systems and methods are provided that allow caregivers, central monitoring services, and other persons to monitor whether a monitored individual's hands have entered into an area in which the hands are prohibited, such as areas in which the monitored individual may remove or disturb a piece of medical equipment. When the monitored individual's hands do enter the restricted area that is represented by an electronic virtual safety zone, an alert is generated and transmitted to a designated recipient.
|
18. Non-transitory computer-readable storage media having stored thereon executable instructions that, when executed by a computer, cause the computer to:
receive video data from one or more 3D motion sensors capturing live video data of an individual to be monitored;
define a virtual safety zone representing an area in which the individual should not place his or her hands, the virtual safety zone encompassing at least part of the individual's face;
determine that one or more hands of the individual are within the virtual safety zone based on at least a partially lost or obscured facial tracking signal; and
upon determining that the one or more hands of the individual are within the virtual safety zone, electronically transmit an alert to at least one designated recipient.
1. A computerized method for detecting when a monitored individual has moved one or both of his or her hands within a virtual safety zone, the method executed by one or more processors and comprising:
receiving video data from one or more 3D motion sensors capturing live video data of an individual to be monitored within a monitored area;
defining a virtual safety zone representing an area in which the individual should not place his or her hands, the virtual safety zone encompassing at least part of the individual's face;
determining that one or more hands of the individual are within the virtual safety zone based on at least a partially lost or obscured facial tracking signal; and
upon determining that the one or more hands of the individual are within the virtual safety zone, electronically transmitting an alert to at least one designated recipient.
10. A system for determining whether a monitored individual has placed one or both hands in a virtual safety zone, the system comprising:
one or more 3D motion sensors capturing live video data of an individual to be monitored;
a computerized monitoring system, the computerized monitoring system configured to:
receive video data from the one or more 3D motion sensors;
define a virtual safety zone representing an area in which the individual should not place his or her hands, the virtual safety zone encompassing at least part of the individual's face;
determine that one or more hands of the individual are within the virtual safety zone based on at least a partially lost or obscured facial tracking signal; and
upon determining that the one or more hands of the individual are within the virtual safety zone, electronically transmit an alert to at least one designated recipient.
2. The computerized method of
3. The computerized method of
4. The computerized method of
5. The computerized method of
6. The computerized method of
7. The computerized method of
8. The computerized method of
9. The method of
11. The system of
12. The system of
13. The system of
14. The system of
15. The system of
16. The system of
17. The system of
20. The media of
|
This application is a continuation of and claims priority to U.S. Nonprovisional application Ser. No. 14/757,593, titled “Method and System for Determining Whether a Monitored Individual's Hand(s) Have Entered a Virtual Safety Zone” filed Dec. 23, 2015, which claims the benefit of U.S. Provisional Application No. 62/096,289, filed on Dec. 23, 2014, both of which are herein incorporated by reference in their entireties.
The present disclosure relates to methods and systems for determining whether a monitored individual's hand or hands have entered a virtual safety zone.
Traditionally, monitoring of hospital patients is a costly, time-consuming endeavor. Of great concern to caregivers is a patient touching, removing, or otherwise disturbing medical equipment. If a patient disturbs an IV tube, breathing tube, catheter, or other medical equipment, significant negative repercussions can follow. These include healthcare-associated infections (HAIs), which are infections acquired by patients during the course of receiving treatment for other health conditions. According to recent studies, one in every twenty hospitalized patients will acquire an infection during the course of receiving healthcare treatment for a different condition, In terms of the economic impact, studies estimate the overall annual direct medical costs of HAIs range between $28.4 and $45 billion. The medical facility must typically bear the cost of the HAI, which puts a strain on the finances of the healthcare provider. In addition to HAIs, other serious injuries or even death can result from a patient's improper removal or disturbance of a piece of medical equipment.
This brief summary is provided as a general overview of the more detailed disclosure which follows. It is not intended to identify key or essential elements of the disclosure, or to define the claim terms in isolation from the remainder of the disclosure, including the drawings.
In general, this disclosure relates to systems, methods, and computer-readable storage media that notify caregivers or other monitors if a patient's hand(s) have entered into an area where the caregiver or monitor has determined that the patient's hand(s) should not be. For example, regardless of the patient's intent, it may be undesirable for patients to touch or manipulate certain medical equipment or temporary implants, such as nasogastric tubes, tracheal tubes, central lines, Intravenous (IV) lines, and the like. Simply touching the equipment may contaminate and/or disturb it. Further, disoriented and/or uncomfortable patients may attempt to reposition and/or remove medical equipment or temporary implants, which can cause injury—including possibly severe injury—to the patient. If the patient's activity involves the removal of sharp and/or body-fluid contaminated equipment, the patient's activity may also pose a risk to caregivers or others who approach the patient (e.g., because they could prick themselves and/or be exposed to blood- or other body fluid-borne pathogens). However, continuous visual monitoring of a patient is often impractical. Even in home care environments or other settings where the caregiver to patient ratio may be 1:1, there will be moments when a caregiver needs to tend tasks that may take them out of visual range of the patient.
In some aspects, a method is disclosed for detecting when a monitored individual has moved one or both of his or her hands within a virtual safety zone. The method may comprise configuring a virtual safety zone around an area where the individual to be monitored is located. The method may comprise providing one or more 3D motion sensors to capture live video data from the area. The method may comprise forwarding the video data from the one or more 3D motion sensors to a computerized monitoring system. The method may comprise determining, as by the computerized monitoring system, when the monitored individual has moved at least one of his or her hands within the virtual safety zone. The method may comprise electronically transmitting an alert to a centralized monitoring system, by the computerized monitoring system, when the computerized monitoring system determines that the monitored individual has moved at least one of his or her hands within the virtual safety zone.
The method may comprise determining whether the at least one hand of the monitored individual remained within the virtual safety zone for a predetermined period of time before electronically transmitting an alert to the centralized monitoring system. The method may comprise continuously displaying a live video feed of the monitored area received from the one or more 3D motion sensors on a centralized monitoring alert display after it has been determined that at least one hand of the monitored individual is within the virtual safety zone for the predetermined period of time. The method may comprise continuously displaying a live video feed of the monitored area received form the one or more 3D motion sensors on a centralized monitoring primary display that is remotely located from the monitored area. The method may comprise continuously displaying a live feed of the monitored area received form the one or more 3D motion sensors on a centralized monitoring alert display after it has been determined that at least one hand of the monitored individual is within the virtual safety zone, wherein the centralized monitoring alert display is a separate display from the centralized monitoring primary display.
The method may comprise continuously displaying a live video feed of the monitored area received from the one or more 3D motion sensors after it has been determined that at least one hand of the monitored individual is within the virtual safety zone. The method may comprise updating a database in communication with the computerized monitoring system regarding the determination that at least one hand of the monitored individual was within the virtual safety zone. The method may comprise notifying a designated caregiver by electronic message regarding the determination that at least one hand of the monitored individual was within the virtual safety zone. The virtual safety zone may encompass at least part of the monitored individual's face. Determining, by the computerized monitoring system, when the monitored individual has moved at least one of his or her hands within the virtual safety zone may comprise using facial tracking to monitor the virtual safety zone. Determining, by the computerized monitoring system, when the monitored individual has moved at least one of his or her hands within the virtual safety zone may comprise determining that the face of the monitored individual is at least partially obscured.
In some aspects, the disclosure relates to a system for determining whether a monitored individual has placed one or both hands in a virtual safety zone. The system may comprise one or more 3D motion sensors co-located with a monitored individual. The system may comprise a computerized monitoring system. The computerized monitoring system may be configured to receive data from the one or more 3D motion sensors. The computerized monitoring system may be configured to identify the position of the monitored individual's hands. The computerized monitoring system may be configured to determine whether at least one of the monitored individual's hands have entered a virtual safety zone. The system may comprise a computerized communication system. The computerized communication system may be configured to receive from the computerized monitoring system a determination that at least one of the monitored individual's hands have entered a virtual safety zone. The computerized communication system may be configured to send an alert of the entry into the virtual safety zone to at least one designated recipient.
The computerized monitoring system may be further configured to actuate a timer upon determining that the monitored individual's hand or hands have entered a virtual safety zone. The computerized monitoring system may send to the computerized communication system a determination that the monitored individual's hand or hands have entered a virtual safety zone only if the monitored individual's hand or hands remain in the virtual safety zone for at least a predetermined period of time. The designated recipient of the alert may include one or more of a caregiver, the monitored individual, an alternate caregiver, and a supervisor. The alert may comprise an audible instruction to the patient. The system may further comprise a database for logging events related to the entry of the monitored individual's hand or hands into the virtual safety zone. The computerized communication system may further be configured to save log entries for events related to the entry of the monitored individual's hand or hands into the virtual safety zone and related alerts.
In some aspects, the disclosure relates to computer-readable storage media having stored thereon executable instructions. When executed by a computer, the instructions may cause the computer to receive visual data from one or more 3D motion sensors. The instructions may cause the computer to identify a monitored individual's location from the visual and/or sound data. The instructions may cause the computer to establish a virtual safety zone at least partially overlapping the monitored individual's location. The instructions may cause the computer to identify the monitored individual's hands from the visual data. The instructions may cause the computer to determine whether one or both of the monitored individual's hands enter the virtual safety zone from the visual data. The instructions may cause the computer to time the duration for which the monitored individual's hand or hands remain in the virtual safety zone. The instructions may cause the computer to alarm if the monitored individual's hand or hands remain in the virtual safety zone for longer than a predetermined period. The instructions may cause the computer to present a human-readable visual image of the monitored individual's location to a display device. The instructions may cause the computer to accept user input to define the virtual safety zone. The instructions may cause the computer to log alerts in a database.
Additional objects, advantages, and novel features of the disclosure will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the disclosure.
The present disclosure references the attached drawing figures, wherein:
As mentioned above, patients, particularly but not exclusively patients who are disoriented or uncomfortable, may resort to self-help and attempt to reposition or remove medical equipment and/or temporary implants. When nasogastric, tracheal, central, IV, or other lines or equipment are disturbed by the patient, they may become contaminated by the patient's hand and contribute to the development of infection. Further, if lines or equipment are removed improperly, the patient can injure himself or herself. This is sometimes described in terms of a patient, however, the term “monitored individual” is meant to encompass both “patients” in the sense of individuals under immediate medical care, such as patients in an in-patient setting, as well as individuals who may use certain medical equipment and/or temporary implants in other settings, including, without limitation, assisted living facilities, nursing homes, hospice care, home care, outpatient settings, and the like.
The monitoring may be done by a caregiver. A caregiver may be a medical professional or paraprofessional, such as an orderly, nurse's aide, nurse, or the like. A caregiver may also be a friend, relative, individual, company, or facility that provides assistance with daily living activities and/or medical care for individuals, such as individuals who are disabled, ill, injured, elderly, or otherwise in need of temporary or long-term assistance.
The microprocessor of the 3D motion sensor may be configured to calculate a change in location of the person or object of interest over a period of time, if a change has occurred. As a non-limiting example, a person's right hand can be at time T1 located at coordinates (x1, y1, z1) in a picture frame taken by the camera. At time T2, the right hand is captured by the picture frame taken by the camera at coordinates (x2, y2, z2). Based on this information, motion, speed and direction can be derived utilizing the elapsed time and comparing the two 3D coordinates over the elapsed time. As opposed to conventional motion sensors, which use captured motion to control a camera, the 3D motion and/or sound sensor described herein uses the camera in order to compute the motion.
The 3D motion and/or sound sensors may operate continuously, or intermittently (for example, running for a fixed period at defined intervals, such as periods when the monitored individual might be expected to be awake, or to be disoriented, or to otherwise merit monitoring), or on a trigger (e.g., when a motion detector or light sensor is activated, suggesting activity in the room). The camera/sensors are preferably continuously on at all times while the monitoring is occurring, regardless of whether the person or object of interest is moving or not. The camera preferably views the entire room or a large portion of the room simply by its placement in a manner sufficient for the room to be visible to the camera.
The 3D motion sensors may record video. Video is technically made up of individual picture frames (i.e., 30 frames per second of video).
One or more 3D motion sensors 110 may be located within the room of the patient or individual being monitored 100 and potentially just outside of the monitored individual's room, home, hospital room, or other place of temporary or permanent residence. Placing a 3D sensor just outside a monitored individual's room may help the system detect visitors, caregivers, or others who are not the monitored individual a few moments sooner than if there were sensors only inside the room. Detecting others earlier may help the system track the others and distinguish others from the monitored individual without an apparent delay in processing or displaying the sensor data, or with a reduced delay in processing or displaying the sensor data. The 3D motion sensor is connected to the computerized virtual safety zone monitoring system 120 via a data connection (USB, TCP/IP, or comparable).
The one or more 3D motion sensors 110 can be configured to recognize the monitored individual 100 and other individuals using biometric identifiers such as facial tracking, height, distance between points on the body, etc. Alternately or additionally, the monitored individual 100 can be identified by means of a user creating a three-dimensional zone around the monitored individual 100 through the software application. Once a monitored individual 100 is identified, the software can automatically generate or allow the user to generate a configurable three-dimensional virtual safety zone 500 where the caregiver wants to prevent a monitored individual's hand(s) from entering.
Data from the one or more 3D motion sensors 110 are sent to a computerized virtual safety zone monitoring system 120. The computerized virtual safety zone monitoring system 120 (or “computerized monitoring system”) is a computer programmed to monitor transmissions of data from the 3D motion sensor 110. The computerized monitoring system may be integral to the 3D motion sensor 110 or a distinctly separate apparatus from the 3D motion sensor 110, possibly in a remote location from 3D motion sensor 110 provided that the computerized monitoring system 120 can receive data from the 3D motion sensor 110. The computerized monitoring system 120 may be located in the monitored individual's room or location. The computerized monitoring system 120 may be connected to a centralized video monitoring station (or “centralized monitoring station”) 130. The computerized monitoring system 120 and centralized monitoring station 130 may be remotely located at any physical locations so long as a data connection exists (TCP/IP or comparable) between the computerized monitoring system 120, the computerized communication system 140 (if separate from computerized monitoring system 120), the centralized monitoring station 130, and the 3D motion sensor(s) 110.
The computerized communication system 140 is a computer programmed to facilitate communication between the monitored individual 100 and computerized monitoring system 120 in the event the monitored individual 100 has placed one or both hands in a virtual safety zone. The computerized communication system 140 may include, but is not limited to, amplified speakers, microphones, lights, monitors, computer terminals, mobile phones and/or other technologies to allow for the electronic communication to take place. The computerized communication system may preferably be located within the monitored individual's room; however, certain components of the system are mobile by their nature (i.e., mobile phones, pagers, or certain computers, such as laptop or tablet computers) and could be located at any location so long as a data connection (TCP/IP or comparable) exists between the computerized monitoring system 120, the computerized communication system 140, the centralized monitoring station 130, and the 3D motion sensor 110.
The computerized virtual safety zone monitoring system 120 provides the centralized monitoring station 130 with visual telemetry of the monitored individual 100. This information is received from one or more computerized monitoring systems 120, computerized communication systems 140 and/or 3D motion sensors 110. The centralized monitoring station 130 displays the information in an organized manner to an individual or group of individuals assigned to monitor the monitored individuals. The centralized monitoring station 130 may be located with or near the monitored individual, e.g., at a nursing station on the same floor as a hospital patient, or may be located remotely from the monitored individual. As one example, a computerized virtual safety zone monitoring system 120 used with a 3D motion sensor 110 in a home environment may be monitored by an agency or individual in a different part of a building, a different building, or even a different city. The computerized monitoring system 120 receives the raw data from the camera sensor, processes the raw data, e.g., to determine whether a monitored individual's hand or hands have entered a virtual safety zone, and transmits at least visual telemetry, possibly with sound telemetry, alert information, and/or other data, to the centralized monitoring station 130.
The centralized monitoring station 130 may comprise a primary display 200, as shown in
The virtual safety zone 500 and/or bed zone 510 may be defined in 2 dimensions, e.g., as a perimeter around at least a portion of skeleton
As shown in
With reference to
When the computerized virtual safety zone monitoring system 120 detects a monitored individual's hand(s) within the virtual safety zone 500, shown as 170 in
When an alert is triggered, the alert may be sent, at least initially, to the monitored individual 100, to give monitored individual 100 an opportunity to self-correct before alerting the central monitoring station 130 and/or caregivers 160. Alternately, central monitoring station 130 may be alerted with or even before the monitored individual, so that central monitoring station 130 can determine whether the entry into the virtual safety zone 500 is, in fact, problematic. The central monitoring station, or an attendant there, can do this by viewing the live video and/or audio feed from the 3D motion sensor(s), and determining whether the gestures or motions appear to be dangerous. The central monitoring station 130 attendant could then approve alert(s) to appropriate caregiver(s) 160 to intervene. In another alternative, one or more caregiver(s) 160 local to the monitored individual 100 can be alerted with or even before the monitored individual 100, so that the caregiver(s) 160 can assess what is happening in person. Or, the monitored individual 100, caregiver(s) 160, and the central monitoring station 130 could all be alerted at the same time. The priority and timing of alerts to different individuals or stations can be configured in accordance with the needs and desires of a particular facility, experience with a particular monitored individual or type of patient, or any other criterion of the system owner or user. This is true for initial alerts as well as continuing alerts (e.g., if a monitored individual receives an audible alert and does not remove his or her hands from the virtual safety zone) or repeated alerts (two or more distinct events where the monitored individual's hand or hands enter the virtual safety zone). The priority and timing of alerts to different individuals may be different for initial, continuing, and/or repeated alerts.
At step 180 in
Should the monitored individual 100 fail to remove his or her hand(s) from the virtual safety zone 500, an audible and/or visible alert can be given to the monitored individual 100 and/or caregiver(s) 160, notifying the monitored individual 100 and caregiver(s) 160 that the monitored individual 100 or caregiver 160 needs to take measures to remove the monitored individual's hand(s) from the virtual safety zone 500. The alert can be sent by the computerized communication system, which can include, but is not limited to, a system of speakers, microphones lights, monitors, mobile phones, and methods of communication including but not limited to voice, email, SMS messaging, video, phone calls, or flashing lights. A second or subsequent alert to the monitored individual 100 maybe worded more strongly than the initial alert, using language like “Stop now. Help is coming.” The computerized monitoring system 120 may monitor, using gesture recognition, location tracking, facial tracking, skeleton figure tracking, or other measures, whether the monitored individual 100 has taken appropriate steps to remove his or her hand(s) from the virtual safety zone 500 based on the information received from the 3D motion sensor 110. Facial recognition could also be used, however, facial tracking is typically sufficient for the purpose of monitoring a virtual safety zone. An electronic record can be made in the database 150 and additional audible and/or visible alerts can be issued to the monitored individual 100 and/or caregiver(s) 160 until the monitored individual 100 removes his or her hand(s) from the virtual safety zone 500. Captured video can also be stored and/or reviewed by the computerized monitoring system 120 when the system makes its determination.
If the monitored individual 100 places his or her hand(s) in the virtual safety zone 500, notification may be given to the caregivers 160 or other designated persons. Notification of caregivers can be made through phone call, text messaging, speakerphone systems, email, or other electronic means of communication. The system database 150 may also be updated to reflect actions taken.
All video, audio, and/or alert feeds received by the centralized monitoring station 130 can be displayed on the centralized monitoring primary display 200. Alternatively, multiple centralized monitoring primary displays can be utilized based on the quantity of rooms to be monitored at a given time.
When the centralized monitoring station 130 receives an alert from any of the computerized monitoring and communication systems 120A, 120B, 120C, indicating that a monitored individual 100 has placed his or her hand(s) in the virtual safety zone 500, the video, audio, and/or alert information for that particular individual is displayed on the centralized monitoring alert display 210. An alert can be represented in one or more different types of physical configurations. It can be a visual queue on screen at the centralized monitoring station 130 such as the specific camera view flashing or being highlighted in a color to draw attention to that display among others. It can be an audible sound (voice or alarm type sound) at the centralized monitoring station 130, an audible sound at the computerized monitoring system 120 attached to the 3D motion sensor 110, a text message, an email, turning on a light, or even running a program on a computer. Should the centralized monitoring station 130 receive alerts from more than one of the computerized monitoring and communication systems 120A, 120B, 120C, indicating that a monitored individual 100 has placed his or her hand(s) in the virtual safety zone 500, the centralized monitoring alert display 210 will display the video, audio, and/or alerting information from all such instances at the same time. If no alert is received by the centralized monitoring station 130, nothing is displayed on the centralized monitoring alert display 210. Preferably, all monitored individual rooms can be displayed and visible on the central monitoring primary display 200 whether alerting or not. When an alert is generated, attention can be drawn to the particular camera and a duplicative display of the alerting camera can be displayed on a second separate computer monitor, e.g., the centralized monitoring alert display 210.
An electronic record of any alerts received by the centralized monitoring station 130 can be stored in a database 150.
The various components described can be in electrical, wired, and/or wireless communication with each other. The various computerized systems and processors as described herein may include, individually or collectively, and without limitation, a processing unit, internal system memory, and a suitable system bus for coupling various system components, including database 150, with a control server. Computerized monitoring system 120 and/or centralized monitoring station 130 may provide control server structure. The system bus may be any of several types of bus structures, including a memory bus or memory controller, a peripheral bus, and a local bus, using any of a variety of bus architectures. By way of example, and not limitation, such architectures include Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video Electronic Standards Association (VESA) local bus, and Peripheral Component Interconnect (PCI) bus.
The computerized systems typically include therein, or have access to, a variety of computer-readable media, for instance, database 150. Computer-readable media can be any available media that may be accessed by the computerized system, and includes volatile and nonvolatile media, as well as removable and non-removable media. By way of example, and not limitation, computer-readable media may include computer-storage media and communication media. Computer-storage media may include, without limitation, volatile and nonvolatile media, as well as removable and non-removable media implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules, or other data. In this regard, computer-storage media may include, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disks (DVDs) or other optical disk storage, magnetic cassettes, magnetic tape, magnetic disk storage, or other magnetic storage device, or any other medium which can be used to store the desired information and which may be accessed by one or more of the computerized systems. Computer-storage media excludes signals per se.
Communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and may include any information delivery media. As used herein, the term “modulated data signal” refers to a signal that has one or more of its attributes set or changed in such a manner as to encode information in the signal. By way of example, and not limitation, communication media includes wired media such as a wired network or direct-wired connection, and wireless media such as acoustic, RF, infrared, and other wireless media. Combinations of any of the above also may be included within the scope of computer-readable media. The computer-storage media discussed above, including database 150, provides storage of computer readable instructions, data structures, program modules, and other data for the computerized systems.
The computerized systems may operate in a computer network using logical connections to one or more remote computers. Remote computers may be located at a variety of locations, for example, but not limited to, hospitals and other inpatient settings, veterinary environments, ambulatory settings, medical billing and financial offices, hospital administration settings, home health care environments, payer offices (e.g., insurance companies), home health care agencies, clinicians' offices and the clinician's home, the patient's own home, or over the Internet. Clinicians may include, but are not limited to, a treating physician or physicians, specialists such as surgeons, radiologists, cardiologists, and oncologists, emergency medical technicians, physicians' assistants, nurse practitioners, nurses, nurses' aides, pharmacists, dieticians, microbiologists, laboratory experts, laboratory technologists, genetic counselors, researchers, veterinarians, students, and the like. The remote computers may also be physically located in non-traditional medical care environments so that the entire health care community may be capable of integration on the network. The remote computers may be personal computers, servers, routers, network PCs, peer devices, other common network nodes, or the like, and may include some or all of the elements described above in relation to the control server. The devices can be personal digital assistants or other like devices.
Exemplary computer networks may include, without limitation, local area networks (LANs) and/or wide area networks (WANs). Such networking environments are commonplace in offices, enterprise-wide computer networks, intranets, and the Internet. When utilized in a WAN networking environment, the control server may include a modem or other means for establishing communications over the WAN, such as the Internet. In a networked environment, program modules or portions thereof may be stored in the control server, in the database 150, or on any of the remote computers. For example, and not by way of limitation, various application programs may reside on the memory associated with any one or more of the remote computers. It will be appreciated by those of ordinary skill in the art that the network connections shown are exemplary and other means of establishing a communications link between the computers may be utilized.
In operation, a user may enter commands and information into the computerized system(s) using input devices, such as a keyboard, a pointing device (commonly referred to as a mouse), a trackball, or a touch pad. Other input devices may include, without limitation, microphones, satellite dishes, scanners, or the like. In addition to or in lieu of a monitor, the computerized systems may include other peripheral output devices, such as speakers and a printer.
Many other internal components of the computerized system hardware are not shown because such components and their interconnection are well known. Accordingly, additional details concerning the internal construction of the computers that make up the computerized systems are not further disclosed herein.
Methods and systems of embodiments of the present disclosure may be implemented in a WINDOWS or LINUX operating system, operating in conjunction with an Internet-based delivery system, however, one of ordinary skill in the art will recognize that the described methods and systems can be implemented in any system suitable for supporting the disclosed processing and communications. As contemplated by the language above, the methods and systems of embodiments of the present invention may also be implemented on a stand-alone desktop, personal computer, cellular phone, smart phone, tablet computer, PDA, or any other computing device used in a healthcare environment or any of a number of other locations.
The bed zone 510 and virtual safety zone 500 for a given 3D motion sensor 110 can be configured. To begin, the user hovers over the 3D motion sensor video window with the cursor, then right-clicks, selects plug-ins, and then selects configure plug-ins. A window will pop up showing the 3D motion sensors' feed.
The user selects the icon(s) for the type of zone they wish to draw. In this non-limiting example, a bed zone 510 and a virtual safety zone 500 can be selected.
As non-limiting examples, the following icons can appear on the screen for selection:
Safety Zone
Bed Zone
Auto Bed Zone (Select Patient)
Auto Bed Zone (Auto-select)
Saved Zones
Clear All
To place a zone, the user clicks on the screen where the user would like to start the zone. Then, the cursor is moved to the corner point and clicked again. The user continues selecting additional points until the zone is drawn to the user's satisfaction. Preferably, the user clicks on the round end point of the beginning of the zone to complete the zone. Upon completion the zone appears and has a depth range box preferably in the middle.
The user can adjust the depth range for any given zone. By double clicking on the depth range box, or by using another user selection method, an Edit Depth window can appear. The user can enter in the depth ranges (for example, in millimeters (mm)), and then the user can click the Save button or icon when the user is done to store the entered values. Although this example uses millimeters for depth range values, depth ranges could be entered in any desired unit of measurement including, but not limited to, centimeters, meters, inches, feet, and yards.
If there are any other types of zones to draw for the particular sensor, the above steps can be repeated to place the next zone, and the depth setting can be adjusted for each if necessary or desired. Additionally, all zones can be cleared by clicking on or otherwise selecting the Clear All icon preferably located in the toolbar.
Once all zones/wires are configured, the window can be closed to finish or an option to save the zone configuration for later use can be provided and selected.
To access the main settings window, the user can click on the Settings menu and select the Main Settings listing from the drop-down list. Alternately, the user can click on the Gear icon in the toolbar to access the main settings window or utilize a designated keyboard shortcut.
For one non-limiting way to configure a new Alert, the user can select an Alerts tab and click on or otherwise select the Add button, which can result in the Configure Alert box to appear on the screen.
Under the Event field in the Configure box, the user can select the event from the drop down list that they wish to alert on.
Once the Event type is selected, under the Action field, the user can select the Action he or she wishes to have the system perform when the selected Event is detected.
For certain Actions an additional field may need to be completed to finish the Action. If the field is required, it can appear below the Action dropdown. If no further fields are required, the Configure Alert box can display “N/A” or appear blank.
Once all of the settings are selected, the user clicks on or otherwise selects the OK button (or similar function button) which saves the new Alert.
The new Alert can now be listed in the Alerts tab window. To edit an existing Alert, the user first clicks on or otherwise selects the Alert and then selects the Edit button. To delete an Alert, the user can first highlight the Alert and then click on the Delete button.
To add more Alerts, the user clicks on or selects the Add button and repeats steps 4-6. When finished, the user clicks on or otherwise selects the bottom corner OK button to save and close the window.
Automatically detecting and providing alerts to a monitored individual and/or caregivers when a monitored individual enters a virtual safety zone may reduce incidences of HAIs by lowering the risk of improper disturbance and/or removal of medical equipment; increase the survival rate for individuals who are susceptible to HAIs; reduce costs for hospitalization and medical care related to HAIs; reduce costs for hospitalization and medical care related to re-insertion of improperly removed medical equipment; or reduce injury and deaths of monitored individuals who have improperly removed medical equipment.
From the foregoing, it will be seen that this disclosure is one well adapted to attain all the ends and objects hereinabove set forth together with other advantages which are obvious and which are inherent to the structure.
It will be understood that certain features and subcombinations are of utility and may be employed without reference to other features and subcombinations. This is contemplated by and is within the scope of the claims.
Since many possible embodiments may be made of the invention without departing from the scope thereof, it is to be understood that all matter herein set forth or shown in the accompanying drawings is to be interpreted as illustrative and not in a limiting sense.
Patent | Priority | Assignee | Title |
11890234, | Dec 30 2019 | Stryker Corporation | Patient transport apparatus with crash detection |
12138202, | Dec 30 2019 | Stryker Corporation | Patient transport apparatus with crash detection |
Patent | Priority | Assignee | Title |
10055961, | Jul 10 2017 | CareView Communications, Inc. | Surveillance system and method for predicting patient falls using motion feature patterns |
10078956, | Jan 17 2014 | CERNER INNOVATION, INC , A DELAWARE CORPORATION; CERNER INNOVATION, INC | Method and system for determining whether an individual takes appropriate measures to prevent the spread of healthcare-associated infections |
10090068, | Dec 23 2014 | Cerner Innovation, Inc. | Method and system for determining whether a monitored individual's hand(s) have entered a virtual safety zone |
10091463, | Feb 16 2015 | CERNER INNOVATION, INC , A DELAWARE CORPORATION; CERNER INNOVATION, INC | Method for determining whether an individual enters a prescribed virtual zone using 3D blob detection |
10096223, | Dec 18 2013 | CERNER INNOVATION, INC , A DELAWARE CORPORATION; CERNER INNOVATION, INC | Method and process for determining whether an individual suffers a fall requiring assistance |
10210378, | Dec 31 2015 | Cerner Innovation, Inc. | Detecting unauthorized visitors |
10276019, | Jul 10 2017 | CareView Communications, Inc. | Surveillance system and method for predicting patient falls using motion feature patterns |
1860487, | |||
4669263, | Nov 19 1984 | Toyota Jidosha Kabushiki Kaisha | High-speed generator for a gas turbine engine |
4857716, | Jul 19 1985 | McKesson Information Solutions LLC | Patient identification and verification system and method |
5031228, | Sep 14 1988 | NIELSEN MEDIA RESEARCH, INC , A DELAWARE CORP | Image recognition system and method |
5276432, | Jan 15 1992 | Stryker Corporation | Patient exit detection mechanism for hospital bed |
5448221, | Jul 29 1993 | Dual alarm apparatus for monitoring of persons under house arrest | |
5482050, | Feb 17 1994 | Spacelabs Healthcare, LLC | Method and system for providing safe patient monitoring in an electronic medical device while serving as a general-purpose windowed display |
5592153, | Nov 30 1993 | Hill-Rom Services, Inc | Hospital bed communication and control device |
5798798, | Apr 28 1994 | The Regents of the University of California | Simultaneously acquiring video images and analog signals |
5838223, | Jul 12 1993 | Hill-Rom Services, Inc | Patient/nurse call system |
5915379, | Mar 14 1997 | Nellcor Puritan Bennett Incorporated | Graphic user interface for a patient ventilator |
5942986, | Aug 09 1995 | Cedars-Sinai Medical Center | System and method for automatic critical event notification |
6050940, | Jun 17 1996 | MEDCOM NETWORK SYSTEMS, LLC | General-purpose medical instrumentation |
6095984, | Apr 17 1996 | Seiko Epson Corporation | Arrhythmia detecting apparatus |
6160478, | Oct 27 1998 | MOBILE MONITORING SYSTEMS LLC | Wireless health monitoring system |
6174283, | May 09 1996 | Albert Einstein Healthcare Network | Apparatus and method for monitoring a system and displaying the status of the system |
6188407, | Mar 04 1998 | GE MEDICAL SYSTEMS INFORMATION TECHNOLOGIES, INC | Reconfigurable user interface for modular patient monitor |
6269812, | Mar 14 1997 | Nellcor Puritan Bennett Incorporated | Ventilator breath display and graphic user interface |
6287452, | Oct 02 1996 | Duke University | Electrode for the electrochemical detection of nitric oxide |
6322502, | Dec 29 1997 | I M D SOFT LTD | Medical information system |
6369838, | Mar 14 1997 | Nellcor Puritan Bennett Incorporated | Graphic user interface for a patient ventilator |
6429869, | May 14 1998 | Sharp Kabusshiki Kaisha | Method for displaying bar graph without totaling data and program storage medium thereof |
6614349, | Dec 03 1999 | NORTHSTAR SYSTEMS LLC | Facility and method for tracking physical assets |
6727818, | Oct 29 1999 | Hill-Rom Services, Inc | Hygiene monitoring system |
6804656, | Jun 23 1999 | VISICU, INC | System and method for providing continuous, expert network critical care services from a remote location(s) |
7015816, | Oct 29 1999 | Hill-Rom Services, Inc. | Hygiene monitoring system |
7122005, | Jul 31 1997 | Remote patient monitoring system with garment and automated medication dispenser | |
7154397, | Aug 03 2001 | Hill-Rom Services, Inc | Patient point-of-care computer system |
7237287, | Aug 04 1995 | Hill-Rom Services, Inc | Patient care bed with network |
7323991, | May 12 2005 | TIDEWATER HOLDINGS, LLC | System and method for locating and communicating with personnel and equipment in a facility |
7408470, | Oct 29 1999 | Hill-Rom Services, Inc. | Hygiene monitoring system |
7420472, | Oct 16 2005 | BT WEARABLES LLC | Patient monitoring apparatus |
7430608, | Dec 04 2001 | CERNER INNOVATION, INC | System for processing data acquired from multiple medical devices |
7502498, | Sep 10 2004 | Available For Licensing | Patient monitoring apparatus |
7612679, | Dec 28 2004 | CERNER INNOVATION, INC | Computerized method and system for providing alerts from a multi-patient display |
7669263, | Sep 06 2002 | Hill-Rom Services, Inc. | Mattress assembly including adjustable length foot |
7715387, | Mar 30 2001 | Hill-Rom Services, Inc. | Healthcare computer system with intra-room network |
7724147, | Jul 13 2006 | CAREFUSION 303, INC | Medical notification apparatus and method |
7756723, | Sep 07 2001 | ALLSCRIPTS HEALTHCARE US, LP; ALLSCRIPTS SOFTWARE, LLC | System and method for managing patient bed assignments and bed occupancy in a health care facility |
7890349, | Oct 22 2001 | CERNER INNOVATION, INC | Resource monitoring system for processing location related information in a healthcare enterprise |
7893842, | Oct 05 2007 | Systems and methods for monitoring health care workers and patients | |
7895055, | Dec 14 2005 | CERNER INNOVATION, INC | Method and system to optimize and automate clinical workflow |
7908153, | Dec 15 2006 | CERNER INNOVATION, INC | Infection control management and workflow system |
7945457, | Apr 09 2007 | CERNER INNOVATION, INC | Distributed system for monitoring patient video, audio and medical parameter data |
7962544, | May 25 2004 | CERNER INNOVATION, INC | Patient and device location dependent healthcare information processing system |
7972140, | Feb 26 2003 | Method and apparatus for performing a behaviour analysis using a virtual environment | |
8108036, | May 24 2006 | KONINKLIJKE PHILIPS N V | Mesh network stroke monitoring appliance |
8123685, | Oct 11 2005 | Koninklijke Philips Electronics N V | System for monitoring a number of different parameters of a patient in a bed |
8128596, | Sep 28 2007 | CALIBRA MEDICAL, INC | Disposable infusion device layered structure |
8224108, | Oct 30 2008 | FotoNation Limited | Digital image processing using face detection information |
8237558, | Mar 30 2007 | University Health Network | Hand hygiene compliance system |
8273018, | Dec 28 2004 | CERNER INNOVATION, INC | Computerized method for establishing a communication between a bedside care location and a remote care location |
8432263, | Oct 06 2006 | BETHESDA WATERS, LLC | System and method for the collection, storage, analysis and reporting of event information |
8451314, | Nov 20 2009 | CERNER INNOVATION, INC | Bi-directional communication system |
8529448, | Dec 31 2009 | CERNER INNOVATION, INC | Computerized systems and methods for stability—theoretic prediction and prevention of falls |
8565500, | Jun 14 2010 | CERNER INNOVATION, INC | Automatic patient and device recognition and association system |
8620682, | Jun 20 2011 | Cerner Innovation, Inc. | Smart clinical care room |
8655680, | Jun 20 2011 | Cerner Innovation, Inc.; CERNER INNOVATION, INC | Minimizing disruption during medication administration |
8700423, | Nov 04 2009 | CERNER INNOVATION, INC | Location-based management of healthcare environments |
8727961, | May 22 2003 | Kimberly-Clark Worldwide, Inc | Apparatus for the prevention of urinary incontinence in females |
8727981, | Jun 20 2011 | Cerner Innovation, Inc.; CERNER INNOVATION, INC | Ambient sensing of patient discomfort |
8769153, | Nov 17 2008 | MEDICALGORITHMICS S A | Outpatient monitoring systems and methods |
8890937, | Jun 01 2009 | The Curators of the University of Missouri | Anonymized video analysis methods and systems |
8902068, | Jun 20 2011 | CERNER INNOVATION, INC | Reducing disruption during medication administration |
8917186, | Mar 04 2014 | State Farm Mutual Automobile Insurance Company | Audio monitoring and sound identification process for remote alarms |
8953886, | Aug 23 2004 | Kyocera Corporation | Method and system for character recognition |
9072929, | Dec 01 2011 | Nebraska Global Investment Company, LLC | Image capture system |
9129506, | Jul 12 2011 | CERNER INNOVATION, INC , A DELAWARE CORPORATION | Method and process for determining whether an individual suffers a fall requiring assistance |
9147334, | Nov 19 2008 | Proventix Systems, Inc. | System and method for monitoring hospital workflow compliance with a hand hygiene network |
9159215, | Jul 12 2011 | CERNER INNOVATION, INC , A DELAWARE CORPORATION | Method for determining whether an individual leaves a prescribed virtual perimeter |
9269012, | Aug 22 2013 | Amazon Technologies, Inc. | Multi-tracker object tracking |
9292089, | Aug 24 2011 | Amazon Technologies, Inc | Gestural object selection |
9305191, | Nov 17 2009 | Proventix Systems, Inc. | Systems and methods for using a hand hygiene compliance system to improve workflow |
9330987, | Sep 09 2013 | HERMES MICROVISION INCORPORATED B V ; ASML NETHERLANDS B V | Hot spot identification, inspection, and review |
9408561, | Apr 27 2012 | The Curators of the University of Missouri | Activity analysis, fall detection and risk assessment systems and methods |
9489820, | Jul 12 2011 | CERNER INNOVATION, INC , A DELAWARE CORPORATION; CERNER INNOVATION, INC | Method for determining whether an individual leaves a prescribed virtual perimeter |
9519215, | Oct 31 2013 | Irresistible Materials LTD | Composition of matter and molecular resist made therefrom |
9519969, | Jul 12 2011 | CERNER INNOVATION, INC , A DELAWARE CORPORATION; CERNER INNOVATION, INC | System for determining whether an individual suffers a fall requiring assistance |
9524443, | Feb 16 2015 | CERNER INNOVATION, INC , A DELAWARE CORPORATION; CERNER INNOVATION, INC | System for determining whether an individual enters a prescribed virtual zone using 3D blob detection |
9536310, | Jul 12 2011 | CERNER INNOVATION, INC , A DELAWARE CORPORATION; CERNER INNOVATION, INC | System for determining whether an individual suffers a fall requiring assistance |
9538158, | Oct 16 2012 | NG HEALTH VENTURES, LLC; Ocuvera LLC | Medical environment monitoring system |
9563955, | May 15 2013 | Amazon Technologies, Inc | Object tracking techniques |
9597016, | Apr 27 2012 | The Curators of the University of Missouri | Activity analysis, fall detection and risk assessment systems and methods |
9729833, | Jan 17 2014 | CERNER INNOVATION, INC , A DELAWARE CORPORATION; CERNR INNOVATION, INC ; CERNER INNOVATION, INC | Method and system for determining whether an individual takes appropriate measures to prevent the spread of healthcare-associated infections along with centralized monitoring |
9741227, | Jul 12 2011 | CERNER INNOVATION, INC , A DELAWARE CORPORATION; CERNER INNOVATION, INC | Method and process for determining whether an individual suffers a fall requiring assistance |
9892310, | Dec 31 2015 | Cerner Innovation, Inc. | Methods and systems for detecting prohibited objects in a patient room |
9892311, | Dec 31 2015 | Cerner Innovation, Inc. | Detecting unauthorized visitors |
9892611, | Jun 01 2015 | CERNER INNOVATION, INC , A DELAWARE CORPORATION; CERNER INNOVATION, INC | Method for determining whether an individual enters a prescribed virtual zone using skeletal tracking and 3D blob detection |
9905113, | Jul 12 2011 | Cerner Innovation, Inc. | Method for determining whether an individual leaves a prescribed virtual perimeter |
20020015034, | |||
20020038073, | |||
20020077863, | |||
20020101349, | |||
20020115905, | |||
20020183976, | |||
20030037786, | |||
20030070177, | |||
20030092974, | |||
20030095147, | |||
20030135390, | |||
20030140928, | |||
20030227386, | |||
20040019900, | |||
20040052418, | |||
20040054760, | |||
20040097227, | |||
20040116804, | |||
20040193449, | |||
20050038326, | |||
20050182305, | |||
20050231341, | |||
20050249139, | |||
20060004606, | |||
20060047538, | |||
20060049936, | |||
20060058587, | |||
20060089541, | |||
20060092043, | |||
20060107295, | |||
20060145874, | |||
20060261974, | |||
20070085690, | |||
20070118054, | |||
20070120689, | |||
20070129983, | |||
20070136102, | |||
20070136218, | |||
20070159332, | |||
20070279219, | |||
20070296600, | |||
20080001735, | |||
20080001763, | |||
20080002860, | |||
20080004904, | |||
20080009686, | |||
20080015903, | |||
20080021731, | |||
20080071210, | |||
20080087719, | |||
20080106374, | |||
20080126132, | |||
20080228045, | |||
20080236132, | |||
20080249376, | |||
20080267447, | |||
20080277486, | |||
20080281638, | |||
20090082829, | |||
20090091458, | |||
20090099480, | |||
20090112630, | |||
20090119843, | |||
20090177327, | |||
20090224924, | |||
20090278934, | |||
20090322513, | |||
20100117836, | |||
20100169114, | |||
20100169120, | |||
20100172567, | |||
20100176952, | |||
20100188228, | |||
20100205771, | |||
20100245577, | |||
20100285771, | |||
20100305466, | |||
20110018709, | |||
20110022981, | |||
20110025493, | |||
20110025499, | |||
20110035057, | |||
20110035466, | |||
20110054936, | |||
20110068930, | |||
20110077965, | |||
20110087079, | |||
20110087125, | |||
20110087707, | |||
20110102133, | |||
20110102181, | |||
20110106560, | |||
20110106561, | |||
20110175809, | |||
20110190593, | |||
20110227740, | |||
20110245707, | |||
20110254682, | |||
20110288811, | |||
20110295621, | |||
20110301440, | |||
20110313325, | |||
20120016295, | |||
20120025991, | |||
20120026308, | |||
20120075464, | |||
20120092162, | |||
20120098918, | |||
20120140068, | |||
20120154582, | |||
20120212582, | |||
20120259650, | |||
20120314901, | |||
20120323090, | |||
20120323591, | |||
20120323592, | |||
20130027199, | |||
20130028570, | |||
20130120120, | |||
20130122807, | |||
20130127620, | |||
20130184592, | |||
20130265482, | |||
20130309128, | |||
20130332184, | |||
20140039351, | |||
20140070950, | |||
20140081654, | |||
20140085501, | |||
20140086450, | |||
20140108041, | |||
20140155755, | |||
20140191861, | |||
20140213845, | |||
20140267625, | |||
20140267736, | |||
20140327545, | |||
20140328512, | |||
20140333744, | |||
20140333776, | |||
20140354436, | |||
20140365242, | |||
20150057635, | |||
20150109442, | |||
20150206415, | |||
20150269318, | |||
20150278456, | |||
20150294143, | |||
20160022218, | |||
20160070869, | |||
20160093195, | |||
20160127641, | |||
20160180668, | |||
20160183864, | |||
20160217347, | |||
20160253802, | |||
20160267327, | |||
20160314258, | |||
20160324460, | |||
20160360970, | |||
20170055917, | |||
20170084158, | |||
20170091562, | |||
20170109991, | |||
20170143240, | |||
20170193177, | |||
20170193279, | |||
20170193772, | |||
20170195637, | |||
20170289503, | |||
20170337682, | |||
20180018864, | |||
20180068545, | |||
20180104409, | |||
20180114053, | |||
20180137340, | |||
20180144605, | |||
20180189946, | |||
20180190098, | |||
20180357875, | |||
20190029528, | |||
20190043192, | |||
20190057592, | |||
20190122028, | |||
20190205630, | |||
20190206218, | |||
DE19844918, | |||
WO2007081629, | |||
WO2009018422, | |||
WO2012122002, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 22 2015 | KUSENS, NEIL | CERNER INNOVATION, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 047010 | /0879 | |
Dec 22 2015 | KUSENS, MICHAEL | CERNER INNOVATION, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 047010 | /0879 | |
Aug 21 2018 | Cerner Innovation, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Aug 21 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
May 31 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 17 2022 | 4 years fee payment window open |
Jun 17 2023 | 6 months grace period start (w surcharge) |
Dec 17 2023 | patent expiry (for year 4) |
Dec 17 2025 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 17 2026 | 8 years fee payment window open |
Jun 17 2027 | 6 months grace period start (w surcharge) |
Dec 17 2027 | patent expiry (for year 8) |
Dec 17 2029 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 17 2030 | 12 years fee payment window open |
Jun 17 2031 | 6 months grace period start (w surcharge) |
Dec 17 2031 | patent expiry (for year 12) |
Dec 17 2033 | 2 years to revive unintentionally abandoned end. (for year 12) |