In one embodiment, a coupler system for coupling a top drive and a tool, including a drive member of the top drive configured to transfer torque. The drive member having a housing with a bore therethrough and a window formed substantially laterally through the housing. An adapter of the tool is configured to be inserted through the window of the housing. In another embodiment, a method for coupling a top drive to a tool includes moving, the tool adjacent to the top drive, the tool including an adapter and the top drive including a housing having a window formed therethrough. The method also includes aligning the adapter with the window and inserting the adapter substantially laterally into the window of the housing, thereby longitudinally and torsionally coupling the top drive and the tool.
|
9. A method for coupling a top drive to a tool, comprising:
moving the tool adjacent to the top drive, the tool including an adapter and the top drive including a housing having a window formed therethrough;
aligning the adapter with the window; and
inserting the adapter substantially laterally into the window of the housing, thereby longitudinally and torsionally coupling the top drive and the tool.
1. A coupler system for coupling a top drive and a tool, comprising:
a drive member of the top drive configured to transfer torque, having:
a housing with a bore therethrough; and
a window formed substantially laterally through the housing; an adapter of the tool configured to be inserted through the window of the housing; and
one or more utility connectors longitudinally movable relative to the housing.
14. A coupler system for coupling a top drive and a tool, comprising:
a drive member for a top drive configured to transfer torque and support a weight of the tool, having:
a housing with a bore therethrough;
an adapter of a tool;
a lock plate disposed in the housing and longitudinally movable relative to the housing, wherein the lock plate is configured to connect to the adapter; and
one or more utility connectors longitudinally movable relative to the housing with the lock plate.
2. The coupler system of
3. The coupler system of
5. The coupler system of
7. The coupler system of
8. The coupler system of
an actuator configured to move a lock plate disposed in the housing; and
a fastener configured to couple the adapter to the lock plate.
10. The method of
moving a lock plate disposed within the housing; and
connecting the lock plate to the adapter.
11. The method of
moving one or more utility connectors at least partially disposed within the housing.
12. The method of
supporting a weight of the tool using a compensation assembly.
13. The method of
15. The coupler system of
16. The coupler system of
17. The coupler system of
|
Field of the Invention
The present disclosure generally relates to methods and apparatus for coupling a top drive to a tool for use in a wellbore.
Description of the Related Art
A wellbore is formed to access hydrocarbon bearing formations, e.g. crude oil and/or natural gas, by the use of drilling. Drilling is accomplished by utilizing a drill bit that is mounted on the end of a tubular string, such as a drill string. To drill within the wellbore to a predetermined depth, the drill string is often rotated by a top drive or rotary table on a surface platform or rig, and/or by a downhole motor mounted towards the lower end of the drill string. After drilling to a predetermined depth, the drill string and drill bit are removed, and a section of casing is lowered into the wellbore. An annulus is thus formed between the string of casing and the formation. The casing string is temporarily hung from the surface of the well. The casing string is cemented into the wellbore by circulating cement into the annulus defined between the outer wall of the casing and the borehole. The combination of cement and casing strengthens the wellbore and facilitates the isolation of certain areas of the formation behind the casing for the production of hydrocarbons.
Top drives are equipped with a motor for rotating the drill string. The quill of the top drive is typically threaded for connection to an upper end of the drill pipe in order to transmit torque to the drill string. Conventional top drives also threadedly connect to tools for use in the wellbore. An operator on the rig may be required to connect supply lines, such as hydraulic, pneumatic, data, and/or power lines, between conventional top drives and the tool complete the connection.
In the construction and completion of oil and gas wells, a drilling rig is used to facilitate the insertion and removal of tubular strings into a wellbore. Tubular strings are constructed by inserting a first tubular into a wellbore until only the upper end of the tubular extends out of the wellbore. A gripping member close to the surface of the wellbore then grips the upper end of the first tubular. The upper end of the first tubular has a threaded box end for connecting to a threaded pin end of a second tubular or tool. The second tubular or tool is lifted over the wellbore center, lowered onto or “stabbed into” the upper end of the first tubular, and then rotated such that the pin end of the second tubular or tool is threadedly connected to the box end of the first tubular. However, it is critical not to damage the threads when the pin end is stabbed into the box end, or when torque is applied to overcome the weight of the second tubular resting on the threads. It is also critical that the drilling rig operator lowers the second tubular at the same rate at which the threads draw together.
The threaded connection between conventional top drives and tools allows only for rotation in a single direction. Manual connection of supply lines can be time-consuming and dangerous to rig personnel. Therefore, there is a need for improved apparatus and methods for connecting top drives to tools.
In one embodiment, a coupler system for coupling a top drive and a tool includes a coupler for a top drive. The coupler system includes a housing with a bore therethrough and a window formed through the housing. The coupler system also includes an adapter of a tool having a tab formed on the adapter, wherein the window is configured to receive the tab and torsionally couple the adapter and the housing. The coupler system also includes a lock ring disposed on the housing and rotatable relative to the housing between a locked position and an unlocked position, wherein the lock ring is configured to longitudinally couple the adapter and the coupler in the locked position.
In another embodiment, a coupler system for coupling a top drive and a tool includes a drive member of the top drive configured to transfer torque. The drive member includes a housing with a bore therethrough and a window formed substantially laterally through the housing. The adapter of the tool is configured to be inserted through the window of the housing.
In another embodiment, a method for coupling a top drive to a tool includes moving the tool adjacent to the top drive, wherein the tool includes an adapter and the top drive includes a housing having a window formed therethrough. The method further includes aligning the adapter with the window and inserting the adapter substantially laterally into the window of the housing, thereby longitudinally and torsionally coupling the top drive and the tool.
In yet another embodiment, a coupler system for coupling a top drive and a tool includes a drive member for a top drive configured to transfer torque and support a weight of the tool. The drive member includes a housing with a bore therethrough. The coupler system further includes an adapter of a tool, a lock plate disposed in the housing and longitudinally movable relative to the housing, wherein the lock plate is configured to connect to the adapter, and one or more utility connectors longitudinally movable relative to the housing with the lock plate.
In a further embodiment, a coupler system for coupling a top drive and a tool includes a drive member for a top drive. The drive member includes a housing with a bore therethrough and a quill configured to rotate relative to the housing. The coupler system further includes an adapter of a tool configured to be inserted into the bore of the housing and engage the quill and one or more utility connectors, wherein the one or more utility connectors are rotationally stationary.
So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.
The housing 111 may include two or more sections 111a,b. The sections 111a,b may be integrally formed. The section 111a may be cylindrical in shape. The section 111a may include a window 113. The window 113 may be formed through the outer surface of the section 111a. The window 113 may be formed radially inward to the bore of the housing 111. The window 113 may extend longitudinally from an upper longitudinal end of the section 111b. Additional windows may be formed similar to window 113. The windows may be evenly spaced about a circumference of the housing 111. The section 111a may include a profile 112 formed on an outer surface thereof. The profile 112 may be disposed about a circumference of the section 111a. The profile 112 may have an outer diameter greater than an outer diameter of the section 111a. The profile 112 may be formed between adjacent windows. The profile 112 may be separated into sections by the windows. The profile 112 may have shoulders formed at opposite longitudinal ends thereof. A groove 114 may be formed about a circumference of the housing 111. The groove 114 may be formed between adjacent windows. The groove 114 may be disposed longitudinally between the profile 112 and a shoulder 115 of section 111b. The groove 114 may have an outer diameter equal to an outer diameter of the housing 111.
The housing 111 may include a bell section 111b. A recess may be formed in an inner wall of the bell section 111b below the window 113. The recess may extend longitudinally through the bell section 111b. An inner diameter of the recess may be greater than the inner diameter of the housing section 111a adjacent the window 113. The inner diameter of the recess may be substantially equal to an outer diameter of the housing section 111a. The bell section 111b may be located at a lower longitudinal end of the housing 111. The bell section 111b may be flared radially outward. The flare of the bell section 111b may begin longitudinally below the shoulder 115. The bell section 111b may include the shoulder 115 formed at an upper longitudinal end. The shoulder 115 may be disposed about an outer circumference of the bell section 111b. The shoulder 115 may have an outer diameter greater than the outer diameter of the section 111a.
The adapter 120 of the tool may be tubular having a bore therethrough. The bell section 111b may be configured to receive the adapter 120. The bore of the adapter 120 may be configured to transfer fluid between the drive member 110 and the tool, such as drilling fluid. The adapter 120 may include a lip 121 disposed at an upper longitudinal end. An outer diameter of the lip 121 may be smaller than an outer diameter of the adapter 120. The lip 121 may extend partially longitudinally down the adapter 120. The lip 121 may terminate above a tab 122 of the adapter 120. The tab 122 may be formed on an outer surface of the adapter 120. The tab 122 may project radially outward from the outer surface of the adapter 120. The adapter 120 may include additional tabs (two shown) formed on the outer surface and spaced circumferentially apart from the tab 122. The additional tabs may be spaced evenly around the circumference of the adapter 120. The window 113 may be configured to receive the tab 122 of the adapter 120. The additional tabs may correspond to and be received in the corresponding windows of the housing. Insertion of the tab 122 in the window 113 may torsionally couple the adapter 120 and the housing 111. The adapter 120 and the housing 111 may be bidirectionally torsionally coupled by the tab 122 and the window 113. The side walls of the window 113 may engage and transfer torque to the tab 122 of the adapter 120. A groove 123 may be formed in an outer surface of the tab 122. The groove 123 may be formed circumferentially through the tab 122. The groove 123 may extend radially inward through the tab 122. Shoulders 124a,b may be formed at each longitudinal end of the groove 123.
The lock stop 132 may be formed on the outer surface of the housing 111. The lock stop 132 may be formed on the profile 112. The lock stop 132 may be a protrusion. The lock stop 132 may extend radially outward from the outer surface of the housing 111. The groove 135 may be configured to receive the lock stop 132. The shoulders 136, 137 of the lock ring 131 may engage the lock stop 132. The lock stop 132 may be configured to prevent further rotation of the lock ring 131. The lock ring 131 may be in the unlocked position when the shoulder 136 engages the lock stop 132. The lock ring 131 may be in the locked position when the shoulder 137 engages the lock stop 132.
Next, the lock ring 131 is placed around the housing 111 and the adapter 120 to longitudinally couple the housing 111 and the adapter 120. Fasteners may be inserted through the holes of the flanges 133, 134 (
In order to decouple the top drive and the tool, the lock ring 131 is rotated relative to the housing 111 and the adapter 120. The lock ring 131 is rotated to the unlocked position. The lock stop 132 moves through the groove 135 of the lock ring 131 during rotation of the lock ring 131. The lock stop 132 engages the shoulder 131a of the lock ring 1 to prevent further rotation. The lock ring tab 138 moves out of the groove 123 of the adapter tab 122 as the lock ring 131 rotates. Movement of the lock ring tab 138 out of the groove 123 of the adapter tab 122 longitudinally decouples the adapter 120 and the housing 111. The adapter 120 is then removed from the bore of the housing 111. The tab 122 of the adapter 120 is lowered and removed from the window 113 of the housing 111. Movement of the tab 122 of the adapter 120 out of the window 113 torsionally decouples the adapter 120 and the housing 111.
A coupling member 214 may be at least partially disposed in the bore of the housing 211. The coupling member 214 may be at least partially disposed through the annular flange 211f of the housing 211. The coupling member 214 may be tubular having a bore therethrough. The coupling member 214 may be rotatable relative to the housing 211. The coupling member 214 may have an annular flange 214f at an upper longitudinal end. A tab 215 may be formed on an inner circumference of the coupling member 214. The tab 215 may extend radially inward. The tab may be formed below the flange. The tab 215 may be integrally formed with the coupling member 214. The tab 215 may include tapered surfaces at opposite longitudinal ends. The bearing 212 may be configured to support the coupling member 214. The bearing 212 may be disposed longitudinally between the coupling member 214 and the shoulder 211s. The bearing 212 may be disposed radially between the flange 211f and the coupling member 214. The bearing 212 may transfer the weight of the coupling member 214 through the shoulder 211s and to the housing 211. The bearing 212 may be configured to permit rotation of the coupling member 214 relative to the housing 211. The coupling member 214 may be rotated by an actuator, such as an electric motor, of the top drive.
The adapter 230 of the tool may be tubular having a bore therethrough. The adapter 230 may be configured to fluidly couple the top drive and the tool. The adapter 230 may have a recess 231 formed in an outer circumference of the adapter. The recess 231 may be configured to receive the corresponding tab 215 of the coupling member 214. Reception of the tab 215 in the recess 231 may torsionally couple the coupling member 214 and the adapter 230. The tab 215 and the recess 231 may bidirectionally torsionally couple the coupling member 214 and the adapter 230. The adapter 230 may have a key profile 232 formed at an upper longitudinal end thereof. The key profile 232 may be formed around an outer circumference of the adapter 230. The key profile 232 may include a plurality of grooves formed radially inward from the outer circumference of the adapter 230. The plurality of grooves may extend partially around the circumference of the adapter 230. The key profile 232 may include a plurality of shoulders separated by the plurality of grooves.
The latch assembly 220 may include a wedge 221 and an actuator. The wedge 221 may be disposed on the coupling member 214. The wedge 221 may be disposed at an upper longitudinal end of the coupling member 214. The wedge 221 may rest on an upper surface of the flange 214f of the coupling member. The wedge 221 may have a wedge profile 222 formed on an inner surface. The key profile 232 may correspond to and be configured to receive the wedge profile 222. The wedge 221 may be disposed about the circumference of the adapter 230, when the adapter 230 is inserted into the bore of the coupling member 214. The wedge 221 may have a groove 223 formed in an outer surface opposite from the wedge profile 222. The groove 223 may be configured to receive a tensioning member, such as a chain 224. The wedge 221 may be radially movable between an engaged position and a disengaged position. In the engaged position, the key profile 232 may receive and engage the wedge profile 222. The wedge profile 222 may be configured to support a weight of the adapter 230 and the tool. The wedge 221 may transfer the weight of the adapter 230 and the tool to the coupling member 214. In the engaged position, the wedge profile 222 and key profile 232 may be configured to longitudinally couple the adapter 230 and the coupling member 214.
The adapter 230 may have a shoulder 233 formed on an outer surface. The shoulder 233 may be configured to engage a lower longitudinal end of the coupling member 214. The shoulder 233 may prevent further upward longitudinal movement of the adapter 230 within the bore of the coupling member 214. The shoulder 233 may be configured to longitudinally align the key profile 232 and the wedge profile 222. The shoulder 233 may be configured to longitudinally align the recess 231 and the tab 215.
Alternatively, a linear actuator, such as a piston and cylinder assembly 226, may be configured to move the wedges between the engaged position and the retracted position. The cylinder may be attached at one end to the coupling member 214. The piston and cylinder assembly 226 may rotate relative to the housing 211. The cylinder may receive a hydraulic fluid supply from the top drive. The piston may be received in the cylinder and may be movable between an extended and retracted position by the hydraulic fluid. A piston rod may be connected to the piston at one end and the wedge 221 at another end. The piston rod may transfer the movement of the piston to the wedge 221. Actuation of the piston and cylinder assembly 226 may move the wedge 221 radially inward to the engaged position.
The CMC 200 is operable to torsionally and longitudinally couple the top drive to the tool. First, the adapter 230 of the tool is inserted into the bore of the coupling member 214. Engagement of the coupling member 214 with the shoulder 233 of the adapter 230 prevents further upward longitudinal movement of the adapter 230 relative to the coupling member 214. Engagement of the coupling member 214 with the shoulder 233 of the adapter 230 serves to align the tab 215 and the recess 231. Engagement of the coupling member 214 with the shoulder 233 of the adapter 230 serves to align the key profile 232 and the wedge profile 222. The tab 215 is inserted into the recess 231 of the adapter, thereby torsionally coupling the adapter 230 and the coupling member 214. The tab 215 transfers torque from the coupling member 214 to the adapter 230 through the engagement with the side walls of the recess 231. The piston and cylinder assembly 226 is actuated to move the wedge 221 into the engaged position. The piston and cylinder assembly 226 is actuated to extend the wedge profile 222 into engagement with the key profile 232. The wedge profile 222 engages the key profile 232, thereby longitudinally coupling the adapter 230 and the coupling member 214. The wedge profile 222 transfers the weight of the adapter 230 and the tool to the coupling member 214 during engagement with the key profile 232.
In order to decouple the tool, the piston and cylinder assembly 226 is actuated to retract the wedge 221 from the key profile 232. The piston and cylinder assembly 226 moves the wedge 221 to the disengaged position. Disengagement of the wedge profile 222 from the key profile 232 longitudinally decouples the adapter 230 and the coupling member 214. The adapter 230 is then lowered relative to the housing 211. The tapered surface of the tab 215 forces the tab out of the recess 231. Disengagement of the tab 215 and the recess 231 torsionally decouples the adapter 230 and the coupling member 214.
Alternatively, the chain 224 and tensioner spool 225 may be used to extend and retract the wedge between the engaged position and the disengaged position.
The rotational portion of the drive member 310 may include a quill 312 and a utility transfer assembly 313, such as a slip ring assembly and/or a hydraulic swivel. The quill 312 of the drive member 310 may be disposed in the bore of the housing 311. The quill 312 of the drive member 310 may be tubular having a bore therethrough. The quill 312 may be rotatable relative to the housing 311. The quill 312 may include a utility transfer section and a drive stem 314. The drive stem 314 may be configured to provide torque to the quill 312. The drive stem 314 may include a geared surface. The drive stem 314 may be configured to connect to an actuator, such as an electric motor. The electric motor may be configured to transfer torque to the drive stem 314 to rotate the quill 312.
The utility transfer assembly 313 may be disposed on the quill 312. The utility transfer assembly 313 may be disposed on the quill 312 at the utility transfer section. The utility transfer assembly 313 may be configured to transfer power, data, electronic, hydraulics, and/or pneumatics between the stationary and rotational parts of the drive member 310, such as between the housing 311 and the quill 312. The slip ring assembly may include a ring member having one or more contact rings (such as copper rings) that rotate with the quill 312. The slip ring assembly may include a support housing for supporting one or more contact members (such as brushes) that are non-rotatively coupled to the housing 311. The non-rotating contact members contact the contact rings of the rotating ring member, thereby providing an electrical connection across a rotating interface. In this manner, electronic signals may be sent between the top drive and tool. One or more utility supply lines 315a-c may be disposed along the housing 311. The one or more utility supply lines 315a-c may connect to the utility transfer assembly 313 at one end.
The adapter 330 of the tool may be tubular having a bore therethrough. The adapter 330 may have a profile 331 corresponding to the torque profile 321. The profile 331 may be formed at an upper longitudinal end of the adapter 330. The profile 331 of the adapter 330 may be configured to receive and engage the torque profile 321. The profile 331 of the adapter 330 and the torque profile 321 may be configured to transfer torque between the quill 312 and the adapter 330. The profile 331 of the adapter 330 and the torque profile 321 may bidirectionally torsionally couple the adapter 330 and the quill 312. A groove 332 may be formed about an outer circumference of the adapter 330. The groove 332 may be configured to receive the locking ring 323 and lock the quill 312 to the adapter 330. A utility receiver may be formed at an upper longitudinal end of the adapter 330. The utility receiver may be formed adjacent the profile 331 of the adapter 330. The utility receiver may be configured to connect to the utility connector. The utility receiver and utility connector may be configured to transfer power, data, electronic, hydraulics, and/or pneumatics between the quill 312 and the adapter 330.
In order to decouple the top drive and the tool, the piston and cylinder assembly 324 is actuated to move the locking plate 325 to the disengaged position to longitudinally decouple the adapter 330 and the housing 311. The support plate 333 is no longer disposed in the recess of the locking plate 325. The locking pins 327 retract out of the holes 335 of the support plate 333. The lock ring 323 is removed from the groove 332 of the adapter 330. The adapter 330 is lowered longitudinally relative to the quill 312 to disengage the profile 331 of the adapter 330 from the torque profile 321. Disengagement of the profile 331 of the adapter 330 from the torque profile 321 torsionally decouples the adapter 330 and the quill 312.
The housing 411 may have a window 415 formed substantially horizontally or laterally through an outer wall. The window 415 may be formed at an angle relative to a horizontal axis of the housing 411. The window 415 may be formed at an angle about 30 degrees or less from the horizontal axis of the housing 411. The window 415 may extend inward to the recess 413 of the housing 411. The window 415 may have an upper rectangular section and a lower rectangular section. The upper rectangular section may extend longitudinally upwards from the shoulder 414. The lower rectangular section may extend longitudinally downwards through a bottom of the housing 411. The lower rectangular section of the window 415 may be disposed between opposite ends of the shoulder 414. The housing 411 may have one or more channels 416 formed through an outer wall thereof. The channels 416 may be formed longitudinally through the housing 411. The channels 416 may be configured to receive one or more supply lines 417 from the top drive. The supply lines 417 may be configured to supply at least one of power, data, electric, pneumatics, and/or hydraulics.
The sleeve 422 may be tubular having a bore therethrough. The sleeve 422 may include an annular shoulder disposed about an outer circumference of the sleeve 422. The sleeve 422 may be disposed in the bore of the lock plate 421. The sleeve 422 may extend through the bore of the lock plate 421. The groove of the lock plate 421 may be configured to receive the annular shoulder of the sleeve 422. The sleeve may be at least partially disposed in the bore of the housing 411. The sleeve 422 may be longitudinally movable with the lock plate 421 relative to the housing 411. The sleeve 422 may be configured to transfer fluid from the bore of the housing 411 to a bore of the adapter 430. The sleeve 422 may include one or more seals disposed about an outer circumference. The one or more seals may be configured to engage and seal against the bore of the adapter 430 and the bore of the housing 411. The one or more seals may be configured to prevent fluid from leaking out of the bore of the housing 411 and the bore of the adapter 430.
One or more lock bolts 423 may be disposed in the one or more recesses of the lock plate 421. The lock bolts 423 may be movable between an extended position and a retracted position relative to the recess. The one or more lock bolts 423 may be movable in a direction perpendicular to the longitudinal axis of the bore of the lock plate 421. An actuator, such as a piston and cylinder assembly may be disposed in the one or more recesses of the lock plate 421. The piston and cylinder assembly may be configured to move the one or more lock bolts 423 between the extended and the retracted position. The piston and cylinder assembly may be configured to move the lock bolts 423 into the channels 421c.
The compensation assembly may include an actuator, such as piston and cylinder assembly 426 and a fastener 427. The housing 411 may include a piston chamber. The piston chamber may be formed longitudinally through the housing 411. The piston and cylinder assembly 426 may be disposed in the piston chamber. The piston and cylinder assembly 426 may be configured to move longitudinally relative to the housing 411. The piston and cylinder assembly 426 may be configured to actuate the lock plate 421. The piston and cylinder assembly 426 may be connected to the fastener 427 at a lower longitudinal end. The fastener 427 may be connected to the lock plate 421 at an opposite longitudinal end from the piston and cylinder assembly 426. The fastener 427 may longitudinally couple the lock plate 421 and the piston and cylinder assembly 426. The piston and cylinder assembly 426 may be configured to reduce the amount of weight set down on the threads of the tubular string during connection with a tubular string. The piston and cylinder assembly 426 may be configured to compensate for the downward travel of the top drive and the tool due to the threaded makeup to the tubular string.
The alignment pin 424 may be disposed in the lock plate 421. The alignment pin 424 may extend longitudinally downward from a lower surface of the lock plate 421. The alignment pin 424 may have a conical lower end. The alignment pin 424 may be configured to facilitate alignment of the lock plate 421 and the adapter 430. One or more utility connectors 425 may be configured to connect to the one or more supply lines 417 at an upper longitudinal end. The one or more utility connectors 425 may be formed through the lock plate 421. The one or more utility connectors 425 may extend longitudinally downward from the lower surface of the lock plate 421. The one or more utility connectors 425 may be configured to receive and transfer at least one of power, data, electric, pneumatics, and/or hydraulics.
Referring back to
The head section 431 may have one or more tabs 434 formed at an upper longitudinal end. The tabs 434 may have a hole 435 formed therethrough. The hole 435 may be perpendicular to the bore of the adapter 430. The hole 435 may be configured to receive the lock bolt 423 in the extended position. The channels 421c may be configured to receive the tabs 434. Reception of the lock bolt 423 in the hole 435 may longitudinally couple the adapter 430 and the lock plate 421. The piston and cylinder assembly 426 may be configured to longitudinally move the adapter 430 relative to the housing 411. The piston and cylinder assembly 426 may be configured to compensate for the weight of the adapter 430 and the tool during makeup to the tubular string.
The head section 431 may include one or more utility receivers 432 formed longitudinally therethrough. The utility receivers 432 may connect to one or more supply lines 433. The supply lines 433 may connect to the tool. The utility receivers 432 may be configured to connect to the utility connectors 425. The utility receivers 432 may be configured to transfer power, data, electronic, pneumatics, and/or hydraulics between the top drive and the tool when connected to the utility connectors 425. The head section 431 may have one or more channels disposed longitudinally therethrough. The channels may be configured to receive the supply lines 433.
Referring to
Referring to
In order to decouple the top drive and the tool, the piston and cylinder assembly 426 is actuated to lower the head section 431 onto the shoulder 414 of the housing 414. The piston and cylinder assembly 428 is actuated to retract the lock bolt 423 from the hole 435, thereby longitudinally decoupling the lock plate 421 and the adapter 430. The piston and cylinder assembly 426 is actuated to longitudinally raise the lock plate 421 relative to the adapter 430. The one or more utility connectors 425 disengage from the one or more utility receivers 432. The alignment pin 424 moves out of the alignment recess 436. The sleeve 422 moves out of the bore of the adapter 430. Next, the adapter 430 is removed from the recess 413 of the housing 411. The head section 431 of the adapter 430 is moved substantially horizontally or laterally out through the window 415 of the housing 411, thereby torsionally decoupling the adapter 430 and the housing 411.
The bearing 512 may be disposed in the housing section 511a adjacent the opening. The bearing 513 may be disposed in the support wall 511c adjacent the bore of the housing 511. The quill 514 may be tubular having a bore therethrough. The quill 514 may be disposed in the bore of the housing 511. The quill 514 may extend upward longitudinally from the bore of the housing 511. The bore of the quill 514 may be configured to transfer drilling fluid from the top drive to the tool. The quill 514 may include a gear section 514a. The gear section 514a may be disposed about a circumference of the quill 514. The gear section 514a may include geared teeth formed around an outer circumference. An actuator, such as a motor, may be configured to rotate the quill 514 relative to the housing 511. The gear section 514a may be configured to engage the motor. The gear section 514a may be configured to transfer torque from the motor to the quill 514.
The quill 514 may be supported by the housing 511. The quill 514 may rest on bearing 513. Bearing 513 may be configured to permit rotation of the quill 514 relative to the housing 511. Bearing 513 may be configured to support a downward thrust load from the quill 514. Bearing 512 may be configured to support an upward thrust load from the quill 514. Bearing 512 may be configured to permit rotation of the quill 514 relative to the housing 511. The quill 514 may include a splined section 514b. The splined section 514b may be disposed at a lower longitudinal end of the quill 514. The splined section 514b may be beneath the gear section 514a of the quill 514. Splines may be formed on an outer circumference of the quill 514 at the splined section 514b. Alternatively, the splines may be formed on an inner circumference of the quill 514.
A lip 515 may be disposed at a lower end of the quill 514. The lip 515 may have a groove disposed around a circumference. The groove may be configured to receive a seal. The housing section 511b may have a flange 516 formed at a lower longitudinal end. The flange 516 may be an annular flange. The flange 516 may include one or more recesses 517. The one or more recesses 417 may be rectangular in shape. The one or more recesses 517 may extend outward from an inner surface of the flange 516.
The coupling assembly 520 may include one or more lock bolts 521, one or more actuators, such as one or more piston and cylinder assemblies 522, and one or more utility connectors 523. The one or more lock bolts 521 may be rectangular in shape. The one or more lock bolts 521 may be disposed in the one or more recesses 517. The one or more lock bolts 521 may be radially movable between an extended position and a retracted position. The one or more piston and cylinder assemblies 522 may be configured to move the one or more lock bolts 521 between the extended position and the retracted position. The one or more piston and cylinder assemblies 522 may be disposed in the one or more recesses 517. A fastener 524 may connect a respective piston and cylinder assembly to the housing section 511b. The one or more utility connectors 523 may be disposed on the lower longitudinal end of the flange 516. The one or more utility connectors 523 may be connected at one end to one or more supply lines. The one or more utility connectors 523 may be configured to receive and transfer power, data, electronic, hydraulics, and/or pneumatics to and from the one or more supply lines. The one or more utility connectors 523 may be rotationally stationary. The one or more utility connectors 523 may rotationally stationary during rotation of the quill 514.
The adapter 530 includes a stem 531, a torque connector 532, bearings 533, 534, a tool housing 535, and a utility transfer section 536. The stem 531 may be tubular having a bore therethrough. The stem 531 may have an opening at an upper longitudinal end. The opening may be configured to receive the lip 515 of the quill 514. The stem 531 may have a flange 531a formed at an upper longitudinal end. The torque connector 532 may be disposed at an upper longitudinal end of the stem 531. The torque connector 532 may be disposed on the flange 531a. The torque connector 532 may be integrally formed with the flange 531a. The torque connector 532 may have splines 537 formed on an inner surface. The splines 537 may be configured to engage the splined section 514b of the quill 514. The splines 537 may be configured to provide torsional coupling between the quill 514 and the stem 531. The splines 537 may be configured to transfer torque from the quill 514 to the tool.
The tool housing 535 may be tubular having a bore therethrough. The tool housing 535 may be disposed about a circumference of the stem 531. The tool housing 535 may be rotationally stationary relative to the stem 531. The tool housing 535 may have one or more recesses 535a formed through an outer surface. The one or more recesses 535a may be rectangular in shape. The one or more recesses 535a may extend inward from an outer surface of the tool housing 535. The one or more recesses 535a may be configured to receive the one or more lock bolts 521. A lip 535b may be formed at an upper longitudinal end of the tool housing 535. The lip 535b may be disposed about the outer circumference of the tool housing 535.
Bearing 533 may be disposed longitudinally between the tool housing 535 and the flange 531a. Bearing 533 may be disposed radially between the lip 535b of the tool housing 535 and the outer circumference of the stem 531. Bearing 533 may facilitate rotation of the stem 531 relative to the tool housing 535. Bearing 534 may be disposed longitudinally between the tool housing 535 and a lock nut disposed on the stem 531 above the utility transfer section 536. Bearing 534 may be disposed radially between a lower shoulder of the tool housing 535 and the stem 531. Bearing 534 may facilitate rotation of the stem 531 relative to the tool housing 535.
The utility transfer section 536 may be configured to provide an electrical, pneumatic, and/or hydraulic connection across a rotating interface. The utility transfer section 536 may include a slip ring assembly and/or hydraulic swivel. The slip ring assembly may include a ring member having one or more contact rings (such as copper rings) that rotate with the stem 531. The slip ring assembly may include a support housing for supporting one or more contact members (such as brushes). One or more bearings may be disposed between the support housing and the ring member. The one or more bearings may facilitate rotation of the ring member relative to the support housing. The non-rotating contact members contact the contact rings of the rotating ring member, thereby providing an electrical connection for power, data, and/or electronics across a rotating interface. In this manner, electronic signals may be sent between non-rotating section and the rotating section of the adapter 530. Additionally, the hydraulic swivel may provide transfer of hydraulic fluids for pneumatic and/or hydraulic operation of the tool. The utility transfer section 536 may include one or more supply lines 537 and one or more utility receivers 538. The one or more supply lines 537 may connect the one or more utility receivers 538 to the hydraulic swivel and/or slip ring assembly. The one or more utility receivers 538 may be disposed on an outer surface of the tool housing 535. The one or more utility receivers 538 may be configured to connect to the one or more utility connectors 523. The one or more utility receivers 538 may be configured to transfer power, data, electronic, pneumatics, and/or hydraulics between the top drive and the tool. The one or more utility receivers 538 may be rotationally stationary. The one or more utility receivers 538 may be rotationally stationary during rotation of the stem 531.
In order to decouple the top drive and the tool, the one or more piston and cylinder assemblies 522 are actuated to move the one or more lock bolts 521 radially outward from the one or more recesses 535a. The one or more lock bolts 521 move to the disengaged position, thereby longitudinally decoupling the adapter 530 and the housing 511. The adapter 530 is longitudinally moved relative to the housing 511. The splines 537 move out of engagement with the splined section 514b, thereby torsionally decoupling the quill 514 and the torque connector 532 of the adapter 530.
The quill case 611b may be disposed adjacent the motor case 611a. The quill case 611b may be circular. The quill case 611a may be hollow. The quill case 611a may have a bore therethrough. The quill 613 may be disposed in the bore of the quill case 611a. The quill 613 may extend longitudinally through the bore of the quill case 611a. The quill 613 may extend longitudinally out of the quill case 611a. The quill 613 may be configured to transfer drilling fluid from the top drive to the tool. The gear 614 may be disposed about the quill 613. The gear 614 may be tubular having a bore therethrough. The quill 613 may be disposed through the bore of the gear 614. The gear 614 may have an outer flange 614f. The flange 614f may include gear teeth disposed on an outer circumference. The gear teeth of the flange 614f may be configured to engage the gear teeth of the gear section 612g. The gear section 612g may transfer torque to the gear 614 from the motor 612. The gear 614 may have a splined surface formed along an inner circumference. The splined surface may extend longitudinally through the bore of the gear 614. The swivel 615 may be disposed about the circumference of the quill 613. The swivel 615 may be disposed about the quill 613 above the housing 611. The swivel 615 may be configured to permit the quill 613 to rotate relative to the housing 611.
The plurality of arms 611c may be connected to the quill case 611b. The plurality of arms 611c may extend longitudinally relative to the quill case 611b. The plurality of arms 611c may be spaced evenly around a circumference of the quill case 611b. Each arm may include one or more flanges 618, 619. The one or more flanges 618, 619 may be formed at a lower longitudinal end of the arm. The one or more flanges 618, 619 may have a semi-circular end formed at a lower longitudinal end. A slot 611s may be formed between the one or more flanges 618, 619. The slot 611s may extend longitudinally upwards from the semi-circular end. The slot 611s may extend inward between the one or more flanges 618, 619. A groove 617 may be formed through each of the one or more flanges 618, 619. The groove 617 may extend longitudinally upwards. The groove 617 may extend a substantially similar longitudinal distance as the slot 611s. The groove 617 may extend through the one or more flanges 618, 619. The groove 617 may extend inward to the slot 611s.
The compensation assembly may include a piston and cylinder assembly 622. The piston and cylinder assembly 622 may be disposed at a corner of the upper section 621. The piston and cylinder assembly 622 may be connected to the upper section 621. The piston and cylinder assembly 622 may extend through the upper section 621. The piston and cylinder assembly 622 may extend through a smaller bore of the upper section 621. The piston and cylinder assembly 622 may be partially longitudinally movable within the bore. The piston and cylinder assembly 622 may include annular shoulders on either side of the bore. The annular shoulders may be configured to engage the upper section 621 during operation of the piston and cylinder assembly. The annular shoulders may engage and support the upper section 621. The annular shoulders may restrict longitudinal movement of the piston and cylinder assembly 622 relative to the upper section 621. An upper longitudinal end of the piston and cylinder assembly 622 may be connected to the housing 611. The piston and cylinder assembly 622 may be connected to the quill case 611a. The compensation assembly may include additional piston and cylinder assemblies disposed at other corners of the upper section 621 The compensation assembly 622 may be configured to longitudinally move the frame 620 relative to the housing 611. The piston and cylinder assembly 622 may be configured to reduce the amount of weight set down on the threads of the tubular string during connection with a tubular string. The piston and cylinder assembly 622 may be configured to compensate for the downward travel of the top drive and the tool due to the threaded makeup to the tubular string. The piston and cylinder assembly 622 may be configured to preload a connection with a tubular string. A lower longitudinal end of the piston and cylinder assembly 622 may be configured to engage an outer shoulder of a tool housing 632 to preload the connection.
The frame 620 may include a utility connector 626. The utility connector 626 may be disposed on the upper section 621. The utility connector 626 may be connected at one end to one or more supply lines. The utility connector 626 may be configured to receive and transfer power, data, electronic, hydraulics, and/or pneumatics to and from the one or more supply lines. The utility connector 626 may be rotationally stationary relative to the housing 611 and the frame 620. The utility connector 626 may be rotationally stationary during rotation of the quill 613.
The tool housing 632 may be tubular having a bore therethrough. The tool housing 632 may be disposed about a circumference of the stem 631. The tool housing 632 may be stationary relative to the stem 631. The tool housing 632 may have one or more tabs 632a-c formed on an outer surface. The tabs 632a-c may extend perpendicular to the longitudinal axis of the stem 631. Each of the tabs 632a-c may have a hole 632h formed through a wall. The hole 632h may be configured to receive the lock bolt 623. The tab 632a may be configured to be disposed between the flange 621a and the flange 618. The slot 611s may be configured to receive the tab 632b. The tab 632b may be configured to be disposed between the flanges 618, 619. The tab 632c may be configured to be disposed between the flange 619 and the flange 621b. A lip may be formed at an upper longitudinal end of the tool housing 632. The lip may be disposed around the outer circumference of the tool housing 632. Bearing 634 may be disposed longitudinally between the tool housing 632 and the flange 631a. Bearing 634 may be disposed radially between the lip of the tool housing 632 and the outer circumference of the stem 631. Bearing 634 may facilitate rotation of the stem 631 relative to the tool housing 632. Bearing 635 may be disposed longitudinally between the tool housing 632 and a lock nut disposed on the stem 631 above the utility transfer section 633. Bearing 635 may be disposed radially between a lower shoulder of the tool housing 632 and the stem 631. Bearing 635 may facilitate rotation of the stem 631 relative to the tool housing 632.
The utility transfer section 633 may be configured to provide an electrical and/or hydraulic connection across a rotating interface. The utility transfer section 633 may include a slip ring assembly and/or hydraulic swivel. The slip ring assembly may include a ring member having one or more contact rings (such as copper rings) that rotate with the stem 631. The slip ring assembly may include a support housing for supporting one or more contact members (such as brushes). One or more bearings may be disposed between the support housing and the ring member. The one or more bearings may facilitate rotation of the ring member relative to the support housing. The non-rotating contact members contact the contact rings of the rotating ring member, thereby providing an electrical connection for power, data, and/or electronics across a rotating interface. In this manner, electronic signals may be sent between non-rotating section and the rotating section of the adapter 630. Additionally, the hydraulic swivel may provide transfer of hydraulic fluids for pneumatic and/or hydraulic operation of the tool. The utility transfer section 633 may include one or more supply lines and a utility receiver 636. The one or more supply lines may connect the utility receiver 636 to the hydraulic swivel and/or slip ring assembly. The utility receiver 636 may be disposed on an outer surface of the tool housing 632. The utility receiver 636 may be configured to connect to the utility connector 626. The utility receiver 636 may be configured to transfer power, data, electronic, pneumatics, and/or hydraulics between the top drive and the tool. The utility receiver 636 may be rotationally stationary relative to the tool housing 632. The utility receiver 636 may be rotationally stationary during rotation of the stem 631.
As shown in
The quill 713 may be disposed in the bore of the quill case. The quill 713 may be configured to transfer drilling fluid from the top drive to the tool. The gear 712 may be disposed in the bore of the quill case. The motor may be at least partially disposed in the bore of the quill case. The gear 712 may be disposed about the quill 713. The gear 712 may be tubular having a bore therethrough. The quill 713 may be disposed through the bore of the gear 712. The gear 712 may have an outer flange 712f. The flange 712f may include gear teeth disposed on an outer circumference. The gear teeth of the flange 712f may engage the gear teeth of the gear section. The gear section may transfer torque to the gear 712 from the motor. The gear 712 may have a splined surface formed along an inner circumference. The splined surface may extend longitudinally through the bore of the gear 712. The swivel 714 may be disposed about the circumference of the quill 713. The swivel 714 may be disposed about the quill 713 above the housing 711. The swivel 714 may be configured to permit the quill 713 to rotate relative to the housing 711. One or more utility connectors may be disposed on the housing 711. The one or more utility connectors may be configured to transfer at least one of power, data, electronic, pneumatics, and/or hydraulics between the top drive and the tool. The one or more utility connectors may be rotationally stationary relative to the housing 711. The one or more utility connectors may be rotationally stationary during rotation of the quill 713.
The housing section 711c may be tubular having a bore therethrough. The quill 713 may be at least partially disposed in the bore of the housing section 711c. The gear 712 may be at least partially disposed in the bore of the housing section 711c. The housing section 711c may include a flange 711f at a lower longitudinal end. The flange 711f may include one or more recesses 711r. The one or more recesses 711r may be formed longitudinally through the flange 711f. The housing section 711d may include a hook. The housing section 711d may be configured to connect to a traveling member 701. The hook may rest on a support of the traveling member 701. The housing section 711d may include one or more tabs 711t. The one or more tabs 711t may be configured to connect to a compensation assembly of the traveling member 701. The compensation assembly of the traveling member may include one or more piston and cylinder assemblies 703. The one or more piston and cylinder assemblies 703 of the traveling member may be configured to longitudinally move the drive member 710 and the adapter 730. The one or more piston and cylinder assemblies 703 may lift the hook of the housing section 711d from the support of the traveling member 701. The one or more piston and cylinder assemblies 703 may be configured to reduce the amount of weight set down on the threads of the tubular string during connection with a tubular string. The one or more piston and cylinder assemblies 703 may be configured to compensate for the downward travel of the top drive and the tool due to the threaded makeup to the tubular string.
The compensation assembly may be disposed in the bore of the housing section 711c. The housing section 711c may have an opening at a lower longitudinal end. The opening may be configured to receive the adapter 730 of the tool. The compensation assembly may include an actuator, such as one or more piston and cylinder assemblies 721, a lock ring 722, and a latch ring 723. The one or more piston and cylinder assemblies 721 may be connected to the housing section 711c at one longitudinal end. The one or more piston and cylinder assemblies 721 may be connected to the lock ring 722 at an opposite longitudinal end. The one or more piston and cylinder assemblies 721 may be configured to longitudinally move the lock ring 722 relative to the housing 711. The one or more piston and cylinder assemblies 721 may be configured to reduce the amount of weight set down on the threads of the tubular string during connection with a tubular string. The one or more piston and cylinder assemblies 721 may be configured to compensate for the downward travel of the top drive and the tool due to the threaded makeup to the tubular string.
The lock ring 722 may be disposed in the housing section 711c. The lock ring 722 may be supported by the one or more piston and cylinder assemblies 721. The lock ring 722 may be an annular disk. The lock ring 722 may have a bore therethrough. The bore of the lock ring 722 may be configured to receive the adapter 730. The lock ring 722 may have one or more grooves 724 formed along an outer circumference. The one or more grooves 724 may extend longitudinally through the lock ring 722. The lock ring 722 may include a profile 725. The profile 725 may be disposed on, a lower longitudinal surface of the lock ring 722. The profile 725 may be T-shaped. The profile 725 may extend in arcuate segments about the lock ring 722. The latch ring 723 may be disposed in the bore of the housing section 711c. The latch ring 723 may be an annular disk. The latch ring 723 may be rotatable relative to the housing 711. The latch ring 723 may be rotatable relative to the lock ring 722. The latch ring 723 may have a channel 726 formed in an inner circumference. The channel 726 may include one or more arcuate segments. The channel 726 may be configured to receive the profile 725. The latch ring 723 may include an upper section 723a. The upper section 723a may include one or more arcuate segments. The one or more arcuate segments of the upper section 723a may extend longitudinally through the one or more grooves 724.
The tool housing 735 may be tubular having a bore therethrough. The tool housing 735 may be disposed about the stem 731. The tool housing 735 may include one or more flanges 735f formed on an outer surface. The one or more flanges 735f may be spaced circumferentially apart about the stem 731. The one or more flanges 735f may extend radially outward from the tool housing 735. Each of the one or more flanges 735f may have a groove 735g formed at an upper longitudinal end. The groove 735g may be T-shaped. The groove 735g may extend circumferentially through the flange. The groove 735g may terminate partially through the flange. The groove 735g may be configured to receive the profile 725 of the lock ring 722. Bearing 733 may be disposed longitudinally between the tool housing 735 and the flange 731f. Bearing 733 may be disposed radially between a lip of the tool housing 735 and the outer circumference of the stem 731. Bearing 733 may facilitate rotation of the stem 731 relative to the tool housing 735. Bearing 734 may be disposed longitudinally between the tool housing 735 and a lock nut disposed on the stem 731 and above the utility transfer section 736. Bearing 734 may be disposed radially between a lower shoulder of the tool housing 735 and the stem 731. Bearing 731 may facilitate rotation of the stem 731 relative to the tool housing 735.
The utility transfer section 736 may be configured to provide an electrical and/or hydraulic connection across a rotating interface. The utility transfer section 736 may be configured to transfer at least one of power, data, electronics, hydraulics, and pneumatics between the stationary and rotational parts of the tool. The utility transfer section 736 may include a slip ring assembly and/or hydraulic swivel. The slip ring assembly may include a ring member having one or more contact rings (such as copper rings) that rotate with the stem 731. The slip ring assembly may include a support housing for supporting one or more contact members (such as brushes). One or more bearings may be disposed between the support housing and the ring member. The one or more bearings may facilitate rotation of the ring member relative to the support housing. The non-rotating contact members contact the contact rings of the rotating ring member, thereby providing an electrical connection for power, data, and/or electronics across a rotating interface. In this manner, electronic signals may be sent between non-rotating section and the rotating section of the adapter 730. Additionally, the hydraulic swivel may provide transfer of hydraulic fluids for pneumatic and/or hydraulic operation of the tool. The utility transfer section 736 may include one or more supply lines and one or more utility receivers. The one or more utility receivers may be disposed on the support housing of the utility transfer section 736. The one or more utility receivers may be configured to engage and connect to the one or more utility connectors. The one or more utility receivers may be configured to transfer at least one of power, data, electronics, hydraulics, and pneumatics between the top drive and the tool. The one or more utility receivers may be rotationally stationary relative to the support housing. The one or more utility receivers may be rotationally stationary during rotation of the stem 731. Alternatively, the one or more utility receivers may be disposed on the tool housing 735.
The CMC 700 is operable to torsionally and longitudinally couple the top drive to the tool. First, the adapter 730 is inserted into the housing 711, as shown in
Next, the one or more piston and cylinder assemblies 727 are actuated to rotate the latch ring 723, as shown in
The one or more piston and cylinder assemblies 721 are actuated to longitudinally move the lock ring 722 and the adapter 730 relative to the housing 711, as shown in
Additionally, the compensation assembly of the traveling member 701 can be actuated to provide additional thread compensation, as shown in
In one or more of the embodiments described herein, a coupler system for coupling a top drive and a tool includes a coupler for a top drive. The coupler system includes a housing with a bore therethrough and a window formed through the housing. The coupler system also includes an adapter of a tool having a tab formed on the adapter, wherein the window is configured to receive the tab and torsionally couple the adapter and the housing. The coupler system also includes a lock ring disposed on the housing and rotatable relative to the housing between a locked position and an unlocked position, wherein the lock ring is configured to longitudinally couple the adapter and the coupler in the locked position.
In one or more of the embodiments described herein, a coupler system for coupling a top drive and a tool includes a drive member of the top drive configured to transfer torque. The drive member includes a housing with a bore therethrough and a window formed substantially laterally through the housing. The adapter of the tool is configured to be inserted through the window of the housing.
In one or more of the embodiments described herein, the coupler system further includes a lock plate disposed in the housing.
In one or more of the embodiments described herein, the lock plate is longitudinally movable relative to the housing.
In one or more of the embodiments described herein, the lock plate is configured to connect to the adapter.
In one or more of the embodiments described herein, the coupler system further includes one or more utility connectors longitudinally movable relative to the housing.
In one or more of the embodiments described herein, the one or more utility connectors are configured to transfer at least one of power, data, electronics, hydraulics, and pneumatics.
In one or more of the embodiments described herein, a compensation assembly is configured to support a weight of the tool.
In one or more of the embodiments described herein, the compensation assembly includes an actuator configured to move a lock plate disposed in the housing and a fastener configured to couple the adapter to the lock plate.
In one or more of the embodiments described herein, a method for coupling a top drive to a tool includes moving the tool adjacent to the top drive, the tool including an adapter and the top drive including a housing having a window formed therethrough. The method further includes aligning the adapter with the window and inserting the adapter substantially laterally into the window of the housing, thereby longitudinally and torsionally coupling the top drive and the tool.
In one or more of the embodiments described herein, the method further includes moving a lock plate disposed within the housing.
In one or more of the embodiments described herein, the method further includes moving one or more utility connectors at least partially disposed within the housing.
In one or more of the embodiments described herein, the method further includes connecting the lock plate to the adapter.
In one or more of the embodiments described herein, the method further includes supporting a weight of the tool using a compensation assembly.
In one or more of the embodiments described herein, the method further includes connecting the one or more utility connectors to the adapter to transfer at least one of power, data, electronics, hydraulics, and pneumatics.
In one or more of the embodiments described herein, a coupler system for coupling a top drive and a tool, includes a drive member for a top drive configured to transfer torque and support a weight of the tool. The drive member includes a housing with a bore therethrough. The coupler system further includes an adapter of a tool, a lock plate disposed in the housing and longitudinally movable relative to the housing, wherein the lock plate is configured to connect to the adapter, and one or more utility connectors longitudinally movable relative to the housing with the lock plate.
In one or more of the embodiments described herein, the one or more utility connectors are configured to connect to the adapter.
In one or more of the embodiments described herein, the one or more utility connectors are configured to transfer at least one of power, data, electronics, hydraulics, and pneumatics.
In one or more of the embodiments described herein, the coupler system further includes an actuator disposed in the housing and configured to move and connect the one or more utility connectors to the adapter.
In one or more of the embodiments described herein, a coupler system for coupling a top drive and a tool includes a drive member for a top drive. The drive member includes a housing with a bore therethrough and a quill configured to rotate relative to the housing. The coupler system further includes an adapter of a tool configured to be inserted into the bore of the housing and engage the quill and one or more utility connectors, wherein the one or more utility connectors are rotationally stationary.
In one or more of the embodiments described herein, the one or more utility connectors are configured to transfer at least one of power, data, electronics, hydraulics, and pneumatics.
In one or more of the embodiments described herein, the adapter comprises a utility transfer section configured to transfer at least one of power, data, electronics hydraulics, and pneumatics across a rotating interface.
In one or more of the embodiments described herein, the coupler system further includes a compensation assembly configured to support a weight of the tool.
In one or more of the embodiments described herein, the window is formed in the housing at an angle of about thirty degrees or less relative to a horizontal axis of the housing.
In one or more of the embodiments described herein, the adapter is inserted at an angle of about thirty degrees or less relative to a horizontal axis of the housing.
While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
10030800, | Aug 04 2016 | Beto Engineering and Marketing Co., Ltd. | Push-to-press inflation adaptor for English valves |
1367156, | |||
1610977, | |||
1822444, | |||
1853299, | |||
2266572, | |||
2370354, | |||
2683379, | |||
3147992, | |||
3354951, | |||
3385370, | |||
3662842, | |||
3698426, | |||
3747675, | |||
3766991, | |||
3774697, | |||
3776320, | |||
3842619, | |||
3888318, | |||
3899024, | |||
3913687, | |||
3915244, | |||
3917092, | |||
3964552, | Jan 23 1975 | HUGHES TOOL COMPANY A CORP OF DE | Drive connector with load compensator |
4022284, | Mar 17 1975 | Dresser Industries, Inc. | Automatic alignment system for earth boring rig |
4051587, | Aug 02 1976 | VARCO INTERNATIONAL, INC , A CA CORP | Pile handling apparatus and methods |
4100968, | Aug 30 1976 | Technique for running casing | |
4192155, | Jul 21 1977 | Bralorne Resources Limited | Floating cushion sub |
4199847, | Jan 29 1979 | KVAERNER NATIONAL, INC | Well riser support having elastomeric bearings |
4235469, | May 11 1979 | Den-Con Tool Company | Pipe handling apparatus |
4364407, | Feb 23 1981 | ED V BURGE | Mud saver valve |
4377179, | Oct 28 1980 | Bernhardt & Frederick Co., Inc. | Pressure balanced ball valve device |
4402239, | Apr 30 1979 | Eckel Manufacturing Company, Inc. | Back-up power tongs and method |
4449596, | Aug 03 1982 | VARCO I P, INC | Drilling of wells with top drive unit |
4478244, | Jan 05 1983 | Mud saver valve | |
4497224, | Aug 11 1983 | Eastman Christensen Company | Apparatus for making and breaking screw couplings |
4593773, | Jan 25 1984 | Maritime Hydraulics A.S. | Well drilling assembly |
4647050, | Jul 22 1985 | ANADARKO PETROLEUM CORPORATION, A DE CORP | Stuffing box for a sucker rod pump assembly |
4762187, | Jul 29 1987 | W-N APACHE CORP , WICHITA FALLS, TX , A DE CORP | Internal wrench for a top head drive assembly |
4776617, | Feb 14 1986 | Kabushiki Kaisha Suiken Technology | Telescopic swivel pipe joint |
4779688, | Jul 23 1986 | CMV, INC | Mud saver valve |
4791997, | Jan 07 1988 | VARCO INTERNATIONAL, INC , A CA CORP | Pipe handling apparatus and method |
4813493, | Apr 14 1987 | TRITEN CORPORATION, 5915 BRITTMORE ROAD, HOUSTON, TEXAS 77041 A CORP OF TEXAS | Hydraulic top drive for wells |
4815546, | Apr 02 1987 | W-N Apache Corporation | Top head drive assembly with axially movable quill |
4821814, | Apr 02 1987 | 501 W-N Apache Corporation | Top head drive assembly for earth drilling machine and components thereof |
4844181, | Aug 19 1988 | Floating sub | |
4867236, | Oct 09 1987 | W-N Apache Corporation | Compact casing tongs for use on top head drive earth drilling machine |
4916959, | Feb 22 1988 | Weatherford Lamb, Inc | Long stroke well pumping unit with carriage |
4932253, | May 02 1989 | Rod mounted load cell | |
4955949, | Feb 01 1989 | SMITH INTERNATIONAL, INC A DELAWARE CORPORATION | Mud saver valve with increased flow check valve |
4962819, | Feb 01 1989 | SMITH INTERNATIONAL, INC A DELAWARE CORPORATION | Mud saver valve with replaceable inner sleeve |
4972741, | Oct 13 1988 | FRANKS CASING GREW AND RENTAL TOOLS, INC , A CORP OF LA | Isolated torsional-transfer combined tong apparatus |
4981180, | Jul 14 1989 | NATIONAL-OILWELL, L P | Positive lock of a drive assembly |
4997042, | Jan 03 1990 | Mobil Oil Corporation | Casing circulator and method |
5018350, | May 09 1990 | BENDER COMPANY, THE | Long stroke deep well pumping unit |
5020640, | Sep 10 1988 | Bongers & Deimann | Elevator brake |
5036927, | Mar 10 1989 | W-N Apache Corporation | Apparatus for gripping a down hole tubular for rotation |
5099725, | Oct 19 1990 | FRANK S CASING CREW AND RENTAL TOOLS, INC | Torque transfer apparatus |
5152554, | Dec 18 1990 | LaFleur Petroleum Services, Inc. | Coupling apparatus |
5172940, | Nov 21 1988 | USUI Kokusai Sangyo Kaisha, Ltd. | Connector device for connecting small diameter pipe |
5191939, | Mar 01 1991 | Tam International; TAM INTERNATIONAL, A TX CORP | Casing circulator and method |
5196770, | Dec 12 1988 | HYDRALIFT | Vertically reciprocating constant power drive unit for raising a load step by step |
5215153, | Nov 08 1991 | Apparatus for use in driving or withdrawing such earth entering elements as drills and casings | |
5245877, | Mar 12 1991 | Weatherford U.S., Inc. | Tong load cell assembly |
5282653, | Dec 18 1990 | LaFleur Petroleum Services, Inc.; LAFLEUR PETROLEUM SERVICES, INC A CORP OF TEXAS | Coupling apparatus |
5284214, | Sep 25 1992 | Drill pipe coupling apparatus | |
5297833, | Nov 12 1992 | W-N Apache Corporation | Apparatus for gripping a down hole tubular for support and rotation |
5348351, | Dec 18 1990 | LaFleur Petroleum Services, Inc. | Coupling apparatus |
5385514, | Aug 11 1993 | Excelermalic Inc. | High ratio planetary transmission |
5404767, | Sep 03 1993 | Oil well pump power unit | |
5433279, | Jul 20 1993 | Tesco Corporation | Portable top drive assembly |
5440183, | Jul 12 1991 | DENNE DEVELOPMENTS, LTD | Electromagnetic apparatus for producing linear motion |
5441310, | Mar 04 1994 | FMC TECHNOLOGIES, INC | Cement head quick connector |
5456320, | Dec 06 1993 | Total Tool, Inc. | Casing seal and spool for use in fracturing wells |
5479988, | Nov 30 1991 | APPLETON, ROBERT PATRICK | Mud check valves in drilling apparatus (wells) |
5486223, | Jan 19 1994 | TN International | Metal matrix compositions and method of manufacture thereof |
5501280, | Oct 27 1994 | Halliburton Company | Casing filling and circulating apparatus and method |
5509442, | Mar 28 1995 | Mud saver valve | |
5540095, | Aug 17 1990 | Analog Devices, Inc. | Monolithic accelerometer |
5577566, | Aug 09 1995 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Releasing tool |
5584343, | Apr 28 1995 | Davis-Lynch, Inc.; DAVIS-LYNCH, INC | Method and apparatus for filling and circulating fluid in a wellbore during casing running operations |
5607250, | Jul 13 1994 | Expertest Pty. Ltd. | Quick connect coupling |
5645131, | Jun 14 1994 | SOILMEC S.p.A. | Device for joining threaded rods and tubular casing elements forming a string of a drilling rig |
5664310, | Jun 23 1995 | Bilco Tools, Inc. | Combination power and backup tong support and method |
5682952, | Mar 27 1996 | Tam International | Extendable casing circulator and method |
5735348, | Oct 04 1996 | Frank's International, Inc. | Method and multi-purpose apparatus for dispensing and circulating fluid in wellbore casing |
5769577, | Jul 20 1994 | Lawrence O., Boddy | Removable spinning tool assembly |
5778742, | Nov 07 1995 | Eckel Manufacturing Company, Inc. | Hydraulic backup tong |
5839330, | Jul 31 1996 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Mechanism for connecting and disconnecting tubulars |
5909768, | Jan 17 1997 | FRANK S CASING CREWS AND RENTAL TOOLS, INC | Apparatus and method for improved tubular grip assurance |
5918673, | Oct 04 1996 | Frank's International, Inc.; FRANK S INTERNATIONAL, INC | Method and multi-purpose apparatus for dispensing and circulating fluid in wellbore casing |
5950724, | Sep 04 1996 | ANTARES CAPITAL LP, AS SUCCESSOR AGENT | Lifting top drive cement head |
5971079, | Sep 05 1997 | Casing filling and circulating apparatus | |
5992520, | Sep 15 1997 | Halliburton Energy Services, Inc | Annulus pressure operated downhole choke and associated methods |
6003412, | Apr 20 1998 | ENGLISH, BOYD; WALKOM, KEITH | Back-up tong body |
6011508, | Oct 31 1997 | MAGNEMOTION, INC | Accurate position-sensing and communications for guideway operated vehicles |
6053191, | Feb 13 1997 | Mud-saver valve | |
6101952, | Dec 24 1997 | MAGNEMOTION, INC | Vehicle guidance and switching via magnetic forces |
6102116, | Apr 22 1997 | SOILMEC S P A | Locking device to load and to screw a drill stem and casing tubes for drill rigs |
6142545, | Nov 13 1998 | BJ Services Company | Casing pushdown and rotating tool |
6161617, | Sep 13 1996 | Hitec ASA | Device for connecting casings |
6173777, | Feb 09 1999 | Single valve for a casing filling and circulating apparatus | |
6276450, | May 02 1999 | VARCO I P, INC | Apparatus and method for rapid replacement of upper blowout preventers |
6279654, | May 02 1997 | FRANK S INTERNATIONAL, INC | Method and multi-purpose apparatus for dispensing and circulating fluid in wellbore casing |
6289911, | Apr 16 1999 | Wellbore Integrity Solutions LLC | Mud saver kelly valve |
6309002, | Apr 09 1999 | FRANK S INTERNATIONAL, LLC | Tubular running tool |
6311792, | Oct 08 1999 | NABORS DRILLING TECHNOLOGIES USA, INC | Casing clamp |
6328343, | Aug 14 1998 | ABB Vetco Gray, Inc. | Riser dog screw with fail safe mechanism |
6378630, | Oct 28 1999 | NATIONAL OILWELL VARCO, L P | Locking swivel device |
6390190, | May 11 1998 | OFFSHORE ENERGY SERVICES, INC | Tubular filling system |
6401811, | Apr 30 1999 | FORUM US, INC | Tool tie-down |
6415862, | May 11 1998 | OFFSHORE ENERGY SERVICES, INC | Tubular filling system |
6431626, | Apr 09 1999 | FRANK S INTERNATIONAL, LLC | Tubular running tool |
6443241, | Mar 05 1999 | VARCO I P, INC | Pipe running tool |
6460620, | Nov 29 1999 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Mudsaver valve |
6499701, | Jul 02 1999 | MAGNEMOTION, INC | System for inductive transfer of power, communication and position sensing to a guideway-operated vehicle |
6508132, | Feb 17 1999 | Illinois Tool Works Inc | Dynamic load cell apparatus |
6527047, | Aug 24 1998 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Method and apparatus for connecting tubulars using a top drive |
6536520, | Apr 17 2000 | Wells Fargo Bank, National Association | Top drive casing system |
6571876, | May 24 2001 | Halliburton Energy Services, Inc. | Fill up tool and mud saver for top drives |
6578495, | Nov 23 1999 | MAGNEMOTION, INC | Modular linear motor tracks and methods of fabricating same |
6578632, | Aug 15 2001 | MCCOY GLOBAL INC | Swing mounted fill-up and circulating tool |
6595288, | Oct 04 1996 | Frank's International, Inc. | Method and multi-purpose apparatus for dispensing and circulating fluid in wellbore casing |
6604578, | May 11 1998 | Tubular filling system | |
6606569, | Jul 16 1999 | TEST MEASUREMENT SYSTEMS, INC | Methods and systems for dynamic force measurement |
6622796, | Dec 24 1998 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Apparatus and method for facilitating the connection of tubulars using a top drive |
6637526, | Mar 05 1999 | VARCO I P, INC | Offset elevator for a pipe running tool and a method of using a pipe running tool |
6640824, | Apr 16 1999 | Smith International, Inc. | Mud saver kelly valve |
6666273, | May 10 2002 | Weatherford Lamb, Inc | Valve assembly for use in a wellbore |
6675889, | May 11 1998 | OFFSHORE ENERGY SERVICES, INC | Tubular filling system |
6679333, | Oct 26 2001 | CANRIG DRILLING TECHNOLOGY, LTD | Top drive well casing system and method |
6688398, | Aug 24 1998 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Method and apparatus for connecting tubulars using a top drive |
6691801, | Mar 05 1999 | VARCO I P INC | Load compensator for a pipe running tool |
6705405, | Aug 24 1998 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Apparatus and method for connecting tubulars using a top drive |
6715542, | May 11 1998 | Tubular filling system | |
6719046, | Mar 20 2002 | Apparatus for controlling the annulus of an inner string and casing string | |
6722425, | May 11 1998 | OFFSHORE ENERGY SERVICES, INC | Tubular filling system |
6725938, | Dec 24 1998 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Apparatus and method for facilitating the connection of tubulars using a top drive |
6732819, | Dec 03 2001 | Mudsaver valve with retrievable inner sleeve | |
6732822, | Mar 22 2000 | FRANK S INTERNATIONAL, INC | Method and apparatus for handling tubular goods |
6742584, | Sep 25 1998 | NABORS DRILLING TECHNOLOGIES USA, INC | Apparatus for facilitating the connection of tubulars using a top drive |
6742596, | May 17 2001 | Wells Fargo Bank, National Association | Apparatus and methods for tubular makeup interlock |
6770004, | Mar 26 1999 | CONTITECH USA, INC | Electrically conductive timing belt |
6779599, | Sep 25 1998 | OFFSHORE ENERGY SERVICES, INC | Tubular filling system |
6832656, | Jun 26 2002 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Valve for an internal fill up tool and associated method |
6851476, | Aug 03 2001 | Wells Fargo Bank, National Association | Dual sensor freepoint tool |
6883605, | Nov 27 2002 | OFFSHORE ENERGY SERVICES, INC | Wellbore cleanout tool and method |
6892835, | Jul 29 2002 | Wells Fargo Bank, National Association | Flush mounted spider |
6908121, | Oct 22 2001 | Wells Fargo Bank, National Association | Locking arrangement for a threaded connector |
6925807, | Jul 30 2002 | MOOG INC | Actuator control system for hydraulic devices |
6938697, | May 17 2001 | Wells Fargo Bank, National Association | Apparatus and methods for tubular makeup interlock |
6976298, | Aug 24 1998 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Methods and apparatus for connecting tubulars using a top drive |
6983701, | Oct 01 2001 | MAGNEMOTION, INC | Suspending, guiding and propelling vehicles using magnetic forces |
6994176, | Jul 29 2002 | Wells Fargo Bank, National Association | Adjustable rotating guides for spider or elevator |
7000503, | Apr 27 2004 | MCCOY GLOBAL INC | Support system for power tong assembly |
7001065, | May 05 2003 | Ray, Dishaw | Oilfield thread makeup and breakout verification system and method |
7004259, | Dec 24 1998 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Apparatus and method for facilitating the connection of tubulars using a top drive |
7007753, | Sep 09 2002 | MAKO RENTALS, INC | Top drive swivel apparatus and method |
7017671, | Feb 27 2004 | Mud saver valve | |
7021374, | Aug 24 1998 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Method and apparatus for connecting tubulars using a top drive |
7025130, | Oct 12 2001 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Methods and apparatus to control downhole tools |
7073598, | May 17 2001 | Wells Fargo Bank, National Association | Apparatus and methods for tubular makeup interlock |
7090021, | Aug 24 1998 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Apparatus for connecting tublars using a top drive |
7096948, | Oct 04 1996 | Frank's International, Inc. | Method and multi-purpose apparatus for dispensing and circulating fluid in wellbore casing |
7114235, | Sep 12 2002 | Wells Fargo Bank, National Association | Automated pipe joining system and method |
7128161, | Dec 24 1998 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Apparatus and methods for facilitating the connection of tubulars using a top drive |
7137454, | Jul 22 1998 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Apparatus for facilitating the connection of tubulars using a top drive |
7140443, | Nov 10 2003 | NABORS DRILLING TECHNOLOGIES USA, INC | Pipe handling device, method and system |
7143849, | Jul 29 2002 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Flush mounted spider |
7147254, | Oct 16 2000 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Coupling apparatus |
7159654, | Apr 15 2004 | VARCO I P, INC | Apparatus identification systems and methods |
7178600, | Nov 05 2002 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Apparatus and methods for utilizing a downhole deployment valve |
7178612, | Aug 29 2003 | NATIONAL OILWELL, L P | Automated arm for positioning of drilling tools such as an iron roughneck |
7213656, | Dec 24 1998 | Wells Fargo Bank, National Association | Apparatus and method for facilitating the connection of tubulars using a top drive |
7219744, | Aug 24 1998 | Weatherford/Lamb, Inc. | Method and apparatus for connecting tubulars using a top drive |
7231969, | Jun 07 2004 | VARCO I P INC | Wellbore top drive power systems and methods of use |
7270189, | Nov 09 2004 | NABORS DRILLING TECHNOLOGIES USA, INC | Top drive assembly |
7281451, | Feb 12 2002 | Wells Fargo Bank, National Association | Tong |
7281587, | May 17 2001 | Wells Fargo Bank, National Association | Apparatus and methods for tubular makeup interlock |
7290476, | Oct 20 1998 | Control Products, Inc. | Precision sensor for a hydraulic cylinder |
7303022, | Oct 11 2002 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Wired casing |
7325610, | Apr 17 2000 | Wells Fargo Bank, National Association | Methods and apparatus for handling and drilling with tubulars or casing |
7353880, | Aug 24 1998 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Method and apparatus for connecting tubulars using a top drive |
7373971, | Aug 24 2004 | Crostek Management Corp. | Pump jack and method of use |
7448456, | Jul 29 2002 | Wells Fargo Bank, National Association | Adjustable rotating guides for spider or elevator |
7451826, | Aug 24 1998 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Apparatus for connecting tubulars using a top drive |
7490677, | Jul 05 2006 | Frank's International | Stabbing guide adapted for use with saver sub |
7503397, | Jul 30 2004 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Apparatus and methods of setting and retrieving casing with drilling latch and bottom hole assembly |
7509722, | Sep 02 1997 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Positioning and spinning device |
7513300, | Aug 24 1998 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Casing running and drilling system |
7530799, | Jul 30 2004 | SMITH, NORRIS EDWARD | Long-stroke deep-well pumping unit |
7579941, | Aug 01 2002 | SIENA FUNDING LLC | Trailer cargo detection using ultrasonic transducers |
7591304, | Mar 05 1999 | VARCO I P, INC | Pipe running tool having wireless telemetry |
7617866, | Aug 16 1999 | Wells Fargo Bank, National Association | Methods and apparatus for connecting tubulars using a top drive |
7635026, | Oct 04 1996 | FRANK S INTERNATIONAL, LLC | Methods and devices for forming a wellbore with casing |
7665515, | Jun 10 2005 | MCCOY GLOBAL INC | Casing and drill pipe filling and circulating method |
7665530, | Dec 12 2006 | NATIONAL OILWELL VARCO L P | Tubular grippers and top drive systems |
7665531, | Jul 22 1998 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Apparatus for facilitating the connection of tubulars using a top drive |
7669662, | Aug 24 1998 | Wells Fargo Bank, National Association | Casing feeder |
7690422, | Feb 08 2006 | FRANK S INTERNATIONAL LIMITED | Drill-string connector |
7694730, | Mar 19 2004 | NABORS DRILLING TECHNOLOGIES USA, INC | Spear type blow out preventer |
7694744, | Jan 12 2005 | Wells Fargo Bank, National Association | One-position fill-up and circulating tool and method |
7699121, | Mar 05 1999 | VARCO I P, INC | Pipe running tool having a primary load path |
7712523, | Apr 17 2000 | Wells Fargo Bank, National Association | Top drive casing system |
7730698, | Dec 16 2004 | LAKO TOOL & MANUFACTURING INC | Split crimper for heat sealing packaging material |
7757759, | Apr 27 2006 | Wells Fargo Bank, National Association | Torque sub for use with top drive |
7779922, | May 04 2007 | OMNI ENERGY SERVICES CORP | Breakout device with support structure |
7793719, | Apr 17 2000 | Wells Fargo Bank, National Association | Top drive casing system |
7817062, | Aug 04 2005 | Intelliserv, LLC. | Surface communication apparatus and method for use with drill string telemetry |
7828085, | Dec 20 2005 | NABORS DRILLING TECHNOLOGIES USA, INC | Modular top drive |
7841415, | Mar 22 2007 | NATIONAL OILWELL VARCO L P | Iron roughneck extension systems |
7854265, | Jun 30 2008 | NABORS DRILLING TECHNOLOGIES USA, INC | Pipe gripping assembly with power screw actuator and method of gripping pipe on a rig |
7857043, | Aug 09 2006 | Polished rod rotator | |
7866390, | Oct 04 1996 | FRANK S INTERNATIONAL, LLC | Casing make-up and running tool adapted for fluid and cement control |
7874352, | Mar 05 2003 | Wells Fargo Bank, National Association | Apparatus for gripping a tubular on a drilling rig |
7874361, | Oct 04 1996 | FRANK S INTERNATIONAL, LLC | Methods and devices for forming a wellbore with casing |
7878237, | Mar 19 2004 | NABORS DRILLING TECHNOLOGIES USA, INC | Actuation system for an oilfield tubular handling system |
7878254, | Jun 14 2006 | Motion Metrics International Corp | Systems, apparatus, and methods for autonomous tripping of well pipes |
7882902, | Nov 17 2006 | Wells Fargo Bank, National Association | Top drive interlock |
7896084, | May 17 2001 | Wells Fargo Bank, National Association | Apparatus and methods for tubular makeup interlock |
7918273, | Apr 17 2000 | Wells Fargo Bank, National Association | Top drive casing system |
7958787, | Aug 24 2006 | NABORS DRILLING TECHNOLOGIES USA, INC | Oilfield tubular torque wrench |
7971637, | Feb 26 2009 | Devin International, Inc. | Dual mini well surface control system |
7975768, | Aug 23 2005 | Hydril USA Distribution LLC | Riser joint coupling |
8036829, | Oct 31 2008 | RAVDOS HOLDINGS INC | Apparatus for analysis and control of a reciprocating pump system by determination of a pump card |
8118106, | Mar 11 2008 | WEATHERFORD TECHNOLOGY HOLDINGS, LLC | Flowback tool |
8141642, | May 02 2008 | Wells Fargo Bank, National Association | Fill up and circulation tool and mudsaver valve |
8166730, | Jun 20 2007 | KRONES AG | Device for closing containers with screw caps including quick change mechanism for closing element |
8210268, | Dec 12 2007 | Wells Fargo Bank, National Association | Top drive system |
8256579, | Dec 23 2009 | Elevator car brake | |
8281856, | Apr 27 2006 | Wells Fargo Bank, National Association | Torque sub for use with top drive |
8307903, | Jun 24 2009 | Wells Fargo Bank, National Association | Methods and apparatus for subsea well intervention and subsea wellhead retrieval |
8328527, | Oct 15 2009 | Wells Fargo Bank, National Association | Calculation of downhole pump fillage and control of pump based on said fillage |
8365834, | May 02 2008 | Wells Fargo Bank, National Association | Tubular handling apparatus |
8459361, | Apr 11 2007 | Halliburton Energy Services, Inc | Multipart sliding joint for floating rig |
8505984, | Sep 02 2011 | Connection assembly for tubular goods | |
8567512, | Dec 12 2005 | Wells Fargo Bank, National Association | Apparatus for gripping a tubular on a drilling rig |
8601910, | Aug 06 2009 | FRANK S INTERNATIONAL, LLC | Tubular joining apparatus |
8616134, | Jan 23 2009 | ROCKWELL AUTOMATION, INC | Transport system powered by short block linear synchronous motors |
8624699, | Nov 09 2009 | INDIGO TECHNOLOGIES, INC | Electric coil and method of manufacture |
8636067, | Aug 28 2009 | FRANK S INTERNATIONAL, LLC | Method and apparatus for performing cementing operations on top drive rigs |
8651175, | Jan 14 2011 | NABORS DRILLING TECHNOLOGIES USA, INC | Top drive output torque measurement method |
8668003, | Oct 23 2008 | Seawell Oil Tools AS | Cement head with integrated energy supply for operating valves |
8708055, | May 02 2008 | Wells Fargo Bank, National Association | Apparatus and methods for wedge lock prevention |
8727021, | Dec 12 2007 | Wells Fargo Bank, National Association | Top drive system |
8776898, | May 02 2008 | Wells Fargo Bank, National Association | Apparatus and methods for wedge lock prevention |
8783339, | Jan 15 2010 | FRANK S INTERNATIONAL, LLC | Tubular member adaptor apparatus |
8839884, | Dec 20 2005 | NABORS DRILLING TECHNOLOGIES USA, INC | Direct modular top drive with pipe handler module and methods |
8849954, | Oct 15 2003 | SAMSUNG ELECTRONICS CO , LTD | Apparatus and method for managing multimedia playback |
8851860, | Mar 23 2009 | SSI LIFT CDA 2019 LTD | Adaptive control of an oil or gas well surface-mounted hydraulic pumping system and method |
8858187, | Aug 09 2011 | Wells Fargo Bank, National Association | Reciprocating rod pump for sandy fluids |
8869887, | Jul 06 2011 | Tolteq Group, LLC | System and method for coupling downhole tools |
8893772, | Aug 29 2011 | Modular apparatus for assembling tubular goods | |
8944188, | May 15 2009 | Cardinal Trading Company Pty Ltd | Retaining arrangement, sub adaptor and/or drill spindle |
9068396, | Aug 23 2013 | Halliburton Energy Services, Inc | Anti-stall mechanism |
9068406, | Nov 19 2009 | Wells Fargo Bank, National Association | Tong positioning arm |
9206851, | Aug 16 2012 | The Charles Machine Works, Inc. | Horizontal directional drill pipe drive connection with locking feature |
9528326, | Dec 12 2007 | Wells Fargo Bank, National Association | Method of using a top drive system |
9631438, | May 19 2011 | Subsea Technologies Group Limited | Connector |
20020043403, | |||
20020074132, | |||
20020084069, | |||
20020129934, | |||
20020170720, | |||
20030098150, | |||
20030107260, | |||
20030221519, | |||
20040003490, | |||
20040069497, | |||
20040216924, | |||
20050000691, | |||
20050173154, | |||
20050206163, | |||
20050257933, | |||
20050269072, | |||
20050269104, | |||
20050269105, | |||
20050274508, | |||
20060037784, | |||
20060124353, | |||
20060151181, | |||
20060180315, | |||
20070030167, | |||
20070044973, | |||
20070074588, | |||
20070074874, | |||
20070102992, | |||
20070131416, | |||
20070140801, | |||
20070144730, | |||
20070158076, | |||
20070251699, | |||
20070251701, | |||
20070257811, | |||
20080018603, | |||
20080059073, | |||
20080093127, | |||
20080099196, | |||
20080125876, | |||
20080202812, | |||
20080308281, | |||
20090151934, | |||
20090159294, | |||
20090200038, | |||
20090205820, | |||
20090205827, | |||
20090205836, | |||
20090205837, | |||
20090229837, | |||
20090266532, | |||
20090272537, | |||
20090274544, | |||
20090274545, | |||
20090316528, | |||
20090321086, | |||
20100032162, | |||
20100101805, | |||
20100200222, | |||
20100206583, | |||
20100206584, | |||
20100236777, | |||
20110036586, | |||
20110039086, | |||
20110088495, | |||
20110214919, | |||
20110280104, | |||
20120020808, | |||
20120048574, | |||
20120152530, | |||
20120160517, | |||
20120212326, | |||
20120234107, | |||
20120298376, | |||
20130045116, | |||
20130055858, | |||
20130056977, | |||
20130062074, | |||
20130075077, | |||
20130075106, | |||
20130076099, | |||
20130105178, | |||
20130186638, | |||
20130207382, | |||
20130207388, | |||
20130233624, | |||
20130269926, | |||
20130271576, | |||
20130275100, | |||
20130299247, | |||
20140069720, | |||
20140090856, | |||
20140116686, | |||
20140131052, | |||
20140202767, | |||
20140233804, | |||
20140262521, | |||
20140305662, | |||
20140312716, | |||
20140326468, | |||
20140352944, | |||
20140360780, | |||
20140374168, | |||
20150014063, | |||
20150053424, | |||
20150083391, | |||
20150107385, | |||
20150337648, | |||
20160024862, | |||
20160138348, | |||
20160145954, | |||
20160177639, | |||
20160215592, | |||
20160230481, | |||
20170037683, | |||
20170044854, | |||
20170044875, | |||
20170051568, | |||
20170067303, | |||
20170067320, | |||
20170074075, | |||
20170211327, | |||
20170211343, | |||
20170284164, | |||
AU2012201644, | |||
AU2013205714, | |||
AU2014215938, | |||
CA2707050, | |||
CA2841654, | |||
CA2944327, | |||
CN201810278, | |||
CN2412105, | |||
DE102007016822, | |||
EP250072, | |||
EP1619349, | |||
EP1772715, | |||
EP1961912, | |||
EP1961913, | |||
EP2085566, | |||
EP2322357, | |||
EP3032025, | |||
GB1487948, | |||
GB2077812, | |||
GB2180027, | |||
GB2228025, | |||
GB2314391, | |||
WO2068788, | |||
WO2004079153, | |||
WO2004101417, | |||
WO2007001887, | |||
WO2007070805, | |||
WO2007127737, | |||
WO2008005767, | |||
WO2009076648, | |||
WO200976648, | |||
WO2012100019, | |||
WO2012115717, | |||
WO2014056092, | |||
WO2014182272, | |||
WO2015000023, | |||
WO2015119509, | |||
WO2015127433, | |||
WO2015176121, | |||
WO2016197255, | |||
WO2017044384, |
Date | Maintenance Fee Events |
Jun 23 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Jan 07 2023 | 4 years fee payment window open |
Jul 07 2023 | 6 months grace period start (w surcharge) |
Jan 07 2024 | patent expiry (for year 4) |
Jan 07 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 07 2027 | 8 years fee payment window open |
Jul 07 2027 | 6 months grace period start (w surcharge) |
Jan 07 2028 | patent expiry (for year 8) |
Jan 07 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 07 2031 | 12 years fee payment window open |
Jul 07 2031 | 6 months grace period start (w surcharge) |
Jan 07 2032 | patent expiry (for year 12) |
Jan 07 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |