 20 is subsequently disposed on a print adhesive 12 layer on a rigid substrate 10 by micro transfer printing using compound micro assembly structures and methods, for example as described in U.S. patent application Ser. No. 14/822,868 filed Aug. 10, 2015, entitled Compound Micro-Assembly Strategies and Devices.
As is understood by those skilled in the art, the terms “over” and “under” are relative terms and can be interchanged in reference to different orientations of the layers, elements, and substrates included in the present invention. For example, a first layer on a second layer, in some implementations means a first layer directly on and in contact with a second layer. In other implementations a first layer on a second layer includes a first layer and a second layer with another layer therebetween.
Having described certain implementations of embodiments, it will now become apparent to one of skill in the art that other implementations incorporating the concepts of the disclosure may be used. Therefore, the disclosure should not be limited to certain implementations, but rather should be limited only by the spirit and scope of the following claims.
Throughout the description, where apparatus and systems are described as having, including, or comprising specific components, or where processes and methods are described as having, including, or comprising specific steps, it is contemplated that, additionally, there are apparatus, and systems of the disclosed technology that consist essentially of, or consist of, the recited components, and that there are processes and methods according to the disclosed technology that consist essentially of, or consist of, the recited processing steps.
It should be understood that the order of steps or order for performing certain action is immaterial so long as the disclosed technology remains operable. Moreover, two or more steps or actions in some circumstances can be conducted simultaneously. The invention has been described in detail with particular reference to certain embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
Cok, Ronald S., Meitl, Matthew, Raymond, Brook, Bower, Christopher Andrew
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
6142358, | May 31 1997 | CALIFORNIA, UNIVERSITY OF THE, REGENTS OF, THE | Wafer-to-wafer transfer of microstructures using break-away tethers |
6969624, | Dec 14 2000 | Sony Corporation | Method of transferring a device, a method of producing a device holding substrate, and a device holding substrate |
7195733, | Apr 27 2004 | The Board of Trustees of the University of Illinois | Composite patterning devices for soft lithography |
7354801, | Sep 21 2004 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device |
7399693, | Jun 23 2004 | Canon Kabushiki Kaisha | Semiconductor film manufacturing method and substrate manufacturing method |
7521292, | Jun 04 2004 | The Board of Trustees of the University of Illinois | Stretchable form of single crystal silicon for high performance electronics on rubber substrates |
7557367, | Jun 04 2004 | The Board of Trustees of the University of Illinois | Stretchable semiconductor elements and stretchable electrical circuits |
7622367, | Jun 04 2004 | The Board of Trustees of the University of Illinois | Methods and devices for fabricating and assembling printable semiconductor elements |
7662545, | Oct 14 2004 | The Board of Trustees of the University of Illinois | Decal transfer lithography |
7704684, | Dec 01 2003 | The Board of Trustees of the University of Illinois | Methods and devices for fabricating three-dimensional nanoscale structures |
7799699, | Jun 04 2004 | The Board of Trustees of the University of Illinois | Printable semiconductor structures and related methods of making and assembling |
7927976, | Jul 23 2008 | X Display Company Technology Limited | Reinforced composite stamp for dry transfer printing of semiconductor elements |
7932123, | Sep 20 2006 | The Board of Trustees of the University of Illinois | Release strategies for making transferable semiconductor structures, devices and device components |
7943491, | Jun 04 2004 | The Board of Trustees of the University of Illinois | Pattern transfer printing by kinetic control of adhesion to an elastomeric stamp |
7972875, | Jan 17 2007 | X Display Company Technology Limited | Optical systems fabricated by printing-based assembly |
7982296, | Jun 04 2004 | The Board of Trustees of the University of Illinois | Methods and devices for fabricating and assembling printable semiconductor elements |
8039847, | Jun 04 2004 | The Board of Trustees of the University of Illinois | Printable semiconductor structures and related methods of making and assembling |
8198621, | Jun 04 2004 | The Board of Trustees of the University of Illinois | Stretchable form of single crystal silicon for high performance electronics on rubber substrates |
8207547, | Jun 10 2009 | SAMSUNG ELECTRONICS CO , LTD | Thin-film LED with P and N contacts electrically isolated from the substrate |
8261660, | Jul 22 2009 | X Display Company Technology Limited | Vacuum coupled tool apparatus for dry transfer printing semiconductor elements |
8394706, | Jun 04 2004 | The Board of Trustees of the University of Illinois | Printable semiconductor structures and related methods of making and assembling |
8440546, | Jun 04 2004 | The Board of Trustees of the University of Illinois | Methods and devices for fabricating and assembling printable semiconductor elements |
8470701, | Apr 03 2008 | X Display Company Technology Limited | Printable, flexible and stretchable diamond for thermal management |
8506867, | Nov 19 2008 | X Display Company Technology Limited | Printing semiconductor elements by shear-assisted elastomeric stamp transfer |
8558243, | Nov 18 2011 | Apple Inc | Micro device array for transfer to a receiving substrate |
8664699, | Jun 04 2004 | The Board of Trustees of the University of Illinois | Methods and devices for fabricating and assembling printable semiconductor elements |
8722458, | Jan 17 2007 | X Display Company Technology Limited | Optical systems fabricated by printing-based assembly |
8754396, | Jun 04 2004 | The Board of Trustees of the University of Illinois | Stretchable form of single crystal silicon for high performance electronics on rubber substrates |
8791474, | Mar 15 2013 | Apple Inc | Light emitting diode display with redundancy scheme |
8794501, | Nov 18 2011 | Apple Inc | Method of transferring a light emitting diode |
8835940, | Sep 24 2012 | Apple Inc | Micro device stabilization post |
8865489, | May 12 2009 | The Board of Trustees of the University of Illinois | Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays |
8877648, | Mar 26 2009 | X Display Company Technology Limited | Methods of forming printable integrated circuit devices by selective etching to suspend the devices from a handling substrate and devices formed thereby |
8889485, | Jun 08 2011 | X Display Company Technology Limited | Methods for surface attachment of flipped active componenets |
8895406, | Sep 20 2006 | The Board of Trustees of the University of Illinois | Release strategies for making transferable semiconductor structures, devices and device components |
8934259, | Jun 08 2011 | X Display Company Technology Limited | Substrates with transferable chiplets |
8941215, | Sep 24 2012 | Apple Inc | Micro device stabilization post |
9105714, | Dec 11 2012 | Apple Inc | Stabilization structure including sacrificial release layer and staging bollards |
9111464, | Jun 18 2013 | Apple Inc | LED display with wavelength conversion layer |
9139425, | Dec 07 2010 | SPTS TECHNOLOGIES LIMITED | Process for manufacturing electro-mechanical systems |
9161448, | Mar 29 2010 | X Display Company Technology Limited | Laser assisted transfer welding process |
9166114, | Dec 11 2012 | Apple Inc | Stabilization structure including sacrificial release layer and staging cavity |
9178123, | Dec 10 2012 | Apple Inc | Light emitting device reflective bank structure |
9217541, | May 14 2013 | Apple Inc | Stabilization structure including shear release posts |
9240397, | Jun 17 2013 | Apple Inc | Method for integrating a light emitting device |
9252375, | Mar 15 2013 | Apple Inc | Method of fabricating a light emitting diode display with integrated defect detection test |
9355854, | Aug 06 2010 | X Display Company Technology Limited | Methods of fabricating printable compound semiconductor devices on release layers |
9358775, | Jul 20 2014 | X Display Company Technology Limited | Apparatus and methods for micro-transfer-printing |
9412727, | Sep 20 2011 | X Display Company Technology Limited | Printing transferable components using microstructured elastomeric surfaces with pressure modulated reversible adhesion |
9478583, | Dec 08 2014 | Apple Inc. | Wearable display having an array of LEDs on a conformable silicon substrate |
9520537, | Jun 18 2014 | X Display Company Technology Limited | Micro assembled LED displays and lighting elements |
9555644, | Jul 14 2011 | The Board of Trustees of the University of Illinois | Non-contact transfer printing |
9583533, | Mar 13 2014 | Apple Inc | LED device with embedded nanowire LEDs |
9601356, | Jun 18 2014 | X Display Company Technology Limited | Systems and methods for controlling release of transferable semiconductor structures |
9640715, | May 15 2015 | X Display Company Technology Limited | Printable inorganic semiconductor structures |
9716082, | Aug 26 2014 | X Display Company Technology Limited | Micro assembled hybrid displays and lighting elements |
9761754, | Jun 18 2014 | X Display Company Technology Limited | Systems and methods for preparing GaN and related materials for micro assembly |
9765934, | May 16 2011 | Northwestern University | Thermally managed LED arrays assembled by printing |
9929053, | Jun 18 2014 | X Display Company Technology Limited | Systems and methods for controlling release of transferable semiconductor structures |
20070173034, | |||
20130273695, | |||
20160020131, | |||
20160093600, | |||
20160233269, | |||
20170025484, | |||
20170256521, | |||
20170338374, | |||
JP2011066130, | |||
WO2010111601, | |||
WO2011123285, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 09 2018 | X-Celeprint Limited | (assignment on the face of the patent) | / | |||
May 16 2018 | RAYMOND, BROOK | X-Celeprint Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045960 | /0015 | |
May 16 2018 | BOWER, CHRISTOPHER ANDREW | X-Celeprint Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045960 | /0015 | |
May 16 2018 | COK, RONALD S | X-Celeprint Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045960 | /0015 | |
May 16 2018 | MEITL, MATTHEW | X-Celeprint Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045960 | /0015 | |
Dec 23 2019 | X-Celeprint Limited | X Display Company Technology Limited | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 052631 | /0800 |
Date | Maintenance Fee Events |
May 09 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Jun 12 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 10 2022 | 4 years fee payment window open |
Jun 10 2023 | 6 months grace period start (w surcharge) |
Dec 10 2023 | patent expiry (for year 4) |
Dec 10 2025 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 10 2026 | 8 years fee payment window open |
Jun 10 2027 | 6 months grace period start (w surcharge) |
Dec 10 2027 | patent expiry (for year 8) |
Dec 10 2029 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 10 2030 | 12 years fee payment window open |
Jun 10 2031 | 6 months grace period start (w surcharge) |
Dec 10 2031 | patent expiry (for year 12) |
Dec 10 2033 | 2 years to revive unintentionally abandoned end. (for year 12) |