A bearing assembly for coupling a proprotor blade to a yoke in a proprotor system. The bearing assembly is positionable within an inboard pocket of a blade arm of the yoke. The proprotor system is operable for use on a tiltrotor aircraft having helicopter and airplane flight modes. The bearing assembly includes a centrifugal force bearing and a shear bearing having an inboard beam coupled therebetween. The centrifugal force bearing has a mating surface, a lateral movement constraint feature and at least one radially extending anti-rotation feature. The inboard beam has a mating surface in a contact relationship with the mating surface of the centrifugal force bearing, a lateral movement constraint feature operably associated with the lateral movement constraint feature of the centrifugal force bearing and at least one radially extending anti-rotation feature that corresponds with the at least one radially extending anti-rotation feature of the centrifugal force bearing.
|
1. A bearing assembly for coupling a proprotor blade to a yoke in a proprotor system, the bearing assembly positionable in an inboard pocket of a blade arm of the yoke, the proprotor system for a tiltrotor aircraft having a helicopter flight mode and an airplane flight mode, the bearing assembly comprising:
a centrifugal force bearing coupleable to the yoke, the centrifugal force bearing having a mating surface, a lateral movement constraint feature and at least one radially extending anti-rotation feature;
a shear bearing coupleable to the yoke; and
an inboard beam coupled between the centrifugal force bearing and the shear bearing, the inboard beam having a mating surface in a contact relationship with the mating surface of the centrifugal force bearing, a lateral movement constraint feature operably associated with the lateral movement constraint feature of the centrifugal force bearing and at least one radially extending anti-rotation feature that corresponds with the at least one radially extending anti-rotation feature of the centrifugal force bearing.
20. A bearing assembly for coupling a proprotor blade to a yoke in a proprotor system, the bearing assembly positionable in an inboard pocket of a blade arm of the yoke, the proprotor system for a tiltrotor aircraft having a helicopter flight mode and an airplane flight mode, the bearing assembly comprising:
a centrifugal force bearing coupleable to the yoke, the centrifugal force bearing having a generally conical mating surface and a plurality of radially extending anti-rotation sockets;
a shear bearing coupleable to the yoke;
an inboard beam coupled between the centrifugal force bearing and the shear bearing, the inboard beam having a generally conical mating surface in a contact relationship with the generally conical mating surface of the centrifugal force bearing and a plurality of radially extending anti-rotation sockets that correspond with the plurality of radially extending anti-rotation sockets of the centrifugal force bearing; and
a plurality of pins that extend into corresponding sockets of the centrifugal force bearing and the inboard beam;
wherein, contact between the generally conical mating surfaces of the centrifugal force bearing and the inboard beam provides a constraint against lateral movement therebetween.
19. A bearing assembly for coupling a proprotor blade to a yoke in a proprotor system, the bearing assembly positionable in an inboard pocket of a blade arm of the yoke, the proprotor system for a tiltrotor aircraft having a helicopter flight mode and an airplane flight mode, the bearing assembly comprising:
a centrifugal force bearing coupleable to the yoke, the centrifugal force bearing having a generally planar mating surface, a generally cylindrical lateral movement constraint feature and a plurality of radially extending anti-rotation sockets;
a shear bearing coupleable to the yoke;
an inboard beam coupled between the centrifugal force bearing and the shear bearing, the inboard beam having a generally planar mating surface in a contact relationship with the generally planar mating surface of the centrifugal force bearing, a generally cylindrical lateral movement constraint feature operably associated with the generally cylindrical lateral movement constraint feature of the centrifugal force bearing and a plurality of radially extending anti-rotation sockets that correspond with the plurality of radially extending anti-rotation sockets of the centrifugal force bearing; and
a plurality of pins that extend into corresponding sockets of the centrifugal force bearing and the inboard beam.
2. The bearing assembly as recited in
3. The bearing assembly as recited in
4. The bearing assembly as recited in
5. The bearing assembly as recited in
6. The bearing assembly as recited in
7. The bearing assembly as recited in
8. The bearing assembly as recited in
9. The bearing assembly as recited in
10. The bearing assembly as recited in
11. The bearing assembly as recited in
12. The bearing assembly as recited in
13. The bearing assembly as recited in
14. The bearing assembly as recited in
15. The bearing assembly as recited in
16. The bearing assembly as recited in
17. The bearing assembly as recited in
18. The bearing assembly as recited in
|
This is a continuation-in-part of co-pending application Ser. No. 15/648,650 filed Jul. 13, 2017.
The present disclosure relates, in general, to proprotor systems operable for use on tiltrotor aircraft having a helicopter flight mode and an airplane flight mode and, in particular, to centrifugal force and shear bearing assemblies with anti-rotation features that are disposed in inboard pockets of a yoke for stiff-in-plane proprotor systems.
Tiltrotor aircraft typically include multiple propulsion assemblies that are positioned near outboard ends of a fixed wing. Each propulsion assembly may include an engine and transmission that provide torque and rotational energy to a drive shaft that rotates a proprotor system including a hub assembly and a plurality of proprotor blades. Typically, at least a portion of each propulsion assembly is rotatable relative to the fixed wing such that the proprotor blades have a generally horizontal plane of rotation providing vertical lift for takeoff, hovering and landing, much like a conventional helicopter, and a generally vertical plane of rotation providing forward thrust for cruising in forward flight with the fixed wing providing lift, much like a conventional propeller driven airplane. In addition, tiltrotor aircraft can be operated in configurations between the helicopter flight mode and the airplane flight mode, which may be referred to as conversion flight mode.
Physical structures have natural frequencies of vibration that can be excited by forces applied thereto as a result of operating parameters and/or environmental conditions. These frequencies are determined, at least in part, by the materials and geometrical dimensions of the structures. In the case of tiltrotor aircraft, certain structures having critical natural frequencies include the fuselage, the fixed wing and various elements of the propulsion assemblies. One important operating parameter of a tiltrotor aircraft is the angular velocity or revolutions per minute (RPM) of the proprotor blades, which may generate excitation frequencies corresponding to 1/rev (1 per revolution), 2/rev, 3/rev, etc. In general, proprotor systems for tiltrotor aircraft should be designed to achieve blade flap or out-of-plane frequencies and lead-lag or in-plane frequencies that are sufficiently distant from these excitation frequencies. For example, certain tiltrotor aircraft have stiff-in-plane proprotor systems with the lead-lag frequency above 1.0/rev, such as between 1.4/rev and 1.6/rev. For each proprotor blade, such stiff-in-plane proprotor systems have utilized three independent shear bearings in series and a centrifugal force bearing positioned outboard of the yoke and within the proprotor blade. It has been found, however, that this design prevents heat dissipation from the centrifugal force bearings during operations. In addition, this design precludes visual inspection of the centrifugal force bearings without blade removal. Further, this design obstructs compact blade fold options that can reduce the overall tiltrotor aircraft footprint during storage.
In a first aspect, the present disclosure is directed to a bearing assembly for coupling a proprotor blade to a yoke in a proprotor system. The bearing assembly is positionable within an inboard pocket of a blade arm of the yoke. The proprotor system is operable for use on a tiltrotor aircraft having helicopter and airplane flight modes. The bearing assembly includes a centrifugal force bearing and a shear bearing having an inboard beam coupled therebetween. The centrifugal force bearing has a mating surface, a lateral movement constraint feature and at least one radially extending anti-rotation feature. The inboard beam has a mating surface in a contact relationship with the mating surface of the centrifugal force bearing, a lateral movement constraint feature operably associated with the lateral movement constraint feature of the centrifugal force bearing and at least one radially extending anti-rotation feature that corresponds with the at least one radially extending anti-rotation feature of the centrifugal force bearing.
In some embodiments, the centrifugal force bearing may be positionable outboard of the shear bearing in the inboard pocket of the blade arm of the yoke. In certain embodiments, the mating surfaces of the centrifugal force bearing and the inboard beam may be generally planar mating surfaces. In other embodiments, the mating surfaces of the centrifugal force bearing and the inboard beam may be generally conical mating surfaces. In additional embodiments, the mating surfaces of the centrifugal force bearing and the inboard beam may include generally planar mating surface sections and generally conical mating surface sections. In some embodiments, at least a portion of the mating surfaces of the centrifugal force bearing and the inboard beam may have a spaced apart relationship.
In certain embodiments, the lateral movement constraint feature and the at least one radially extending anti-rotation feature of the centrifugal force bearing may be integral to one another. In other embodiments, the lateral movement constraint feature and the at least one radially extending anti-rotation feature of the centrifugal force bearing may be independent of one another. In some embodiments, the radially extending anti-rotation features of the centrifugal force bearing and the inboard beam may be radially extending non-cylindrical features such as radially extending multisided geometric prism features including radially extending four-sided geometric prism features. In certain embodiments, the radially extending anti-rotation features of the centrifugal force bearing and the inboard beam may be a plurality of radially extending sockets. In such embodiments, pins may extend into corresponding sockets of the centrifugal force bearing and the inboard beam. Also, in such embodiments, the plurality of radially extending sockets of the centrifugal force bearing and the inboard beam may be at least four radially extending sockets that receive a corresponding at least four pins therein.
In some embodiments, the lateral movement constraint features of the centrifugal force bearing and the inboard beam may be radially extending non-cylindrical features. In other embodiments, the lateral movement constraint features of the centrifugal force bearing and the inboard beam may be radially extending cylindrical features. In certain embodiments, the lateral movement constraint features of the centrifugal force bearing and the inboard beam may be radially extending multisided geometric prism features such as radially extending four-sided geometric prism features. In some embodiments, the lateral movement constraint features of the centrifugal force bearing and the inboard beam may be radially extending conical features.
In a second aspect, the present disclosure is directed to a bearing assembly for coupling a proprotor blade to a yoke in a proprotor system. The bearing assembly is positionable within an inboard pocket of a blade arm of the yoke. The proprotor system is operable for use on a tiltrotor aircraft having helicopter and airplane flight modes. The bearing assembly includes a centrifugal force bearing that is coupleable to the yoke. The centrifugal force bearing has a generally planar mating surface, a generally cylindrical lateral movement constraint feature and a plurality of radially extending anti-rotation sockets. A shear bearing is also coupleable to the yoke. An inboard beam is coupled between the centrifugal force bearing and the shear bearing. The inboard beam has a generally planar mating surface in a contact relationship with the generally planar mating surface of the centrifugal force bearing, a generally cylindrical lateral movement constraint feature operably associated with the generally cylindrical lateral movement constraint feature of the centrifugal force bearing and a plurality of radially extending anti-rotation sockets that correspond with the plurality of radially extending anti-rotation sockets of the centrifugal force bearing. A plurality of pins extends into corresponding sockets of the centrifugal force bearing and the inboard beam.
In a third aspect, the present disclosure is directed to a bearing assembly for coupling a proprotor blade to a yoke in a proprotor system. The bearing assembly is positionable within an inboard pocket of a blade arm of the yoke. The proprotor system is operable for use on a tiltrotor aircraft having helicopter and airplane flight modes. The bearing assembly includes a centrifugal force bearing that is coupleable to the yoke. The centrifugal force bearing has a generally conical mating surface and a plurality of radially extending anti-rotation sockets. A shear bearing is also coupleable to the yoke. An inboard beam is coupled between the centrifugal force bearing and the shear bearing. The inboard beam has a generally conical mating surface in a contact relationship with the generally conical mating surface of the centrifugal force bearing and a plurality of radially extending anti-rotation sockets that correspond with the plurality of radially extending anti-rotation sockets of the centrifugal force bearing. A plurality of pins extends into corresponding sockets of the centrifugal force bearing and the inboard beam. Contact between the generally conical mating surfaces of the centrifugal force bearing and the inboard beam provides a constraint against lateral movement therebetween.
In a fourth aspect, the present disclosure is directed to a bearing assembly for coupling a proprotor blade to a yoke in a proprotor system. The bearing assembly is positionable within an inboard pocket of a blade arm of the yoke. The proprotor system is operable for use on a tiltrotor aircraft having helicopter and airplane flight modes. The bearing assembly includes a centrifugal force bearing that is coupleable to the yoke. The centrifugal force bearing has a generally planar mating surface and a non-cylindrical lateral movement constraint feature. A shear bearing is also coupleable to the yoke. An inboard beam is coupled between the centrifugal force bearing and the shear bearing. The inboard beam has a generally planar mating surface in a contact relationship with the generally planar mating surface of the centrifugal force bearing and a non-cylindrical lateral movement constraint feature operably associated with the non-cylindrical lateral movement constraint feature of the centrifugal force bearing.
For a more complete understanding of the features and advantages of the present disclosure, reference is now made to the detailed description along with the accompanying figures in which corresponding numerals in the different figures refer to corresponding parts and in which:
While the making and using of various embodiments of the present disclosure are discussed in detail below, it should be appreciated that the present disclosure provides many applicable inventive concepts, which can be embodied in a wide variety of specific contexts. The specific embodiments discussed herein are merely illustrative and do not delimit the scope of the present disclosure. In the interest of clarity, not all features of an actual implementation may be described in the present disclosure. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation-specific decisions must be made to achieve the developer's specific goals, such as compliance with system-related and business-related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time-consuming but would be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
In the specification, reference may be made to the spatial relationships between various components and to the spatial orientation of various aspects of components as the devices are depicted in the attached drawings. However, as will be recognized by those skilled in the art after a complete reading of the present disclosure, the devices, members, apparatuses, and the like described herein may be positioned in any desired orientation. Thus, the use of terms such as “above,” “below,” “upper,” “lower” or other like terms to describe a spatial relationship between various components or to describe the spatial orientation of aspects of such components should be understood to describe a relative relationship between the components or a spatial orientation of aspects of such components, respectively, as the device described herein may be oriented in any desired direction. As used herein, the term “coupled” may include direct or indirect coupling by any means, including moving and/or non-moving mechanical connections.
Referring to
Located proximate the outboard ends of wing 18 are fixed nacelles 20a, 20b, each of which may house a drive system including an engine and a fixed portion of a transmission. A pylon assembly 22a is rotatable relative to fixed nacelle 20a and wing 18 between a generally horizontal orientation, as best seen in
Each fixed nacelle 20a, 20b may house a drive system including an engine and transmission for supplying torque and rotational energy to a respective proprotor system 24a, 24b. In such embodiments, the drive systems of each fixed nacelle 20a, 20b may be coupled together via one or more drive shafts located in wing 18 such that either drive system can serve as a backup to the other drive system in the event of a failure. Alternatively or additionally, a drive system including an engine and transmission may be located in fuselage 12 for providing torque and rotational energy to both proprotor systems 24a, 24b via one or more drive shafts located in wing 18. In tiltrotor aircraft having drive systems in both the nacelles and fuselage, the fuselage mounted drive system may serve as a backup in the event of failure of either or both of the nacelle mounted drive systems.
In general, proprotor systems for tiltrotor aircraft should be designed to achieve blade flap or out-of-plane frequencies and lead-lag or in-plane frequencies that are sufficiently distant from the excitation frequencies generated by the proprotor systems corresponding to 1/rev (1 per revolution), 2/rev, 3/rev, etc. As an example, if a proprotor system has an operating speed of 360 RPM, the corresponding 1/rev excitation frequency is 6 Hertz (360/60=6 Hz). Similarly, the corresponding 2/rev excitation frequency is 12 Hz and the corresponding 3/rev excitation frequency is 18 Hz. It should be understood by those having ordinary skill in the art that a change in the operating speed of a proprotor system will result in a proportional change in the excitation frequencies generated by the proprotor system. For tiltrotor aircraft, operating in airplane flight mode typically requires less thrust than operating in helicopter flight mode. One way to reduce thrust as well as increase endurance, reduce noise levels and reduce fuel consumption is to reduce the operating speed of the proprotor systems. For example, in helicopter flight mode, the tiltrotor aircraft may operate at 100 percent of design RPM, but in airplane flight mode, the tiltrotor aircraft may operate at a reduced percent of design RPM such as between about 80 percent and about 90 percent of design RPM. Thus, to achieve desirable rotor dynamics, the proprotor systems for tiltrotor aircraft should be designed to avoid the frequencies of 1/rev, 2/rev, 3/rev, etc. for both helicopter flight mode and airplane flight mode operations.
In the illustrated embodiment, each proprotor system 24a, 24b includes four proprotor blades 26 that are positioned circumferentially about a hub assembly at ninety-degree intervals. Proprotor blades 26 and the hub assembly are preferably designed to have sufficient stiffness to achieve a first-in-plane frequency above 1.0/rev. In some embodiments, the first in-plane frequency of proprotor blades 26 may preferably be in a range between about 1.2/rev and about 1.8/rev and more preferably in a range between about 1.4/rev and about 1.6/rev. As another example, proprotor blades 26 and the hub assembly may be designed to have sufficient stiffness to achieve a first-in-plane frequency above 2.0/rev. For example, the first in-plane frequency of proprotor blades 26 may be in a range between about 2.0/rev and about 3.0/rev. In such embodiments, the first in-plane frequency of proprotor blades 26 may preferably be in a range between about 2.2/rev and about 2.8/rev and more preferably in a range between about 2.4/rev and about 2.6/rev.
The desired proprotor blade stiffness and/or stiffness to mass ratio of the present embodiments is achieved using, for example, carbon-based materials for the structural components of proprotor blades 26 such as graphite-based materials, graphene-based materials or other carbon allotropes including carbon nanostructure-based materials such as materials including single-walled and multi-walled carbon nanotubes. In one example, the spar and/or skin of proprotor blades 26 are preferably monolithic structures formed using a broad goods and/or layered tape construction process having a manual or automated layup of a plurality of composite broad goods material layers including carbon fabrics, carbon tapes and combinations thereof, positioned over one or more mandrels having simple geometric surfaces with smooth transitions. After curing and other processing steps, the material layers form a high strength, lightweight solid composite members. In this process, the material thicknesses of the components can be tailoring spanwise and chordwise to the desired stiffness and/or stiffness to mass ratio. The proprotor blade components may be composed of up to about 50 percent, about 60 percent, about 70 percent, about 80 percent, about 90 percent or more of the carbon-based material or materials.
Referring next to
Each spar 114 has a root section 116 that couples of each proprotor blade 112 with yoke 104 via an outboard shear bearing 118 and an inboard centrifugal force and shear bearing assembly 120. Each shear bearing assembly 118 is coupled to an outboard end of yoke 104 with a plurality of connecting members such as bolts, pins or the like. Likewise, each centrifugal force and shear bearing assembly 120 is coupled to an inboard station of yoke 104 with a plurality of connecting members such as bolts, pins or the like. Each centrifugal force and shear bearing assembly 120 includes a rotatably mounted inboard beam 122 having upper and lower arms 122a, 122b. As illustrated, each spar 114 is coupled to a respective inboard beam 122 at upper and lower arms 122a, 122b with a plurality of connecting members such as bolts, pins or the like. In addition, each spar 114 is coupled to a respective shear bearing assembly 118 via a suitable connection (not visible).
Each proprotor blade 112 has a centrifugal force retention load path through centrifugal force and shear bearing assembly 120 to yoke 104. In the illustrated embodiment, each spar 114 includes an integral pitch horn 124 on the leading edge of spar 114 that is coupled to a leading edge pitch link 126 of a pitch control assembly 128 depicted as the rotating portion of a rise and fall swash plate operable to collectively and cyclically control the pitch of proprotor blades 112. In other embodiments, the pitch horns may be independent components coupled to the spars, the pitch horns may be trailing edge pitch horns and/or the pitch links may be trailing edge pitch links. Each proprotor blade 112 has an independent pitch change degree of freedom relative to hub assembly 102 about a pitch change axis 130. The pitch change of each proprotor blade 112 is controlled responsive to changes in position of pitch links 126 and pitch control assembly 128. Rotation of each proprotor blade 112 causes the respective inboard beam 122 to rotate relative to yoke 104 about the respective pitch change axis. Each proprotor blade 112 has an independent tilting degree of freedom relative to hub assembly 102 about a focal point 132 that is coincident with pitch change axis 130. For example, each proprotor blade 112 is operable to tilt relative to hub assembly 102 with lead-lag motion, as indicated by arrow 134 in
Referring additionally to
A centrifugal force and shear bearing assembly 206 is disposed in each of the inboard pockets 204 of yoke 202, for clarity of illustration, only one such centrifugal force and shear bearing assembly 206 is shown in
In the illustrated embodiment, shear bearing 210 includes a radially inwardly disposed journal bearing 210a and a radially outwardly disposed spherical bearing 210b. Journal bearing 210a includes a series of cylindrical elastomeric layers separated by inelastic shims. Spherical bearing 210b includes a series of spherical elastomeric layers separated by inelastic shims. The connections within journal bearing 210a and spherical bearing 210b are permanent and may be made by vulcanizing the elastomeric material directly on adjacent surfaces or by bonded, adhered or otherwise secured the elastomeric material in a non-removable manner to these surfaces. The durometer and thickness of the materials as well as the stiffness, softness and/or spring rate of journal bearing 210a and spherical bearing 210b may be tailored to achieve the desired operational modes based upon the loads and motions expected in the particular application. In other embodiments, shear bearing 210 could be a non elastomer bearing or could include a non elastomer journal bearing and/or a non elastomer spherical incorporating, for example, one or more metal bearings. In the illustrated embodiment, shear bearing 210 is coupled to yoke 202 with a pair of clamp plates 214a, 214b using bolts, pins or other suitable technique.
In the illustrated embodiment, inboard beam 212 includes upper and lower arms 212a, 212b. Inboard beam 212 receives centrifugal force bearing 208 in an opening 212c such that centrifugal force bearing 208 is housed within inboard beam 212. Centrifugal force bearing 208 includes an anti-rotation feature depicted as a boss 208e extending radially inwardly, relative to yoke 202, from inboard member 208a. Boss 208e is received within an anti-rotation feature depicted as cavity 212d of inboard beam 212 that extends radially inwardly, relative to yoke 202, to couple centrifugal force bearing 208 to inboard beam 212 and prevent relative rotation therebetween. An inboard extension 212e of inboard beam 212 is received in an opening 210c of shear bearing 210. In addition, an anti-rotation feature depicted as a boss 212f of inboard extension 212e is received within an anti-rotation feature 210d of shear bearing 210 to couple shear bearing 210 to inboard beam 212 and prevent relative rotation therebetween. In the illustrated embodiment, centrifugal force bearing 208 and shear bearing 210 are coupled together with a bolt 216a and washer 216b.
As best seen in
As discussed herein, a proprotor blade is coupled to upper and lower arms 212a, 212b of inboard beam 212 by bolting or other suitable technique. As the proprotor blades engage in collective and/or cyclic blade pitch operations, inboard beam 212 must rotate therewith about pitch changes axis 218. During these rotary operations, inboard beam 212 causes inboard member 208a of centrifugal force bearing 208 to rotate relative to outboard member 208b due to the anti-rotation connection between inboard beam 212 and inboard member 208a as well as the fixed connection between outboard member 208b and yoke 202. Also, during these rotary operations, inboard beam 212 causes rotation within journal bearing 210a and/or between journal bearing 210a and spherical bearing 210b due to the anti-rotation connection between inboard beam 212 and shear bearing 210 as well as the fixed connection between shear bearing 210 and yoke 202 created by clamp plates 214a, 214b. Thus, a proprotor blade coupled to centrifugal force and shear bearing assembly 206 has a pitch change degree of freedom about pitch change axis 218.
Centrifugal force bearing 208 is positioned outboard of shear bearing 210 and provides a centrifugal force retention path between a proprotor blade and yoke 202. As the proprotor blades engage in blade flap or out-of-plane movements and lead-lag or in-plane movements, spherical bearing 210b enables inboard beam 212 to tilt relative to yoke 202. In the illustrated embodiment, inboard beam 212 is operable to tilt relative to a focal point 220 associated with the spherical elements of spherical bearing 210b, which is preferably coincident with pitch change axis 218. Thus, a proprotor blade coupled to centrifugal force and shear bearing assembly 206 has a tilting degree of freedom about focal point 220.
Use of proprotor systems having the inboard centrifugal force and shear bearing assemblies of the present disclosure reduces the bearing count compared to conventional proprotor systems. The inboard centrifugal force and shear bearing assemblies of the present disclosure also dissipate heat faster than conventional centrifugal force bearings that are disposed outboard of the yoke and within the proprotor blades. In addition, locating the centrifugal force and shear bearing assemblies of the present disclosure in inboard stations enables visual inspection of the bearing assemblies without blade removal. Further, the inboard positioning of the centrifugal force and shear bearing assemblies of the present disclosure allows for compact blade fold options that reduce the tiltrotor aircraft footprint during storage.
Referring to
In addition to the centrifugal forces that are generally in the radially outward direction relative to yoke 202, the components of centrifugal force and shear bearing assembly 206 also experience lateral forces associated with, for example, lead-lag and/or flapping motions of a proprotor blade. As used herein, the term lateral force includes forces that are generally normal to the radial direction of the yoke and/or normal to pitch change axis 218. Such lateral forces may tend to urge centrifugal force bearing 208 out of concentricity with inboard beam 212. In the illustrated embodiment, centrifugal force bearing 208 includes a lateral movement constraint feature depicted as boss 208e that extends radially inwardly. Boss 208e is operably associated with and received within a lateral movement constraint feature depicted as cavity 212d of inboard beam 212 that extends radially inwardly. As illustrated, boss 208e and cavity 212d are each non-cylindrical features depicted as multisided geometric prism features in the form of four-sided geometric prism features. Preferably, boss 208e and cavity 212d have a close fitting relationship that prevents and/or substantially prevents relative lateral movement between centrifugal force bearing 208 and inboard beam 212 during rotary operations.
In addition to the centrifugal forces and lateral forces, the components of centrifugal force and shear bearing assembly 206 also experience torsional forces associated with, for example, pitch change operations of a proprotor blade. Such torsional forces may tend to urge centrifugal force bearing 208 to rotate relative to inboard beam 212. In the illustrated embodiment, centrifugal force bearing 208 includes an anti-rotation feature depicted as boss 208e that extends radially inwardly. Boss 208e corresponds with and is received within an anti-rotation feature depicted as cavity 212d of inboard beam 212 that extends radially inwardly. As illustrated, boss 208e and cavity 212d are each non-cylindrical features depicted as multisided geometric prism features in the form of four-sided geometric prism features. Preferably, boss 208e and cavity 212d have a close fitting relationship that prevents and/or substantially prevents relative rotation between centrifugal force bearing 208 and inboard beam 212 during rotary operations. In the illustrated embodiment, the lateral movement constraint feature and the anti-rotation feature of centrifugal force bearing 208 are integral to one another.
Referring to
In addition to the centrifugal forces that are generally in the radially outward direction relative to yoke 202, the components of centrifugal force and shear bearing assembly 306 also experience lateral forces associated with, for example, lead-lag and/or flapping motions of a proprotor blade. Such lateral forces may tend to urge centrifugal force bearing 308 out of concentricity with inboard beam 312. In the illustrated embodiment, centrifugal force bearing 308 includes a lateral movement constraint feature depicted as boss 308e that extends radially inwardly. Boss 308e is operably associated with and received within a lateral movement constraint feature depicted as cavity 312d of inboard beam 312 that extends radially inwardly. As illustrated, boss 308e and cavity 312d are each cylindrical features. Preferably, boss 308e and cavity 312d have a close fitting relationship that prevents and/or substantially prevents relative lateral movement between centrifugal force bearing 308 and inboard beam 312 during rotary operations.
In addition to the centrifugal forces and lateral forces, the components of centrifugal force and shear bearing assembly 306 also experience torsional forces associated with, for example, pitch change operations of a proprotor blade. Such torsional forces may tend to urge centrifugal force bearing 308 to rotate relative to inboard beam 312. In the illustrated embodiment, centrifugal force bearing 308 includes an anti-rotation feature depicted as a plurality of sockets 308h that extend radially outwardly. Sockets 308h correspond with an anti-rotation feature depicted as sockets 312i of inboard beam 312 that extend radially inwardly. As best seen in
Referring to
In addition to the centrifugal forces that are generally in the radially outward direction relative to yoke 202, the components of centrifugal force and shear bearing assembly 406 also experience lateral forces associated with, for example, lead-lag and/or flapping motions of a proprotor blade. Such lateral forces may tend to urge centrifugal force bearing 408 out of concentricity with inboard beam 412. In the illustrated embodiment, centrifugal force bearing 408 includes a lateral movement constraint feature depicted as mating surface 408f that extends radially inwardly. Mating surface 408f is operably associated with and received within a lateral movement constraint feature depicted as mating surface 412g of inboard beam 412 that extends radially inwardly. As illustrated, mating surface 408f and mating surface 412g are each conical features that provide a self-aligning interface between centrifugal force bearing 408 and inboard beam 412 that prevents and/or substantially prevents relative lateral movement between centrifugal force bearing 408 and inboard beam 412 during rotary operations.
In addition to the centrifugal forces and lateral forces, the components of centrifugal force and shear bearing assembly 406 also experience torsional forces associated with, for example, pitch change operations of a proprotor blade. Such torsional forces may tend to urge centrifugal force bearing 408 to rotate relative to inboard beam 412. In the illustrated embodiment, centrifugal force bearing 408 includes an anti-rotation feature depicted as a plurality of sockets 408h that extend radially outwardly. Sockets 408h correspond with an anti-rotation feature depicted as sockets 412i of inboard beam 412 that extend radially inwardly. As best seen in
The foregoing description of embodiments of the disclosure has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the disclosure to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the disclosure. The embodiments were chosen and described in order to explain the principals of the disclosure and its practical application to enable one skilled in the art to utilize the disclosure in various embodiments and with various modifications as are suited to the particular use contemplated. Other substitutions, modifications, changes and omissions may be made in the design, operating conditions and arrangement of the embodiments without departing from the scope of the present disclosure. Such modifications and combinations of the illustrative embodiments as well as other embodiments will be apparent to persons skilled in the art upon reference to the description. It is, therefore, intended that the appended claims encompass any such modifications or embodiments.
Cravener, Kyle Thomas, Shundo, Ken, Shimek, Glenn Alan, Burnett, Michael Christopher, Dearman, Michael Dean, Kizhakkepat, Amarjit Olenchery
Patent | Priority | Assignee | Title |
11623742, | Apr 02 2018 | BELL TEXTRON RHODE ISLAND INC ; Textron Innovations Inc | Centrifugal force bearing |
Patent | Priority | Assignee | Title |
4028002, | Mar 01 1976 | Lord Corporation | Rotor blade retention system |
4257739, | Sep 11 1978 | BELL HELICOPTER TEXTRON INC , A CORP OF DE | Soft inplane helicopter rotor |
4373862, | Oct 26 1981 | United Technologies Corporation | Rotor blade shaft integrity monitoring system |
4430045, | Apr 24 1979 | BELL HELICOPTER TEXTRON INC , A CORP OF DE | Helicopter power train for distributing rotor blade flapping displacements through a plurality of drive train components |
4585393, | Mar 22 1983 | United Technologies Corporation | Fiber reinforced/epoxy matrix composite helicopter rotor yoke |
5059094, | Oct 13 1989 | BELL HELICOPTER TEXTRON INC | Rotor redundant force retention system for VTOL and VSTOL aircraft |
5186686, | May 11 1990 | Lord Corporation | Link and bearing for rotary coupling |
5316442, | Dec 27 1991 | Aerospatiale Societe Nationale Industrielle | Articulated rotor head for gyroplanes |
5601408, | Mar 18 1996 | Sikorsky Aircraft Corporation | Axisymmetric elastomeric bearing assembly for helicopter rotors |
5620305, | Mar 20 1995 | The Boeing Company | Hub for rotary wing aircraft |
5636970, | May 12 1995 | Airbus Helicopters | Device for damping the drag of the blades of a rotor |
6007298, | Feb 20 1998 | Optimum speed rotor | |
6296444, | Oct 01 1999 | TEXTRON IPMP L P ; BELL HELICOPTER MICHIGAN, INC | Prop rotor hub |
6641365, | Feb 20 1998 | Optimum speed tilt rotor | |
8226355, | Apr 19 2006 | Textron Innovations Inc | Torque coupling for rotary-wing aircraft |
8231346, | Jun 20 2006 | Textron Innovations Inc | CF bearing with steady pitching moment |
8857756, | Jul 19 2012 | Bell Helicopter Textron Inc.; BELL HELICOPTER TEXTRON INC | Elastomeric bearing housing and mating grip for helicopter rotor system |
9090344, | Feb 28 2011 | MARENCO SWISSHELICOPTER AG | Rotor blade coupling device and rotor head |
9126680, | Nov 16 2011 | Textron Innovations Inc | Dual mode rotor hub assembly |
9254915, | Aug 26 2013 | Bell Helicopter Textron Inc. | Rotor system with torque-splitter assembly |
9656747, | Mar 14 2013 | Bell Helicopter Textron Inc. | Soft in-plane and stiff out-of-plane rotor system |
9873507, | Feb 26 2014 | Bell Helicopter Textron Inc.; BELL HELICOPTER TEXTRON INC | Rotorcraft elastomeric bearing assembly |
20120257847, | |||
20130105637, | |||
20140248150, | |||
20190233095, | |||
20190233096, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 30 2017 | KIZHAKKEPAT, AMARJIT OLENCHERY | BELL HELICOPTER TEXTRON INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043529 | /0506 | |
Aug 30 2017 | SHUNDO, KEN | BELL HELICOPTER TEXTRON INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043529 | /0506 | |
Aug 30 2017 | CRAVENER, KYLE THOMAS | BELL HELICOPTER TEXTRON INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043529 | /0506 | |
Aug 30 2017 | BURNETT, MICHAEL CHRISTOPHER | BELL HELICOPTER TEXTRON INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043529 | /0506 | |
Sep 06 2017 | SHIMEK, GLENN ALAN | BELL HELICOPTER TEXTRON INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043529 | /0506 | |
Sep 06 2017 | DEARMAN, MICHAEL DEAN | BELL HELICOPTER TEXTRON INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043529 | /0506 | |
Sep 08 2017 | Textron Innovations Inc. | (assignment on the face of the patent) | / | |||
Jan 10 2018 | BELL HELICOPTER TEXTRON INC | Textron Innovations Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 050923 | /0492 |
Date | Maintenance Fee Events |
Sep 08 2017 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Jun 26 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 24 2022 | 4 years fee payment window open |
Jun 24 2023 | 6 months grace period start (w surcharge) |
Dec 24 2023 | patent expiry (for year 4) |
Dec 24 2025 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 24 2026 | 8 years fee payment window open |
Jun 24 2027 | 6 months grace period start (w surcharge) |
Dec 24 2027 | patent expiry (for year 8) |
Dec 24 2029 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 24 2030 | 12 years fee payment window open |
Jun 24 2031 | 6 months grace period start (w surcharge) |
Dec 24 2031 | patent expiry (for year 12) |
Dec 24 2033 | 2 years to revive unintentionally abandoned end. (for year 12) |