In one embodiment, a coupler system for coupling a top drive and a tool, including a drive member of the top drive configured to transfer torque. The drive member having a housing with a bore therethrough and a window formed substantially laterally through the housing. An adapter of the tool is configured to be inserted through the window of the housing. In another embodiment, a method for coupling a top drive to a tool includes moving, the tool adjacent to the top drive, the tool including an adapter and the top drive including a housing having a window formed therethrough. The method also includes aligning the adapter with the window and inserting the adapter substantially laterally into the window of the housing, thereby longitudinally and torsionally coupling the top drive and the tool.

Patent
   10527104
Priority
Jul 21 2017
Filed
Jul 21 2017
Issued
Jan 07 2020
Expiry
Oct 18 2037
Extension
89 days
Assg.orig
Entity
Large
0
424
currently ok
9. A method for coupling a top drive to a tool, comprising:
moving the tool adjacent to the top drive, the tool including an adapter and the top drive including a housing having a window formed therethrough;
aligning the adapter with the window; and
inserting the adapter substantially laterally into the window of the housing, thereby longitudinally and torsionally coupling the top drive and the tool.
1. A coupler system for coupling a top drive and a tool, comprising:
a drive member of the top drive configured to transfer torque, having:
a housing with a bore therethrough; and
a window formed substantially laterally through the housing; an adapter of the tool configured to be inserted through the window of the housing; and
one or more utility connectors longitudinally movable relative to the housing.
14. A coupler system for coupling a top drive and a tool, comprising:
a drive member for a top drive configured to transfer torque and support a weight of the tool, having:
a housing with a bore therethrough;
an adapter of a tool;
a lock plate disposed in the housing and longitudinally movable relative to the housing, wherein the lock plate is configured to connect to the adapter; and
one or more utility connectors longitudinally movable relative to the housing with the lock plate.
2. The coupler system of claim 1, wherein the one or more utility connectors are configured to transfer at least one of power, data, electronics, hydraulics, and pneumatics.
3. The coupler system of claim 1, wherein the adapter includes a bore configured to fluidly communicate with the bore of the housing when the adapter is inserted through the window.
4. The coupler system of claim 1, further comprising a lock plate disposed in the housing.
5. The coupler system of claim 4, wherein the lock plate is longitudinally movable relative to the housing.
6. The coupler system of claim 4, wherein the lock plate is configured to connect to the adapter.
7. The coupler system of claim 1, further comprising a compensation assembly configured to support a weight of the tool.
8. The coupler system of claim 7, the compensation assembly comprising:
an actuator configured to move a lock plate disposed in the housing; and
a fastener configured to couple the adapter to the lock plate.
10. The method of claim 9, further comprising:
moving a lock plate disposed within the housing; and
connecting the lock plate to the adapter.
11. The method of claim 9, further comprising:
moving one or more utility connectors at least partially disposed within the housing.
12. The method of claim 11, further comprising:
supporting a weight of the tool using a compensation assembly.
13. The method of claim 11, further comprising connecting the one or more utility connectors to the adapter to transfer at least one of power, data, electronics, hydraulics, and pneumatics.
15. The coupler system of claim 14, wherein the one or more utility connectors are configured to connect to the adapter.
16. The coupler system of claim 15, wherein the one or more utility connectors are configured to transfer at least one of power, data, electronics, hydraulics, and pneumatics.
17. The coupler system of claim 14, further comprising an actuator disposed in the housing and configured to move and connect the one or more utility connectors to the adapter.

Field of the Invention

The present disclosure generally relates to methods and apparatus for coupling a top drive to a tool for use in a wellbore.

Description of the Related Art

A wellbore is formed to access hydrocarbon bearing formations, e.g. crude oil and/or natural gas, by the use of drilling. Drilling is accomplished by utilizing a drill bit that is mounted on the end of a tubular string, such as a drill string. To drill within the wellbore to a predetermined depth, the drill string is often rotated by a top drive or rotary table on a surface platform or rig, and/or by a downhole motor mounted towards the lower end of the drill string. After drilling to a predetermined depth, the drill string and drill bit are removed, and a section of casing is lowered into the wellbore. An annulus is thus formed between the string of casing and the formation. The casing string is temporarily hung from the surface of the well. The casing string is cemented into the wellbore by circulating cement into the annulus defined between the outer wall of the casing and the borehole. The combination of cement and casing strengthens the wellbore and facilitates the isolation of certain areas of the formation behind the casing for the production of hydrocarbons.

Top drives are equipped with a motor for rotating the drill string. The quill of the top drive is typically threaded for connection to an upper end of the drill pipe in order to transmit torque to the drill string. Conventional top drives also threadedly connect to tools for use in the wellbore. An operator on the rig may be required to connect supply lines, such as hydraulic, pneumatic, data, and/or power lines, between conventional top drives and the tool complete the connection.

In the construction and completion of oil and gas wells, a drilling rig is used to facilitate the insertion and removal of tubular strings into a wellbore. Tubular strings are constructed by inserting a first tubular into a wellbore until only the upper end of the tubular extends out of the wellbore. A gripping member close to the surface of the wellbore then grips the upper end of the first tubular. The upper end of the first tubular has a threaded box end for connecting to a threaded pin end of a second tubular or tool. The second tubular or tool is lifted over the wellbore center, lowered onto or “stabbed into” the upper end of the first tubular, and then rotated such that the pin end of the second tubular or tool is threadedly connected to the box end of the first tubular. However, it is critical not to damage the threads when the pin end is stabbed into the box end, or when torque is applied to overcome the weight of the second tubular resting on the threads. It is also critical that the drilling rig operator lowers the second tubular at the same rate at which the threads draw together.

The threaded connection between conventional top drives and tools allows only for rotation in a single direction. Manual connection of supply lines can be time-consuming and dangerous to rig personnel. Therefore, there is a need for improved apparatus and methods for connecting top drives to tools.

In one embodiment, a coupler system for coupling a top drive and a tool includes a coupler for a top drive. The coupler system includes a housing with a bore therethrough and a window formed through the housing. The coupler system also includes an adapter of a tool having a tab formed on the adapter, wherein the window is configured to receive the tab and torsionally couple the adapter and the housing. The coupler system also includes a lock ring disposed on the housing and rotatable relative to the housing between a locked position and an unlocked position, wherein the lock ring is configured to longitudinally couple the adapter and the coupler in the locked position.

In another embodiment, a coupler system for coupling a top drive and a tool includes a drive member of the top drive configured to transfer torque. The drive member includes a housing with a bore therethrough and a window formed substantially laterally through the housing. The adapter of the tool is configured to be inserted through the window of the housing.

In another embodiment, a method for coupling a top drive to a tool includes moving the tool adjacent to the top drive, wherein the tool includes an adapter and the top drive includes a housing having a window formed therethrough. The method further includes aligning the adapter with the window and inserting the adapter substantially laterally into the window of the housing, thereby longitudinally and torsionally coupling the top drive and the tool.

In yet another embodiment, a coupler system for coupling a top drive and a tool includes a drive member for a top drive configured to transfer torque and support a weight of the tool. The drive member includes a housing with a bore therethrough. The coupler system further includes an adapter of a tool, a lock plate disposed in the housing and longitudinally movable relative to the housing, wherein the lock plate is configured to connect to the adapter, and one or more utility connectors longitudinally movable relative to the housing with the lock plate.

In a further embodiment, a coupler system for coupling a top drive and a tool includes a drive member for a top drive. The drive member includes a housing with a bore therethrough and a quill configured to rotate relative to the housing. The coupler system further includes an adapter of a tool configured to be inserted into the bore of the housing and engage the quill and one or more utility connectors, wherein the one or more utility connectors are rotationally stationary.

So that the manner in which the above recited features of the present invention can be understood in detail, a more particular description of the invention, briefly summarized above, may be had by reference to embodiments, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only typical embodiments of this invention and are therefore not to be considered limiting of its scope, for the invention may admit to other equally effective embodiments.

FIG. 1 illustrates an exploded view of a drive member, an adapter, and a locking assembly of a combined multi-coupler system, according to one embodiment.

FIG. 2 illustrates an isometric view of the adapter inserted into the housing of the combined multi-coupler system.

FIG. 3 illustrates an isometric view of the combined multi-coupler system in a locked position.

FIG. 4A illustrates a cross-sectional view of the combined multi-coupler system in an unlocked position.

FIG. 4B illustrates a cross-sectional view of the combined multi-coupler system in the locked position.

FIG. 5 illustrates a cross-sectional view of a drive member, an adapter, and a latch assembly of a combined multi-coupler system, according to a second embodiment.

FIG. 6 illustrates a top-down view of the latch assembly.

FIG. 7 illustrates a cross-sectional view of a drive member, a coupling assembly, and an adapter of a combined multi-coupler, according to a third embodiment.

FIG. 8 illustrates the coupling assembly.

FIG. 9 illustrates a lock plate, according to the third embodiment.

FIG. 10 illustrates a support plate, according to the third embodiment.

FIGS. 11A and 11B illustrate operation of the combined multi-coupler system, according to the third embodiment.

FIG. 12 illustrates a drive member and an adapter of a combined multi-coupler system, according to a fourth embodiment.

FIG. 13A illustrates a cross-sectional view of the housing of the drive member.

FIG. 13B illustrates a bottom-up view of a cross-section of the housing of the drive member.

FIG. 13C illustrates another cross-sectional view of the housing of the drive member.

FIG. 14 illustrates a cross-sectional view of the adapter.

FIGS. 15A-C, 16A-C, and 17A-B illustrate cross-sectional views of the operation of the combined multi-coupler, according to the fourth embodiment.

FIGS. 18A-B illustrate cross-sectional views of a drive member and an adapter of a combined multi-coupler, according to a fifth embodiment.

FIG. 19 illustrates a cross-sectional view of the adapter inserted into a housing of the drive member, according to the fifth embodiment.

FIGS. 20 and 21 illustrate operation of a coupling assembly, according to the fifth embodiment.

FIG. 22 illustrates an exploded view of a combined multi-coupler system, according to a sixth embodiment.

FIG. 23 illustrates a cross-sectional view of a housing, according to the sixth embodiment.

FIG. 24 illustrates a cross-sectional view of a frame, according to the sixth embodiment.

FIG. 25A illustrates a cross-sectional view of an adapter, according to the sixth embodiment.

FIG. 25B illustrates an isometric view of the adapter.

FIGS. 26-31 illustrate operation of the combined multi-coupler, according to the sixth embodiment.

FIG. 32 illustrates a drive member of a combined multi-coupler, according to a seventh embodiment.

FIG. 33 illustrates a cross-sectional view of an adapter, according to the seventh embodiment.

FIG. 34A illustrates a cross-sectional view of the adapter inserted into a housing of the drive member, according to the seventh embodiment.

FIG. 34B illustrates a top-down cross-sectional view of the housing having the adapter inserted, according to the seventh embodiment.

FIGS. 35A-B and 36 illustrate operation of a compensation assembly of the combined multi-coupler, according to the seventh embodiment.

FIG. 37 illustrates operation of a compensation assembly of a traveling member.

FIG. 1 illustrates an exploded view of a combined multi-coupler (CMC) system. The CMC includes a drive member 110, an adapter 120 of a tool, and a locking assembly 130. The drive member 110 may be configured to connect to the top drive. The drive member 110 may be integral with the top drive or other traveling member. The drive member 110 includes a housing 111. The housing 111 may be tubular having a bore therethrough. The housing 111 may be configured to connect to the top drive at an upper longitudinal end thereof. The housing 111 may be integrally formed with the top drive. The bore of the housing 111 may be configured to fluidly couple the top drive to the adapter of the tool.

The housing 111 may include two or more sections 111a,b. The sections 111a,b may be integrally formed. The section 111a may be cylindrical in shape. The section 111a may include a window 113. The window 113 may be formed through the outer surface of the section 111a. The window 113 may be formed radially inward to the bore of the housing 111. The window 113 may extend longitudinally from an upper longitudinal end of the section 111b. Additional windows may be formed similar to window 113. The windows may be evenly spaced about a circumference of the housing 111. The section 111a may include a profile 112 formed on an outer surface thereof. The profile 112 may be disposed about a circumference of the section 111a. The profile 112 may have an outer diameter greater than an outer diameter of the section 111a. The profile 112 may be formed between adjacent windows. The profile 112 may be separated into sections by the windows. The profile 112 may have shoulders formed at opposite longitudinal ends thereof. A groove 114 may be formed about a circumference of the housing 111. The groove 114 may be formed between adjacent windows. The groove 114 may be disposed longitudinally between the profile 112 and a shoulder 115 of section 111b. The groove 114 may have an outer diameter equal to an outer diameter of the housing 111.

The housing 111 may include a bell section 111b. A recess may be formed in an inner wall of the bell section 111b below the window 113. The recess may extend longitudinally through the bell section 111b. An inner diameter of the recess may be greater than the inner diameter of the housing section 111a adjacent the window 113. The inner diameter of the recess may be substantially equal to an outer diameter of the housing section 111a. The bell section 111b may be located at a lower longitudinal end of the housing 111. The bell section 111b may be flared radially outward. The flare of the bell section 111b may begin longitudinally below the shoulder 115. The bell section 111b may include the shoulder 115 formed at an upper longitudinal end. The shoulder 115 may be disposed about an outer circumference of the bell section 111b. The shoulder 115 may have an outer diameter greater than the outer diameter of the section 111a.

The adapter 120 of the tool may be tubular having a bore therethrough. The bell section 111b may be configured to receive the adapter 120. The bore of the adapter 120 may be configured to transfer fluid between the drive member 110 and the tool, such as drilling fluid. The adapter 120 may include a lip 121 disposed at an upper longitudinal end. An outer diameter of the lip 121 may be smaller than an outer diameter of the adapter 120. The lip 121 may extend partially longitudinally down the adapter 120. The lip 121 may terminate above a tab 122 of the adapter 120. The tab 122 may be formed on an outer surface of the adapter 120. The tab 122 may project radially outward from the outer surface of the adapter 120. The adapter 120 may include additional tabs (two shown) formed on the outer surface and spaced circumferentially apart from the tab 122. The additional tabs may be spaced evenly around the circumference of the adapter 120. The window 113 may be configured to receive the tab 122 of the adapter 120. The additional tabs may correspond to and be received in the corresponding windows of the housing. Insertion of the tab 122 in the window 113 may torsionally couple the adapter 120 and the housing 111. The adapter 120 and the housing 111 may be bidirectionally torsionally coupled by the tab 122 and the window 113. The side walls of the window 113 may engage and transfer torque to the tab 122 of the adapter 120. A groove 123 may be formed in an outer surface of the tab 122. The groove 123 may be formed circumferentially through the tab 122. The groove 123 may extend radially inward through the tab 122. Shoulders 124a,b may be formed at each longitudinal end of the groove 123.

FIG. 2 illustrates reception of the adapter 120 in the bore of the housing 111 and the locking assembly 130 disassembled from the housing. FIG. 3 illustrates the locking assembly 130 assembled on the housing 111. The locking assembly 130 may include a lock member, such as lock ring 131, and a lock stop 132. The lock ring 131 may include two or more sections 131a,b. The section 131a may include flanges 133, 134. The flanges 133, 134 may be formed at opposite ends of the section 131a. The section 131b may include corresponding flanges. The flanges 133, 134 may have holes formed therethrough. The holes may be configured to receive fasteners. The fasteners may be configured to connect the sections 131a,b of the lock ring 131. A groove 135 may be formed partially about a circumference of the section 131a. The groove 135 may be formed at an upper end of the section 131a. The groove 135 may extend radially inward through the section 131a. The groove 135 may be u-shaped. Shoulders 136, 137 may be formed at opposite ends of the groove 135. The lock ring 131 may be configured to be disposed about a circumference of the housing 111. The lock ring 131 may include one or more tabs 138 disposed on an inner surface thereof. The lock ring 131 may be rotatable relative to the housing 111 and the adapter 120 between a locked position and an unlocked position. The groove 114 of the section 111a may be configured to receive the one or more tabs 138 in the unlocked position. The groove 123 of the adapter 120 may be configured to receive the one or more tabs 138 in the locked position.

The lock stop 132 may be formed on the outer surface of the housing 111. The lock stop 132 may be formed on the profile 112. The lock stop 132 may be a protrusion. The lock stop 132 may extend radially outward from the outer surface of the housing 111. The groove 135 may be configured to receive the lock stop 132. The shoulders 136, 137 of the lock ring 131 may engage the lock stop 132. The lock stop 132 may be configured to prevent further rotation of the lock ring 131. The lock ring 131 may be in the unlocked position when the shoulder 136 engages the lock stop 132. The lock ring 131 may be in the locked position when the shoulder 137 engages the lock stop 132.

FIGS. 4A and 4B illustrate cross-sectional views of the CMC 100. The section 111a may have an inner shoulder 116 formed on an inner surface of the section 111a. The inner shoulder 116 may be disposed above the window 113. The inner diameter of the housing 111 above the inner shoulder 116 may be greater than the inner diameter of the housing section 111a. The inner shoulder 116 may be configured to engage the lip 121 of the adapter 120. The housing 111 may include a recess formed through an inner surface. The recess may be configured to receive a seal 117. The recess may be formed above the window 113. The recess may be an annular recess. The seal 117 may be an elastomer. The seal 117 may be an annular seal. The seal 117 may be configured to seal against an outer surface of the adapter 120. The seal 117 may prevent fluid from leaking from the bore of the housing 111.

FIG. 4A illustrates the CMC 100 with the lock ring 131 in the unlocked position. FIG. 4B illustrates the CMC 100 with the lock ring 131 in the locked position. The CMC 100 is operable to torsionally and longitudinally couple the top drive to the tool. First, the adapter 120 of the tool is inserted into the bore of the housing 111. The adapter 120 may be raised or the housing 111 lowered to begin the process. As the adapter 120 is inserted into the bore of the housing 111, the tab 122 and window 113 assist in alignment. The tab 122 of the adapter 120 moves upward through the recess of the bell section 111b. The tab 122 of the adapter 120 is inserted into the window 113. The tab 122 of the adapter is disposed between the side walls of the window 113. The adapter 120 continues moving longitudinally upwards through the bore of the housing 111. Engagement of the lip 121 of the adapter 120 and the inner shoulder 116 of the housing 111 prevents further longitudinal movement of the adapter 120. Seal 117 provides a sealing engagement against the outer surface of the adapter 120. Seal 117 prevents fluid from escaping the bore of the housing 111 and the bore of the adapter 120. Engagement of the tab 122 and the side walls of the window 113 provide torsional coupling between the housing 111 and the adapter 120.

Next, the lock ring 131 is placed around the housing 111 and the adapter 120 to longitudinally couple the housing 111 and the adapter 120. Fasteners may be inserted through the holes of the flanges 133, 134 (FIG. 2) to assemble the sections 131a,b of the lock ring 131. Alternatively, the lock ring 131 may already be assembled on the outer surface of the housing 111. The lock ring 131 is in the unlocked position shown in FIG. 4A during insertion of the adapter 120 in the bore of the housing 111. The tab 138 is disposed in the groove 114 in the unlocked position. The lock ring 131 is rotated to move the tab 138 into the groove 123 of the adapter tab 122. Engagement of the lock ring tab 138 and the shoulders 136, 137 of the tab 122 provides longitudinal coupling between the housing 111 and the adapter 120. The lock stop 132 moves through the groove 135 during rotation of the lock ring 131. The lock stop 132 engages the shoulder 131b of the lock ring 131. Engagement of the lock stop 132 and the shoulder 131b of the lock ring 131 prevents further rotation of the lock ring 131. When the lock stop 132 engages the shoulder 131b of the lock ring 131, the lock ring tab 138 is disposed in the groove 123 of the adapter tab 122 and the lock ring 131 is in the locked position.

In order to decouple the top drive and the tool, the lock ring 131 is rotated relative to the housing 111 and the adapter 120. The lock ring 131 is rotated to the unlocked position. The lock stop 132 moves through the groove 135 of the lock ring 131 during rotation of the lock ring 131. The lock stop 132 engages the shoulder 131a of the lock ring 1 to prevent further rotation. The lock ring tab 138 moves out of the groove 123 of the adapter tab 122 as the lock ring 131 rotates. Movement of the lock ring tab 138 out of the groove 123 of the adapter tab 122 longitudinally decouples the adapter 120 and the housing 111. The adapter 120 is then removed from the bore of the housing 111. The tab 122 of the adapter 120 is lowered and removed from the window 113 of the housing 111. Movement of the tab 122 of the adapter 120 out of the window 113 torsionally decouples the adapter 120 and the housing 111.

FIG. 5 illustrates a CMC system 200, according to a second embodiment. The CMC 200 may include a drive member 210, a latch assembly 220, and an adapter 230 of a tool. The drive member 210 may be configured to connect to the top drive or other traveling member. The drive member 210 may be integrally formed with the top drive. The drive member may include a housing 211. The housing 211 may be tubular having a bore therethrough. The housing 211 may be integrally formed with the top drive. The housing 211 may have an annular flange 211f formed at a longitudinal end thereof. The inner diameter of the annular flange 211f may be smaller than an inner diameter of the bore of the housing 211. The flange 211f may have an opening at a lower longitudinal end. The opening may be configured to receive the adapter 230 of the tool. The opening may extend longitudinally upward into the bore of the housing 211. An annular shoulder 211s may be formed on an inner surface of the flange 211f. The annular shoulder may be formed adjacent the opening of the flange 211f. The annular shoulder may extend radially inward from the flange 211f. The annular shoulder 211s may be configured to receive bearings 212, 213 on opposite longitudinal ends.

A coupling member 214 may be at least partially disposed in the bore of the housing 211. The coupling member 214 may be at least partially disposed through the annular flange 211f of the housing 211. The coupling member 214 may be tubular having a bore therethrough. The coupling member 214 may be rotatable relative to the housing 211. The coupling member 214 may have an annular flange 214f at an upper longitudinal end. A tab 215 may be formed on an inner circumference of the coupling member 214. The tab 215 may extend radially inward. The tab may be formed below the flange. The tab 215 may be integrally formed with the coupling member 214. The tab 215 may include tapered surfaces at opposite longitudinal ends. The bearing 212 may be configured to support the coupling member 214. The bearing 212 may be disposed longitudinally between the coupling member 214 and the shoulder 211s. The bearing 212 may be disposed radially between the flange 211f and the coupling member 214. The bearing 212 may transfer the weight of the coupling member 214 through the shoulder 211s and to the housing 211. The bearing 212 may be configured to permit rotation of the coupling member 214 relative to the housing 211. The coupling member 214 may be rotated by an actuator, such as an electric motor, of the top drive.

The adapter 230 of the tool may be tubular having a bore therethrough. The adapter 230 may be configured to fluidly couple the top drive and the tool. The adapter 230 may have a recess 231 formed in an outer circumference of the adapter. The recess 231 may be configured to receive the corresponding tab 215 of the coupling member 214. Reception of the tab 215 in the recess 231 may torsionally couple the coupling member 214 and the adapter 230. The tab 215 and the recess 231 may bidirectionally torsionally couple the coupling member 214 and the adapter 230. The adapter 230 may have a key profile 232 formed at an upper longitudinal end thereof. The key profile 232 may be formed around an outer circumference of the adapter 230. The key profile 232 may include a plurality of grooves formed radially inward from the outer circumference of the adapter 230. The plurality of grooves may extend partially around the circumference of the adapter 230. The key profile 232 may include a plurality of shoulders separated by the plurality of grooves.

The latch assembly 220 may include a wedge 221 and an actuator. The wedge 221 may be disposed on the coupling member 214. The wedge 221 may be disposed at an upper longitudinal end of the coupling member 214. The wedge 221 may rest on an upper surface of the flange 214f of the coupling member. The wedge 221 may have a wedge profile 222 formed on an inner surface. The key profile 232 may correspond to and be configured to receive the wedge profile 222. The wedge 221 may be disposed about the circumference of the adapter 230, when the adapter 230 is inserted into the bore of the coupling member 214. The wedge 221 may have a groove 223 formed in an outer surface opposite from the wedge profile 222. The groove 223 may be configured to receive a tensioning member, such as a chain 224. The wedge 221 may be radially movable between an engaged position and a disengaged position. In the engaged position, the key profile 232 may receive and engage the wedge profile 222. The wedge profile 222 may be configured to support a weight of the adapter 230 and the tool. The wedge 221 may transfer the weight of the adapter 230 and the tool to the coupling member 214. In the engaged position, the wedge profile 222 and key profile 232 may be configured to longitudinally couple the adapter 230 and the coupling member 214.

FIG. 6 illustrates a top down view of the latch assembly 220. The wedge 221 may be an arcuate segment disposed about a circumference of the adapter 230. Additional wedges may be spaced evenly about the adapter 230 and may be similar to the wedge 221. The chain 224 may extend through the groove 223 of the wedge 221. The chain 224 may extend through the grooves of the additional wedges. The chain 224 may be connected at one end to the actuator, such as tensioner spool 225. The tensioner spool 225 may be configured to move the wedge 221 to the engaged position. Increasing the tension on the chain 224 with the tensioner spool 225 may cause the chain 224 to contract in length and move the wedges radially inward to the engaged positon. Biasing members may be disposed about the circumference of the adapter 230 adjacent the key profile 232. The biasing members may be configured to bias the wedges to the disengaged position.

The adapter 230 may have a shoulder 233 formed on an outer surface. The shoulder 233 may be configured to engage a lower longitudinal end of the coupling member 214. The shoulder 233 may prevent further upward longitudinal movement of the adapter 230 within the bore of the coupling member 214. The shoulder 233 may be configured to longitudinally align the key profile 232 and the wedge profile 222. The shoulder 233 may be configured to longitudinally align the recess 231 and the tab 215.

Alternatively, a linear actuator, such as a piston and cylinder assembly 226, may be configured to move the wedges between the engaged position and the retracted position. The cylinder may be attached at one end to the coupling member 214. The piston and cylinder assembly 226 may rotate relative to the housing 211. The cylinder may receive a hydraulic fluid supply from the top drive. The piston may be received in the cylinder and may be movable between an extended and retracted position by the hydraulic fluid. A piston rod may be connected to the piston at one end and the wedge 221 at another end. The piston rod may transfer the movement of the piston to the wedge 221. Actuation of the piston and cylinder assembly 226 may move the wedge 221 radially inward to the engaged position.

The CMC 200 is operable to torsionally and longitudinally couple the top drive to the tool. First, the adapter 230 of the tool is inserted into the bore of the coupling member 214. Engagement of the coupling member 214 with the shoulder 233 of the adapter 230 prevents further upward longitudinal movement of the adapter 230 relative to the coupling member 214. Engagement of the coupling member 214 with the shoulder 233 of the adapter 230 serves to align the tab 215 and the recess 231. Engagement of the coupling member 214 with the shoulder 233 of the adapter 230 serves to align the key profile 232 and the wedge profile 222. The tab 215 is inserted into the recess 231 of the adapter, thereby torsionally coupling the adapter 230 and the coupling member 214. The tab 215 transfers torque from the coupling member 214 to the adapter 230 through the engagement with the side walls of the recess 231. The piston and cylinder assembly 226 is actuated to move the wedge 221 into the engaged position. The piston and cylinder assembly 226 is actuated to extend the wedge profile 222 into engagement with the key profile 232. The wedge profile 222 engages the key profile 232, thereby longitudinally coupling the adapter 230 and the coupling member 214. The wedge profile 222 transfers the weight of the adapter 230 and the tool to the coupling member 214 during engagement with the key profile 232.

In order to decouple the tool, the piston and cylinder assembly 226 is actuated to retract the wedge 221 from the key profile 232. The piston and cylinder assembly 226 moves the wedge 221 to the disengaged position. Disengagement of the wedge profile 222 from the key profile 232 longitudinally decouples the adapter 230 and the coupling member 214. The adapter 230 is then lowered relative to the housing 211. The tapered surface of the tab 215 forces the tab out of the recess 231. Disengagement of the tab 215 and the recess 231 torsionally decouples the adapter 230 and the coupling member 214.

Alternatively, the chain 224 and tensioner spool 225 may be used to extend and retract the wedge between the engaged position and the disengaged position.

FIG. 7 illustrates a CMC system 300, according to a third embodiment. The CMC system 300 may include a drive member 310, a coupling assembly, and an adapter 330 of a tool. The drive member 310 may be configured to connect to the top drive or other traveling member. The drive member may be integrally formed with the top drive. The drive member 310 may include a stationary portion and rotational portion. The stationary portion of the drive member 310 may include a housing 311. The housing 311 may be tubular having a bore therethrough. The housing 311 may have an opening at a lower longitudinal end thereof. The opening and the bore of the housing 311 may be configured to receive the adapter 330 of the tool.

The rotational portion of the drive member 310 may include a quill 312 and a utility transfer assembly 313, such as a slip ring assembly and/or a hydraulic swivel. The quill 312 of the drive member 310 may be disposed in the bore of the housing 311. The quill 312 of the drive member 310 may be tubular having a bore therethrough. The quill 312 may be rotatable relative to the housing 311. The quill 312 may include a utility transfer section and a drive stem 314. The drive stem 314 may be configured to provide torque to the quill 312. The drive stem 314 may include a geared surface. The drive stem 314 may be configured to connect to an actuator, such as an electric motor. The electric motor may be configured to transfer torque to the drive stem 314 to rotate the quill 312.

The utility transfer assembly 313 may be disposed on the quill 312. The utility transfer assembly 313 may be disposed on the quill 312 at the utility transfer section. The utility transfer assembly 313 may be configured to transfer power, data, electronic, hydraulics, and/or pneumatics between the stationary and rotational parts of the drive member 310, such as between the housing 311 and the quill 312. The slip ring assembly may include a ring member having one or more contact rings (such as copper rings) that rotate with the quill 312. The slip ring assembly may include a support housing for supporting one or more contact members (such as brushes) that are non-rotatively coupled to the housing 311. The non-rotating contact members contact the contact rings of the rotating ring member, thereby providing an electrical connection across a rotating interface. In this manner, electronic signals may be sent between the top drive and tool. One or more utility supply lines 315a-c may be disposed along the housing 311. The one or more utility supply lines 315a-c may connect to the utility transfer assembly 313 at one end.

FIG. 8 illustrates the coupling assembly. The coupling assembly may include a torque profile 321 and a utility connector. The torque profile 321 may be configured to engage a corresponding profile of the adapter 330. The utility connector may be disposed adjacent the torque profile 321. The utility connector may be configured to transfer power, data, electronic, hydraulics, and/or pneumatics between the quill 312 and the adapter 330. The coupling assembly may include a groove formed about a circumference of the quill 312. The groove may be configured to receive a lock member, such as a locking ring 323. The locking ring 323 may be configured to engage and lock the quill 312 to the adapter 330.

The adapter 330 of the tool may be tubular having a bore therethrough. The adapter 330 may have a profile 331 corresponding to the torque profile 321. The profile 331 may be formed at an upper longitudinal end of the adapter 330. The profile 331 of the adapter 330 may be configured to receive and engage the torque profile 321. The profile 331 of the adapter 330 and the torque profile 321 may be configured to transfer torque between the quill 312 and the adapter 330. The profile 331 of the adapter 330 and the torque profile 321 may bidirectionally torsionally couple the adapter 330 and the quill 312. A groove 332 may be formed about an outer circumference of the adapter 330. The groove 332 may be configured to receive the locking ring 323 and lock the quill 312 to the adapter 330. A utility receiver may be formed at an upper longitudinal end of the adapter 330. The utility receiver may be formed adjacent the profile 331 of the adapter 330. The utility receiver may be configured to connect to the utility connector. The utility receiver and utility connector may be configured to transfer power, data, electronic, hydraulics, and/or pneumatics between the quill 312 and the adapter 330.

FIG. 9 illustrates a support plate 333 of the adapter 330. The support plate 333 may be disposed about a circumference of the adapter 330. The support plate 333 may be rectangular in shape. The support plate 333 may include a bore formed longitudinally therethrough. The bore of the support plate 333 may be configured to receive the adapter 330. The bore of the support plate 333 may be greater than the outer circumference of the adapter 330. A bearing 334 may be disposed in the bore of the support plate 333. The bearing 334 may be disposed radially between the support plate 333 and the adapter 330. The bearing 334 may be configured to permit rotation of the adapter 330 relative to the support plate 333. One or more holes 335 may be formed in an outer wall of the support plate 333.

FIG. 10 illustrates a support assembly of the coupling assembly. The support assembly may be disposed in the bore of the housing 311. The support assembly may be disposed adjacent the opening of the housing 311. The support assembly may include an actuator, such as a piston and cylinder assembly 324, and a locking plate 325. The locking plate 325 may be configured to support a weight of the adapter 330 and the tool. The locking plate 325 may include two sections 325a,b, shown in FIG. 11A. A corresponding piston and cylinder assembly 324 may be connected to each of the two sections 325a,b. The piston and cylinder assembly 324 may be configured to move the sections 325a,b between an engaged position and a disengaged position. The locking plate 325 may have a bore formed therethrough. The bore may be configured to receive the adapter 330 of the tool. A recess 326 may be formed in an upper surface of the locking plate 325. The recess 326 may be configured to receive the support plate 333 of the adapter 330. One or more locking pins 327 may be disposed in an inner wall of the locking plate 325 adjacent the recess 326. The holes 335 of the support plate 333 may be configured to receive the corresponding locking pins 327. The support plate 333 may transfer the weight of the adapter 330 and the tool to the locking plate 325. The locking plate 325 may longitudinally couple the adapter 330 and the drive member 310.

FIG. 11A illustrates the drive member 310 and the adapter 330 in the uncoupled position. FIG. 11B illustrates the drive member 310 and the adapter 330 in the coupled position. In operation, the adapter 330 may be inserted through the opening and into the bore of the housing 311. Engagement of the torque profile 321 with the profile 331 of the adapter 330 may prevent further longitudinal movement of the adapter 330 in the bore of the housing 311. The lock ring 323 is inserted into the groove 332 of the adapter 330. The torque profile 321 and the profile 331 of the adapter 330 torsionally couple the adapter 330 and the quill 312. The utility connector and utility receiver are connected during engagement of the torque profile 321 and the profile 331 of the adapter 330. Actuation of the piston and cylinder assembly 324 moves the sections 325a,b of the locking plate 325 inward towards the support plate 333 of the adapter 330. The sections 325a,b of the locking plate 325 move into the engaged position. The recess 326 of the locking plate 325 receives the support plate 333 of the adapter 330. The locking pins 327 of the locking plate 325 are actuated outwards towards the support plate 333. The locking pins 327 are received in the holes 335 of the support plate 333. The locking plate 325 transfers the weight of the adapter 330 and the tool to the housing 311. The locking plate 325 and support plate 333 longitudinally couple the adapter 330 and the housing 311.

In order to decouple the top drive and the tool, the piston and cylinder assembly 324 is actuated to move the locking plate 325 to the disengaged position to longitudinally decouple the adapter 330 and the housing 311. The support plate 333 is no longer disposed in the recess of the locking plate 325. The locking pins 327 retract out of the holes 335 of the support plate 333. The lock ring 323 is removed from the groove 332 of the adapter 330. The adapter 330 is lowered longitudinally relative to the quill 312 to disengage the profile 331 of the adapter 330 from the torque profile 321. Disengagement of the profile 331 of the adapter 330 from the torque profile 321 torsionally decouples the adapter 330 and the quill 312.

FIG. 12 illustrates an isometric view of a CMC system 400, according to a fourth embodiment. The CMC 400 may include a drive member 410 of a top drive, a coupling assembly 420, and an adapter 430 of a tool. The drive member 410 may include the housing 411 and a quill 412. The housing 411 may be tubular having a bore therethrough. The housing 411 may be configured to connect to the top drive or other traveling member. The housing 411 may be integral with the top drive. The housing 411 may have an inner recess 413 formed therein. The recess 413 may include a straight portion and a substantially semi-circular portion. The recess 413ss may be larger than the bore of the housing 411. A shoulder 414 may be formed at a lower longitudinal end of the recess 413. The shoulder 414 may extend inward from the housing 411. The shoulder 414 may extend along the straight portion and the substantially semi-circular portion of the recess 413.

The housing 411 may have a window 415 formed substantially horizontally or laterally through an outer wall. The window 415 may be formed at an angle relative to a horizontal axis of the housing 411. The window 415 may be formed at an angle about 30 degrees or less from the horizontal axis of the housing 411. The window 415 may extend inward to the recess 413 of the housing 411. The window 415 may have an upper rectangular section and a lower rectangular section. The upper rectangular section may extend longitudinally upwards from the shoulder 414. The lower rectangular section may extend longitudinally downwards through a bottom of the housing 411. The lower rectangular section of the window 415 may be disposed between opposite ends of the shoulder 414. The housing 411 may have one or more channels 416 formed through an outer wall thereof. The channels 416 may be formed longitudinally through the housing 411. The channels 416 may be configured to receive one or more supply lines 417 from the top drive. The supply lines 417 may be configured to supply at least one of power, data, electric, pneumatics, and/or hydraulics.

FIGS. 13A-C illustrate a cross-sectional view of the coupling assembly 420. The coupling assembly 420 may include a lock plate 421, a sleeve 422, one or more lock bolts 423, a compensation assembly, one or more alignment members, such as alignment pin 424, and one or more utility connectors 425. The lock plate 421 may be disposed in the recess 413 of the housing 411. The lock plate 421 may be longitudinally movable relative to the housing 411. The lock plate 421 may be u-shaped. The lock plate 421 may have a bore therethrough. The bore of the lock plate 421 may be aligned with the bore of the housing 411. The lock plate 421 may include a groove. The groove may be an annular groove. The groove may be formed adjacent the bore of the lock plate 421. The groove may be disposed in a circumference of the bore of the lock plate 421. The lock plate 421 may include a lip formed around the bore of the lock plate 421 and at a lower longitudinal end of the lock plate 421. The lip may extend longitudinally downward from the lock plate 421. The lip may be an annular lip. The lock plate 421 may include one or more recesses. The one or more recesses may be formed inward from a side wall of the lock plate 421. The one or more recesses may be formed through opposite side walls of the lock plate 421. The lock plate 421 may include one or more channels 421c. The channels 421c may be formed longitudinally through an outer surface of the lock plate 421. The one or more recesses may be formed through a side wall adjacent the channels 421c.

The sleeve 422 may be tubular having a bore therethrough. The sleeve 422 may include an annular shoulder disposed about an outer circumference of the sleeve 422. The sleeve 422 may be disposed in the bore of the lock plate 421. The sleeve 422 may extend through the bore of the lock plate 421. The groove of the lock plate 421 may be configured to receive the annular shoulder of the sleeve 422. The sleeve may be at least partially disposed in the bore of the housing 411. The sleeve 422 may be longitudinally movable with the lock plate 421 relative to the housing 411. The sleeve 422 may be configured to transfer fluid from the bore of the housing 411 to a bore of the adapter 430. The sleeve 422 may include one or more seals disposed about an outer circumference. The one or more seals may be configured to engage and seal against the bore of the adapter 430 and the bore of the housing 411. The one or more seals may be configured to prevent fluid from leaking out of the bore of the housing 411 and the bore of the adapter 430.

One or more lock bolts 423 may be disposed in the one or more recesses of the lock plate 421. The lock bolts 423 may be movable between an extended position and a retracted position relative to the recess. The one or more lock bolts 423 may be movable in a direction perpendicular to the longitudinal axis of the bore of the lock plate 421. An actuator, such as a piston and cylinder assembly may be disposed in the one or more recesses of the lock plate 421. The piston and cylinder assembly may be configured to move the one or more lock bolts 423 between the extended and the retracted position. The piston and cylinder assembly may be configured to move the lock bolts 423 into the channels 421c.

The compensation assembly may include an actuator, such as piston and cylinder assembly 426 and a fastener 427. The housing 411 may include a piston chamber. The piston chamber may be formed longitudinally through the housing 411. The piston and cylinder assembly 426 may be disposed in the piston chamber. The piston and cylinder assembly 426 may be configured to move longitudinally relative to the housing 411. The piston and cylinder assembly 426 may be configured to actuate the lock plate 421. The piston and cylinder assembly 426 may be connected to the fastener 427 at a lower longitudinal end. The fastener 427 may be connected to the lock plate 421 at an opposite longitudinal end from the piston and cylinder assembly 426. The fastener 427 may longitudinally couple the lock plate 421 and the piston and cylinder assembly 426. The piston and cylinder assembly 426 may be configured to reduce the amount of weight set down on the threads of the tubular string during connection with a tubular string. The piston and cylinder assembly 426 may be configured to compensate for the downward travel of the top drive and the tool due to the threaded makeup to the tubular string.

The alignment pin 424 may be disposed in the lock plate 421. The alignment pin 424 may extend longitudinally downward from a lower surface of the lock plate 421. The alignment pin 424 may have a conical lower end. The alignment pin 424 may be configured to facilitate alignment of the lock plate 421 and the adapter 430. One or more utility connectors 425 may be configured to connect to the one or more supply lines 417 at an upper longitudinal end. The one or more utility connectors 425 may be formed through the lock plate 421. The one or more utility connectors 425 may extend longitudinally downward from the lower surface of the lock plate 421. The one or more utility connectors 425 may be configured to receive and transfer at least one of power, data, electric, pneumatics, and/or hydraulics.

Referring back to FIG. 12, the adapter 430 may be tubular having a bore therethrough. The bore of the adapter 430 may be configured to receive the lip of the lock plate 421. The bore of the adapter 430 may be configured to receive the sleeve 422. The adapter 430 may be integrally formed with the tool. The adapter 430 may be configured to be inserted substantially horizontally or laterally into the housing 411. The adapter 430 may be configured to be inserted substantially horizontally or laterally through the window 415 of the housing 411 into the recess 413. The adapter 430 may be configured to be inserted laterally through the window 415 at an angle. The adapter 430 may be configured to be inserted laterally at an angle about thirty degrees or less relative to a horizontal axis of the housing 411. The adapter 430 may have a head section 431 formed at an upper longitudinal end. The head section 431 may be u-shaped. The head section 431 may be configured to be received in the recess 413 of the housing 411. The shoulder 414 may be configured to engage the head section 431 and support the weight of the adapter 430 and the tool. Engagement of the shoulder 414 and the head section 431 may longitudinally couple the adapter 430 and the housing 411.

The head section 431 may have one or more tabs 434 formed at an upper longitudinal end. The tabs 434 may have a hole 435 formed therethrough. The hole 435 may be perpendicular to the bore of the adapter 430. The hole 435 may be configured to receive the lock bolt 423 in the extended position. The channels 421c may be configured to receive the tabs 434. Reception of the lock bolt 423 in the hole 435 may longitudinally couple the adapter 430 and the lock plate 421. The piston and cylinder assembly 426 may be configured to longitudinally move the adapter 430 relative to the housing 411. The piston and cylinder assembly 426 may be configured to compensate for the weight of the adapter 430 and the tool during makeup to the tubular string.

The head section 431 may include one or more utility receivers 432 formed longitudinally therethrough. The utility receivers 432 may connect to one or more supply lines 433. The supply lines 433 may connect to the tool. The utility receivers 432 may be configured to connect to the utility connectors 425. The utility receivers 432 may be configured to transfer power, data, electronic, pneumatics, and/or hydraulics between the top drive and the tool when connected to the utility connectors 425. The head section 431 may have one or more channels disposed longitudinally therethrough. The channels may be configured to receive the supply lines 433. FIG. 14 illustrates a cross-sectional view of the adapter 430. The head section 431 may include an alignment recess 436. The alignment recess 436 may be configured to receive the alignment pin 424. The alignment recess 436 may be formed longitudinally downward through the head section 431. The alignment recess 436 and alignment pin 424 may be configured to align the lock plate 421 and the adapter 430.

FIGS. 15A-C, 16A-C, and 17A-B illustrate cross-sectional views of the operation of the CMC 400. The CMC 400 is operable to torsionally and longitudinally couple the top drive to the tool. Referring to FIGS. 15A-C, the adapter 430 is inserted into the recess 413 of the housing 411. The tool having the adapter 430 is moved adjacent to the top drive. The adapter 430 is inserted substantially horizontally or laterally through the window 415 of the housing 411. The adapter 430 may be inserted at an angle about thirty degrees or less relative to a horizontal axis of the housing 411. The adapter 430 rests on the shoulder 414 of the housing 411. Engagement of the adapter 430 with the back wall of the recess 413 prevents further horizontal or lateral movement of the adapter 430 through the housing 411. The shoulder 414 supports the weight of the adapter 430 and the tool. Engagement of the side walls of the recess 413 with the head section 431 provides torque transfer to the adapter 430 and the tool when the housing 411 is rotated by the top drive.

Referring to FIGS. 16A-C, the piston and cylinder assembly 426 is actuated to move the lock plate 421 longitudinally relative to the housing 411 and towards the upper surface of the head section 431. The lock plate 421 engages the upper surface of the adapter 430. The sleeve 422 moves longitudinally into the bore of the adapter 430. A seal disposed about a circumference of the sleeve seals against the bore of the adapter 430. The alignment pin 424 is received in the alignment recess 436. The alignment pin 424 and alignment recess 436 ensure the alignment of the one or more utility connectors 425 and one or more utility receivers 432. As the lock plate 421 continues to lower, the one or more utility connectors 425 engage and connect to the one or more utility receivers 432. When connected, the one or more utility connectors 425 and one or more utility receivers 432 transfer power, data, electronic, hydraulics, and/or pneumatics between the top drive and the tool. The one or more channels 421c receive the one or more tabs 434 of the adapter 430. The hole 435 moves into alignment with the lock bolt 423.

Referring to FIGS. 17A-B, the piston and cylinder assembly is actuated to move the lock bolt 423 into the hole 438 of the tab 434. Reception of the lock bolt 423 in the hole 435 longitudinally couples the lock plate 421 and the adapter 430. The piston and cylinder assembly 426 is pressurized to preload the connection. The piston and cylinder assembly 426 is used to provide thread compensation. The piston and cylinder assembly 426 lifts the head section 431 off of the shoulder 414. The piston and cylinder assembly 426 moves the adapter 430 longitudinally relative to the housing 411. The piston and cylinder assembly moves the head section 431 of the adapter 430 longitudinally in the recess 413 of the housing 411. The piston and cylinder assembly 426 reduces the amount of weight set down on the threads of the tubular string during connection with a tubular string. The piston and cylinder assembly 426 compensates for the downward travel of the top drive and the tool due to the threaded makeup to the tubular string.

In order to decouple the top drive and the tool, the piston and cylinder assembly 426 is actuated to lower the head section 431 onto the shoulder 414 of the housing 414. The piston and cylinder assembly 428 is actuated to retract the lock bolt 423 from the hole 435, thereby longitudinally decoupling the lock plate 421 and the adapter 430. The piston and cylinder assembly 426 is actuated to longitudinally raise the lock plate 421 relative to the adapter 430. The one or more utility connectors 425 disengage from the one or more utility receivers 432. The alignment pin 424 moves out of the alignment recess 436. The sleeve 422 moves out of the bore of the adapter 430. Next, the adapter 430 is removed from the recess 413 of the housing 411. The head section 431 of the adapter 430 is moved substantially horizontally or laterally out through the window 415 of the housing 411, thereby torsionally decoupling the adapter 430 and the housing 411.

FIGS. 18A-B illustrate a cross-sectional view of a CMC system 500, according to a fifth embodiment. The CMC 500 includes a drive member 510, a coupling assembly 520, and an adapter 530 of a tool. The drive member 510 includes a housing 511, bearings 512, 513, and a quill 514. The drive member 510 may be configured to connect to the top drive. The drive member 510 may be integrally formed with the top drive or other traveling member. The housing 511 may be rectangular having a bore therethrough. The housing may include one or more sections 511a,b. The sections 511a,b of the housing may be separated by a support wall 511c. The support wall 511c may be perpendicular to the longitudinal axis of the housing 511. The housing section 511a may have an opening at an upper longitudinal end. The opening of the housing section 511a may be aligned with the bore of the housing 511.

The bearing 512 may be disposed in the housing section 511a adjacent the opening. The bearing 513 may be disposed in the support wall 511c adjacent the bore of the housing 511. The quill 514 may be tubular having a bore therethrough. The quill 514 may be disposed in the bore of the housing 511. The quill 514 may extend upward longitudinally from the bore of the housing 511. The bore of the quill 514 may be configured to transfer drilling fluid from the top drive to the tool. The quill 514 may include a gear section 514a. The gear section 514a may be disposed about a circumference of the quill 514. The gear section 514a may include geared teeth formed around an outer circumference. An actuator, such as a motor, may be configured to rotate the quill 514 relative to the housing 511. The gear section 514a may be configured to engage the motor. The gear section 514a may be configured to transfer torque from the motor to the quill 514.

The quill 514 may be supported by the housing 511. The quill 514 may rest on bearing 513. Bearing 513 may be configured to permit rotation of the quill 514 relative to the housing 511. Bearing 513 may be configured to support a downward thrust load from the quill 514. Bearing 512 may be configured to support an upward thrust load from the quill 514. Bearing 512 may be configured to permit rotation of the quill 514 relative to the housing 511. The quill 514 may include a splined section 514b. The splined section 514b may be disposed at a lower longitudinal end of the quill 514. The splined section 514b may be beneath the gear section 514a of the quill 514. Splines may be formed on an outer circumference of the quill 514 at the splined section 514b. Alternatively, the splines may be formed on an inner circumference of the quill 514.

A lip 515 may be disposed at a lower end of the quill 514. The lip 515 may have a groove disposed around a circumference. The groove may be configured to receive a seal. The housing section 511b may have a flange 516 formed at a lower longitudinal end. The flange 516 may be an annular flange. The flange 516 may include one or more recesses 517. The one or more recesses 417 may be rectangular in shape. The one or more recesses 517 may extend outward from an inner surface of the flange 516.

The coupling assembly 520 may include one or more lock bolts 521, one or more actuators, such as one or more piston and cylinder assemblies 522, and one or more utility connectors 523. The one or more lock bolts 521 may be rectangular in shape. The one or more lock bolts 521 may be disposed in the one or more recesses 517. The one or more lock bolts 521 may be radially movable between an extended position and a retracted position. The one or more piston and cylinder assemblies 522 may be configured to move the one or more lock bolts 521 between the extended position and the retracted position. The one or more piston and cylinder assemblies 522 may be disposed in the one or more recesses 517. A fastener 524 may connect a respective piston and cylinder assembly to the housing section 511b. The one or more utility connectors 523 may be disposed on the lower longitudinal end of the flange 516. The one or more utility connectors 523 may be connected at one end to one or more supply lines. The one or more utility connectors 523 may be configured to receive and transfer power, data, electronic, hydraulics, and/or pneumatics to and from the one or more supply lines. The one or more utility connectors 523 may be rotationally stationary. The one or more utility connectors 523 may rotationally stationary during rotation of the quill 514.

The adapter 530 includes a stem 531, a torque connector 532, bearings 533, 534, a tool housing 535, and a utility transfer section 536. The stem 531 may be tubular having a bore therethrough. The stem 531 may have an opening at an upper longitudinal end. The opening may be configured to receive the lip 515 of the quill 514. The stem 531 may have a flange 531a formed at an upper longitudinal end. The torque connector 532 may be disposed at an upper longitudinal end of the stem 531. The torque connector 532 may be disposed on the flange 531a. The torque connector 532 may be integrally formed with the flange 531a. The torque connector 532 may have splines 537 formed on an inner surface. The splines 537 may be configured to engage the splined section 514b of the quill 514. The splines 537 may be configured to provide torsional coupling between the quill 514 and the stem 531. The splines 537 may be configured to transfer torque from the quill 514 to the tool.

The tool housing 535 may be tubular having a bore therethrough. The tool housing 535 may be disposed about a circumference of the stem 531. The tool housing 535 may be rotationally stationary relative to the stem 531. The tool housing 535 may have one or more recesses 535a formed through an outer surface. The one or more recesses 535a may be rectangular in shape. The one or more recesses 535a may extend inward from an outer surface of the tool housing 535. The one or more recesses 535a may be configured to receive the one or more lock bolts 521. A lip 535b may be formed at an upper longitudinal end of the tool housing 535. The lip 535b may be disposed about the outer circumference of the tool housing 535.

Bearing 533 may be disposed longitudinally between the tool housing 535 and the flange 531a. Bearing 533 may be disposed radially between the lip 535b of the tool housing 535 and the outer circumference of the stem 531. Bearing 533 may facilitate rotation of the stem 531 relative to the tool housing 535. Bearing 534 may be disposed longitudinally between the tool housing 535 and a lock nut disposed on the stem 531 above the utility transfer section 536. Bearing 534 may be disposed radially between a lower shoulder of the tool housing 535 and the stem 531. Bearing 534 may facilitate rotation of the stem 531 relative to the tool housing 535.

The utility transfer section 536 may be configured to provide an electrical, pneumatic, and/or hydraulic connection across a rotating interface. The utility transfer section 536 may include a slip ring assembly and/or hydraulic swivel. The slip ring assembly may include a ring member having one or more contact rings (such as copper rings) that rotate with the stem 531. The slip ring assembly may include a support housing for supporting one or more contact members (such as brushes). One or more bearings may be disposed between the support housing and the ring member. The one or more bearings may facilitate rotation of the ring member relative to the support housing. The non-rotating contact members contact the contact rings of the rotating ring member, thereby providing an electrical connection for power, data, and/or electronics across a rotating interface. In this manner, electronic signals may be sent between non-rotating section and the rotating section of the adapter 530. Additionally, the hydraulic swivel may provide transfer of hydraulic fluids for pneumatic and/or hydraulic operation of the tool. The utility transfer section 536 may include one or more supply lines 537 and one or more utility receivers 538. The one or more supply lines 537 may connect the one or more utility receivers 538 to the hydraulic swivel and/or slip ring assembly. The one or more utility receivers 538 may be disposed on an outer surface of the tool housing 535. The one or more utility receivers 538 may be configured to connect to the one or more utility connectors 523. The one or more utility receivers 538 may be configured to transfer power, data, electronic, pneumatics, and/or hydraulics between the top drive and the tool. The one or more utility receivers 538 may be rotationally stationary. The one or more utility receivers 538 may be rotationally stationary during rotation of the stem 531.

FIGS. 19-21 illustrate operation of the CMC 500. The CMC 500 is operable to torsionally and longitudinally couple the top drive to the tool. First, the adapter 530 is inserted into the bore of the housing 511. The adapter 530 may be raised or the drive member 510 lowered to begin the process. The splined section 514b of the quill 514 moves into the torque connector 532. Engagement of the splines 537 and the splined section 514b torsionally couples the quill 514 and the torque connector 532. The lip 515 of the quill 514 is inserted into the bore of the adapter 530. The seal engages and seals against the bore of the adapter 530. The one or more utility connectors 523 engage and connect to the one or more utility receivers 538 to provide transfer of power, data, electronic, hydraulics, and/or pneumatics between the top drive and the tool. Engagement of a shoulder of the tool housing 535 with the flange 516 of the housing 511 prevents further longitudinal movement of the adapter 530 relative to the housing 511. The one or more recesses 535a are aligned with the one or more lock bolts 521. The one or more piston and cylinder assemblies 522 are actuated to extend the one or more lock bolts 521 radially inward. The one or more lock bolts 521 move radially inward into an engaged position in the one or more recesses 535a. The one or more lock bolts 521 transfer a weight of the adapter 530 and the tool to the housing 511. Engagement of the one or more lock bolts 521 in the one or more recesses 535a provides longitudinal coupling between the housing 511 and the adapter 530 of the tool. The one or more lock bolts 521 may have a chamfered surface. The chamfered surface may facilitate insertion of the one or more lock bolts 521 in the one or more recesses 535a.

In order to decouple the top drive and the tool, the one or more piston and cylinder assemblies 522 are actuated to move the one or more lock bolts 521 radially outward from the one or more recesses 535a. The one or more lock bolts 521 move to the disengaged position, thereby longitudinally decoupling the adapter 530 and the housing 511. The adapter 530 is longitudinally moved relative to the housing 511. The splines 537 move out of engagement with the splined section 514b, thereby torsionally decoupling the quill 514 and the torque connector 532 of the adapter 530.

FIG. 22 illustrates an exploded view of a CMC system 600, according to a sixth embodiment. The CMC 600 includes a drive member 610 of a top drive, including a frame 620, and an adapter 630 of a tool. FIGS. 23 and 24 illustrate the drive member 610. The drive member 610 includes a housing 611, a quill 613, a gear 614, a swivel 615, the frame 620, an actuator, such as motor 612, and a compensation assembly. The housing 611 may include a motor case 611a, a quill case 611 b, and a plurality of arms 611c. The motor case 611a may be tubular. The motor case 611a may be hollow. The motor case 611a may be disposed at an upper longitudinal end of the housing 611. The motor 612 may be disposed in the motor case 611a. The motor 612 may be an electric motor or a hydraulic motor. The motor 612 may include a gear section 612g. The gear section 612g may have gear teeth formed on an outer circumference. The gear section 612g may be configured to transfer torque to the gear 614. The gear section 612g may be configured to rotate relative to the housing 611.

The quill case 611b may be disposed adjacent the motor case 611a. The quill case 611b may be circular. The quill case 611a may be hollow. The quill case 611a may have a bore therethrough. The quill 613 may be disposed in the bore of the quill case 611a. The quill 613 may extend longitudinally through the bore of the quill case 611a. The quill 613 may extend longitudinally out of the quill case 611a. The quill 613 may be configured to transfer drilling fluid from the top drive to the tool. The gear 614 may be disposed about the quill 613. The gear 614 may be tubular having a bore therethrough. The quill 613 may be disposed through the bore of the gear 614. The gear 614 may have an outer flange 614f. The flange 614f may include gear teeth disposed on an outer circumference. The gear teeth of the flange 614f may be configured to engage the gear teeth of the gear section 612g. The gear section 612g may transfer torque to the gear 614 from the motor 612. The gear 614 may have a splined surface formed along an inner circumference. The splined surface may extend longitudinally through the bore of the gear 614. The swivel 615 may be disposed about the circumference of the quill 613. The swivel 615 may be disposed about the quill 613 above the housing 611. The swivel 615 may be configured to permit the quill 613 to rotate relative to the housing 611.

The plurality of arms 611c may be connected to the quill case 611b. The plurality of arms 611c may extend longitudinally relative to the quill case 611b. The plurality of arms 611c may be spaced evenly around a circumference of the quill case 611b. Each arm may include one or more flanges 618, 619. The one or more flanges 618, 619 may be formed at a lower longitudinal end of the arm. The one or more flanges 618, 619 may have a semi-circular end formed at a lower longitudinal end. A slot 611s may be formed between the one or more flanges 618, 619. The slot 611s may extend longitudinally upwards from the semi-circular end. The slot 611s may extend inward between the one or more flanges 618, 619. A groove 617 may be formed through each of the one or more flanges 618, 619. The groove 617 may extend longitudinally upwards. The groove 617 may extend a substantially similar longitudinal distance as the slot 611s. The groove 617 may extend through the one or more flanges 618, 619. The groove 617 may extend inward to the slot 611s.

FIG. 24 illustrates the frame 620 and the compensation assembly. The frame 620 may include an upper section 621 having a main bore therethrough. The upper section 621 may be rectangular in shape. The frame 620 may include flanges 621a, 621b disposed on an outer surface of the upper section 621. The flanges 621a, 621b may be L-shaped. The flanges 621a,b may extend longitudinally downwards from the upper section 621. The flanges 621a,b may be spaced apart on the upper frame 621. The arm 611c may be configured to be disposed between the flanges 621a,b. The flanges 621a,b may have a semi-circular end. The flanges 621a,b may have a hole 621h formed through a wall of the semi-circular end. The hole 621h may be configured to receive a lock bolt 623. The lock bolt 623 may be movable between a locked position and an unlocked position. A piston and cylinder assembly 624, 625 may be configured to move the lock bolt 623. The lock bolt 623 may extend and retract relative to the piston and cylinder assembly 624, 625. The piston and cylinder assembly 624, 625 may be connected to the flange 621b. The groove 617 may be configured to receive the lock bolt 623. The lock bolt 623 may be longitudinally movable through the groove 617.

The compensation assembly may include a piston and cylinder assembly 622. The piston and cylinder assembly 622 may be disposed at a corner of the upper section 621. The piston and cylinder assembly 622 may be connected to the upper section 621. The piston and cylinder assembly 622 may extend through the upper section 621. The piston and cylinder assembly 622 may extend through a smaller bore of the upper section 621. The piston and cylinder assembly 622 may be partially longitudinally movable within the bore. The piston and cylinder assembly 622 may include annular shoulders on either side of the bore. The annular shoulders may be configured to engage the upper section 621 during operation of the piston and cylinder assembly. The annular shoulders may engage and support the upper section 621. The annular shoulders may restrict longitudinal movement of the piston and cylinder assembly 622 relative to the upper section 621. An upper longitudinal end of the piston and cylinder assembly 622 may be connected to the housing 611. The piston and cylinder assembly 622 may be connected to the quill case 611a. The compensation assembly may include additional piston and cylinder assemblies disposed at other corners of the upper section 621 The compensation assembly 622 may be configured to longitudinally move the frame 620 relative to the housing 611. The piston and cylinder assembly 622 may be configured to reduce the amount of weight set down on the threads of the tubular string during connection with a tubular string. The piston and cylinder assembly 622 may be configured to compensate for the downward travel of the top drive and the tool due to the threaded makeup to the tubular string. The piston and cylinder assembly 622 may be configured to preload a connection with a tubular string. A lower longitudinal end of the piston and cylinder assembly 622 may be configured to engage an outer shoulder of a tool housing 632 to preload the connection.

The frame 620 may include a utility connector 626. The utility connector 626 may be disposed on the upper section 621. The utility connector 626 may be connected at one end to one or more supply lines. The utility connector 626 may be configured to receive and transfer power, data, electronic, hydraulics, and/or pneumatics to and from the one or more supply lines. The utility connector 626 may be rotationally stationary relative to the housing 611 and the frame 620. The utility connector 626 may be rotationally stationary during rotation of the quill 613.

FIGS. 25A and 25B illustrate the adapter 630. The adapter 630 of the tool may include a stem 631, a torque connector 631b, bearings 634, 635, the tool housing 632, and a utility transfer section 633. The stem 631 may be tubular having a bore therethrough. The stem 631 may have an opening at an upper longitudinal end. The opening may be configured to receive the quill 613. The stem 631 may be configured to transfer fluid from the quill 613 to the tool. The stem 631 may have a flange 631a formed at an upper longitudinal end. The torque connector 631b may be disposed at an upper longitudinal end of the stem 631. The torque connector 631b may be disposed on the flange 631a. The torque connector 631b may be integrally formed with the flange 631a. The torque connector 631b may have splines formed on an outer surface. The splines may be configured to engage the splines of the gear 614. The splines of the torque connector 631b and splines of the gear 614 may be configured to provide torsional coupling between the gear 614 and the stem 631. The splines of the torque connector 631b and splines of the gear 614 may be configured to transfer torque from the gear 614 to the tool. The splines of the torque connector 631b may be configured to allow for longitudinal movement between the torque connector 631b and the gear 614.

The tool housing 632 may be tubular having a bore therethrough. The tool housing 632 may be disposed about a circumference of the stem 631. The tool housing 632 may be stationary relative to the stem 631. The tool housing 632 may have one or more tabs 632a-c formed on an outer surface. The tabs 632a-c may extend perpendicular to the longitudinal axis of the stem 631. Each of the tabs 632a-c may have a hole 632h formed through a wall. The hole 632h may be configured to receive the lock bolt 623. The tab 632a may be configured to be disposed between the flange 621a and the flange 618. The slot 611s may be configured to receive the tab 632b. The tab 632b may be configured to be disposed between the flanges 618, 619. The tab 632c may be configured to be disposed between the flange 619 and the flange 621b. A lip may be formed at an upper longitudinal end of the tool housing 632. The lip may be disposed around the outer circumference of the tool housing 632. Bearing 634 may be disposed longitudinally between the tool housing 632 and the flange 631a. Bearing 634 may be disposed radially between the lip of the tool housing 632 and the outer circumference of the stem 631. Bearing 634 may facilitate rotation of the stem 631 relative to the tool housing 632. Bearing 635 may be disposed longitudinally between the tool housing 632 and a lock nut disposed on the stem 631 above the utility transfer section 633. Bearing 635 may be disposed radially between a lower shoulder of the tool housing 632 and the stem 631. Bearing 635 may facilitate rotation of the stem 631 relative to the tool housing 632.

The utility transfer section 633 may be configured to provide an electrical and/or hydraulic connection across a rotating interface. The utility transfer section 633 may include a slip ring assembly and/or hydraulic swivel. The slip ring assembly may include a ring member having one or more contact rings (such as copper rings) that rotate with the stem 631. The slip ring assembly may include a support housing for supporting one or more contact members (such as brushes). One or more bearings may be disposed between the support housing and the ring member. The one or more bearings may facilitate rotation of the ring member relative to the support housing. The non-rotating contact members contact the contact rings of the rotating ring member, thereby providing an electrical connection for power, data, and/or electronics across a rotating interface. In this manner, electronic signals may be sent between non-rotating section and the rotating section of the adapter 630. Additionally, the hydraulic swivel may provide transfer of hydraulic fluids for pneumatic and/or hydraulic operation of the tool. The utility transfer section 633 may include one or more supply lines and a utility receiver 636. The one or more supply lines may connect the utility receiver 636 to the hydraulic swivel and/or slip ring assembly. The utility receiver 636 may be disposed on an outer surface of the tool housing 632. The utility receiver 636 may be configured to connect to the utility connector 626. The utility receiver 636 may be configured to transfer power, data, electronic, pneumatics, and/or hydraulics between the top drive and the tool. The utility receiver 636 may be rotationally stationary relative to the tool housing 632. The utility receiver 636 may be rotationally stationary during rotation of the stem 631.

FIGS. 26-31 illustrate operation of the CMC 600. FIG. 26 illustrates the frame 620 coupled to the housing 611 by the piston and cylinder assembly 622. The CMC 600 is operable to torsionally and longitudinally couple the top drive to the tool. First, the adapter 630 is inserted into the housing 611, as shown in FIG. 27. The torque connector 631b is inserted into the bore of the gear 614. The quill 613 is inserted into the bore of the torque connector 631b. The splines of the torque connector 631b engage the splines of the gear 614, thereby torsionally coupling the motor 612 to the stem 631. The tab 632b is aligned with the slot 611s. The tab 632a is aligned with the clearance between the flange 621a and the flange 618. The tab 632c is aligned with the clearance between the flange 621b and the flange 619.

As shown in FIG. 28, the tab 632b moves into the slot 611s. The tab 632a moves into the clearance between the flange 621a and the flange 618. The tab 632c moves into the clearance between the flange 621b and the flange 619. A stop formed on flange 621b may engage the tab 632c. A stop formed on flange 621a may engage the tab 632a. The stops may be configured to restrict further longitudinal movement of the one or more tabs 632a-c. Engagement of the one or more tabs 632a-c with the stops may facilitate alignment. The hole 632h is aligned with the groove 617 and the hole 621h. The utility connector 626 engages and connects to the utility receiver 636 to provide transfer of power, data, electronic, hydraulics, and/or pneumatics between the top drive and the tool. Next, the piston and cylinder assembly 624, 625 is actuated to move the lock bolt 623. The lock bolt 623 moves through the hole 621h of the flange 621b, the hole 632h of the tab 632c, the groove 617 of the flange 619, the hole of the tab 632b, the, groove of the flange 618, the hole of the tab 632a, and the hole of the flange 621b. In the locked position shown in FIG. 29, the lock bolt 623 longitudinally couples the frame 620 and the adapter 630.

FIG. 30 illustrates the adapter 630 in a drilling position. In the drilling position, the piston and cylinder assembly 622 is operated to engage the shoulder of the tool housing 632. The lower longitudinal end of the piston and cylinder assembly 622 engages the shoulder of the tool housing 632 to preload the connection, as shown in FIG. 28. Preloading the connection may reduce vibrations in the system during drilling. Next, the piston and cylinder assembly 622 is actuated to longitudinally move the frame 620 and the adapter 630 relative to the housing 611. FIG. 31 illustrates the adapter 630 in a compensation position. As can be seen in FIG. 31, the piston and cylinder assembly 622 is operated to longitudinally move the frame 620 and the adapter 630 relative to the housing 611. The piston and cylinder assembly 622 is operated to provide thread compensation. The piston and cylinder assembly 622 is operated to lift the frame 620 and the adapter 630 relative to the housing 611. The lock bolt 623 moves longitudinally upwards relative to the housing. The lock bolt 623 supports the weight of the adapter 630 and tool. The lock bolt 623 engages the tool housing 632 and carries the tool housing 632 and adapter 630 upward relative to the housing. The piston and cylinder assembly 622 reduces the amount of weight set down on the threads of the tubular string during connection with a tubular string. The piston and cylinder assembly 622 compensates for the downward travel of the top drive and the tool due to the threaded makeup to the tubular string.

FIGS. 32 and 33 illustrate a CMC system 700, according to a seventh embodiment. The CMC 700 includes a drive member 710 of a top drive and an adapter 730 of a tool. FIG. 32 illustrates the drive member 710. The drive member 710 includes a housing 711, a gear 712, a quill 713, an actuator, such as a motor, a swivel 714, and a compensation assembly. The housing 711 may include one or more sections 711a-d. The housing sections 711a-d may be integrally formed. The housing section 711a may be a motor case. The motor case may be tubular. The motor case may be hollow. The motor may be disposed in the motor case. The motor may be an electric motor. The motor may include a gear section. The gear section may have gear teeth formed on an outer circumference. The housing section 711b may be a quill case. The motor case may be disposed on the quill case. The motor case may be disposed on an outer circumference of the quill case. The quill case may be tubular having a bore therethrough.

The quill 713 may be disposed in the bore of the quill case. The quill 713 may be configured to transfer drilling fluid from the top drive to the tool. The gear 712 may be disposed in the bore of the quill case. The motor may be at least partially disposed in the bore of the quill case. The gear 712 may be disposed about the quill 713. The gear 712 may be tubular having a bore therethrough. The quill 713 may be disposed through the bore of the gear 712. The gear 712 may have an outer flange 712f. The flange 712f may include gear teeth disposed on an outer circumference. The gear teeth of the flange 712f may engage the gear teeth of the gear section. The gear section may transfer torque to the gear 712 from the motor. The gear 712 may have a splined surface formed along an inner circumference. The splined surface may extend longitudinally through the bore of the gear 712. The swivel 714 may be disposed about the circumference of the quill 713. The swivel 714 may be disposed about the quill 713 above the housing 711. The swivel 714 may be configured to permit the quill 713 to rotate relative to the housing 711. One or more utility connectors may be disposed on the housing 711. The one or more utility connectors may be configured to transfer at least one of power, data, electronic, pneumatics, and/or hydraulics between the top drive and the tool. The one or more utility connectors may be rotationally stationary relative to the housing 711. The one or more utility connectors may be rotationally stationary during rotation of the quill 713.

The housing section 711c may be tubular having a bore therethrough. The quill 713 may be at least partially disposed in the bore of the housing section 711c. The gear 712 may be at least partially disposed in the bore of the housing section 711c. The housing section 711c may include a flange 711f at a lower longitudinal end. The flange 711f may include one or more recesses 711r. The one or more recesses 711r may be formed longitudinally through the flange 711f. The housing section 711d may include a hook. The housing section 711d may be configured to connect to a traveling member 701. The hook may rest on a support of the traveling member 701. The housing section 711d may include one or more tabs 711t. The one or more tabs 711t may be configured to connect to a compensation assembly of the traveling member 701. The compensation assembly of the traveling member may include one or more piston and cylinder assemblies 703. The one or more piston and cylinder assemblies 703 of the traveling member may be configured to longitudinally move the drive member 710 and the adapter 730. The one or more piston and cylinder assemblies 703 may lift the hook of the housing section 711d from the support of the traveling member 701. The one or more piston and cylinder assemblies 703 may be configured to reduce the amount of weight set down on the threads of the tubular string during connection with a tubular string. The one or more piston and cylinder assemblies 703 may be configured to compensate for the downward travel of the top drive and the tool due to the threaded makeup to the tubular string.

The compensation assembly may be disposed in the bore of the housing section 711c. The housing section 711c may have an opening at a lower longitudinal end. The opening may be configured to receive the adapter 730 of the tool. The compensation assembly may include an actuator, such as one or more piston and cylinder assemblies 721, a lock ring 722, and a latch ring 723. The one or more piston and cylinder assemblies 721 may be connected to the housing section 711c at one longitudinal end. The one or more piston and cylinder assemblies 721 may be connected to the lock ring 722 at an opposite longitudinal end. The one or more piston and cylinder assemblies 721 may be configured to longitudinally move the lock ring 722 relative to the housing 711. The one or more piston and cylinder assemblies 721 may be configured to reduce the amount of weight set down on the threads of the tubular string during connection with a tubular string. The one or more piston and cylinder assemblies 721 may be configured to compensate for the downward travel of the top drive and the tool due to the threaded makeup to the tubular string.

The lock ring 722 may be disposed in the housing section 711c. The lock ring 722 may be supported by the one or more piston and cylinder assemblies 721. The lock ring 722 may be an annular disk. The lock ring 722 may have a bore therethrough. The bore of the lock ring 722 may be configured to receive the adapter 730. The lock ring 722 may have one or more grooves 724 formed along an outer circumference. The one or more grooves 724 may extend longitudinally through the lock ring 722. The lock ring 722 may include a profile 725. The profile 725 may be disposed on, a lower longitudinal surface of the lock ring 722. The profile 725 may be T-shaped. The profile 725 may extend in arcuate segments about the lock ring 722. The latch ring 723 may be disposed in the bore of the housing section 711c. The latch ring 723 may be an annular disk. The latch ring 723 may be rotatable relative to the housing 711. The latch ring 723 may be rotatable relative to the lock ring 722. The latch ring 723 may have a channel 726 formed in an inner circumference. The channel 726 may include one or more arcuate segments. The channel 726 may be configured to receive the profile 725. The latch ring 723 may include an upper section 723a. The upper section 723a may include one or more arcuate segments. The one or more arcuate segments of the upper section 723a may extend longitudinally through the one or more grooves 724.

FIG. 34B illustrates a top down view of the compensation assembly of the drive member 710, in an unactuated position. One or more piston and cylinder assemblies 727 may be configured to rotate the latch ring 723. Each of the one or more piston and cylinder assemblies 727 may be attached to the housing section 711c at one end. Each of the one or more piston and cylinder assemblies 727 may be attached to a hinge. The hinge may be disposed on an upper surface of the lock ring 722. The one or more piston and cylinder assemblies may pivot at the hinge. Each of the one or more piston and cylinder assemblies 727 may be attached to the upper section 723a of the latch ring 723 at an opposite end from the hinge. Each of the one or more piston, and cylinder assemblies 727 may be attached to a separate arcuate segment of the upper section 723a. The one or more piston and cylinder assemblies 727 may be configured to move between an actuated position, shown in FIG. 35B, and an unactuated position, shown in FIG. 34B. The one or more piston and cylinder assemblies 727 may be configured to rotate the latch ring 723 relative to the housing 711 and the lock ring 722. The profile 725 may move through the channel 726 as the latch ring 723 rotates relative to the lock ring 722. The upper section 723a may be configured to move through the groove 724 as the latch ring 723 rotates relative to the lock ring 722.

FIG. 33 illustrates the adapter 730. The adapter 730 of the tool may include a stem 731, a torque connector 732, bearings 733, 734, a tool housing 735, and a utility transfer section 736. The stem 731 may be tubular having a bore therethrough. The bore of the stem 731 may be configured to receive the quill 713. The bore of the gear 712 may be configured to receive the stem 731. The torque connector 732 may include a splined surface. The torque connector may be integrally formed with the stem 731. The splined surface may be formed on an outer surface of the torque connector 732. The torque connector 732 may be disposed at an upper longitudinal end of the stem 731. The torque connector 732 may engage the splined surface of the gear 712. The torque connector 732 may be configured to transfer torque from the gear 712 to the adapter 730. The stem 731 may include a flange 731f. The flange 731f may be disposed below the torque connector 732. The flange 731f may be an annular flange.

The tool housing 735 may be tubular having a bore therethrough. The tool housing 735 may be disposed about the stem 731. The tool housing 735 may include one or more flanges 735f formed on an outer surface. The one or more flanges 735f may be spaced circumferentially apart about the stem 731. The one or more flanges 735f may extend radially outward from the tool housing 735. Each of the one or more flanges 735f may have a groove 735g formed at an upper longitudinal end. The groove 735g may be T-shaped. The groove 735g may extend circumferentially through the flange. The groove 735g may terminate partially through the flange. The groove 735g may be configured to receive the profile 725 of the lock ring 722. Bearing 733 may be disposed longitudinally between the tool housing 735 and the flange 731f. Bearing 733 may be disposed radially between a lip of the tool housing 735 and the outer circumference of the stem 731. Bearing 733 may facilitate rotation of the stem 731 relative to the tool housing 735. Bearing 734 may be disposed longitudinally between the tool housing 735 and a lock nut disposed on the stem 731 and above the utility transfer section 736. Bearing 734 may be disposed radially between a lower shoulder of the tool housing 735 and the stem 731. Bearing 731 may facilitate rotation of the stem 731 relative to the tool housing 735.

The utility transfer section 736 may be configured to provide an electrical and/or hydraulic connection across a rotating interface. The utility transfer section 736 may be configured to transfer at least one of power, data, electronics, hydraulics, and pneumatics between the stationary and rotational parts of the tool. The utility transfer section 736 may include a slip ring assembly and/or hydraulic swivel. The slip ring assembly may include a ring member having one or more contact rings (such as copper rings) that rotate with the stem 731. The slip ring assembly may include a support housing for supporting one or more contact members (such as brushes). One or more bearings may be disposed between the support housing and the ring member. The one or more bearings may facilitate rotation of the ring member relative to the support housing. The non-rotating contact members contact the contact rings of the rotating ring member, thereby providing an electrical connection for power, data, and/or electronics across a rotating interface. In this manner, electronic signals may be sent between non-rotating section and the rotating section of the adapter 730. Additionally, the hydraulic swivel may provide transfer of hydraulic fluids for pneumatic and/or hydraulic operation of the tool. The utility transfer section 736 may include one or more supply lines and one or more utility receivers. The one or more utility receivers may be disposed on the support housing of the utility transfer section 736. The one or more utility receivers may be configured to engage and connect to the one or more utility connectors. The one or more utility receivers may be configured to transfer at least one of power, data, electronics, hydraulics, and pneumatics between the top drive and the tool. The one or more utility receivers may be rotationally stationary relative to the support housing. The one or more utility receivers may be rotationally stationary during rotation of the stem 731. Alternatively, the one or more utility receivers may be disposed on the tool housing 735.

The CMC 700 is operable to torsionally and longitudinally couple the top drive to the tool. First, the adapter 730 is inserted into the housing 711, as shown in FIG. 34A. The flanges 735f of the tool housing 735 pass through the recess 711 r of the housing 711. The torque connector 732 is inserted into the bore of the gear 712. The quill 713 is inserted into the bore of the torque connector 732. The splined surface of the torque connector 732 engages the splined surface of the gear 712, thereby torsionally coupling the motor to the stem 731. The one or more piston and cylinder assemblies 727 are in the unactuated position, as shown in FIG. 34B. The one or more flanges 735f are received in gaps between the arcuate segments of the latch ring 723. The profile 725 is longitudinally aligned with the groove 735g of the tool housing 735.

Next, the one or more piston and cylinder assemblies 727 are actuated to rotate the latch ring 723, as shown in FIGS. 35A and 35B. Rotation of the latch ring 723 causes the latch ring 723 to engage the one or more flanges 735f of the tool housing 735. Engagement with the one or more flanges 735f causes the tool housing 735 to rotate relative to the housing 711 and the lock ring 722. As the latch ring 723 and the tool housing 735 rotate relative to the lock ring 722, the profile 725 moves through the channel 726 and into the groove 735g. The tool housing 735 continues rotating relative to the lock ring 722 until the profile 725 reaches the end of the groove 735g. Engagement of the profile 725 in the groove 735g supports the weight of the adapter 730 and the tool. The profile 725 disposed in the groove 735g longitudinally couples the lock ring 722 and the adapter 730.

The one or more piston and cylinder assemblies 721 are actuated to longitudinally move the lock ring 722 and the adapter 730 relative to the housing 711, as shown in FIG. 36. The one or more piston and cylinder assemblies 721 are pressurized to preload the connection. The one or more piston and cylinder assemblies 721 are used to provide thread compensation. The one or more piston and cylinder assemblies 721 lift the lock ring 722 and the adapter 730 relative to the housing 711. The one or more piston and cylinder assemblies 721 reduce the amount of weight set down on the threads of the tubular string during connection with a tubular string. The one or more piston and cylinder assemblies 721 compensates for the downward travel of the top drive and the tool due to the threaded makeup to the tubular string.

Additionally, the compensation assembly of the traveling member 701 can be actuated to provide additional thread compensation, as shown in FIG. 37. The one or more piston and cylinder assemblies 703 of the traveling member longitudinally move the drive member 710 and the adapter 730. The one or more piston and cylinder assemblies 703 lift the hook of the housing section 711d from the support of the traveling member 701. The one or more piston and cylinder assemblies 703 reduce the amount of weight set down on the threads of the tubular string during connection with a tubular string. The one or more piston and cylinder assemblies 703 compensate for the downward travel of the top drive and the tool due to the threaded makeup to the tubular string.

In one or more of the embodiments described herein, a coupler system for coupling a top drive and a tool includes a coupler for a top drive. The coupler system includes a housing with a bore therethrough and a window formed through the housing. The coupler system also includes an adapter of a tool having a tab formed on the adapter, wherein the window is configured to receive the tab and torsionally couple the adapter and the housing. The coupler system also includes a lock ring disposed on the housing and rotatable relative to the housing between a locked position and an unlocked position, wherein the lock ring is configured to longitudinally couple the adapter and the coupler in the locked position.

In one or more of the embodiments described herein, a coupler system for coupling a top drive and a tool includes a drive member of the top drive configured to transfer torque. The drive member includes a housing with a bore therethrough and a window formed substantially laterally through the housing. The adapter of the tool is configured to be inserted through the window of the housing.

In one or more of the embodiments described herein, the coupler system further includes a lock plate disposed in the housing.

In one or more of the embodiments described herein, the lock plate is longitudinally movable relative to the housing.

In one or more of the embodiments described herein, the lock plate is configured to connect to the adapter.

In one or more of the embodiments described herein, the coupler system further includes one or more utility connectors longitudinally movable relative to the housing.

In one or more of the embodiments described herein, the one or more utility connectors are configured to transfer at least one of power, data, electronics, hydraulics, and pneumatics.

In one or more of the embodiments described herein, a compensation assembly is configured to support a weight of the tool.

In one or more of the embodiments described herein, the compensation assembly includes an actuator configured to move a lock plate disposed in the housing and a fastener configured to couple the adapter to the lock plate.

In one or more of the embodiments described herein, a method for coupling a top drive to a tool includes moving the tool adjacent to the top drive, the tool including an adapter and the top drive including a housing having a window formed therethrough. The method further includes aligning the adapter with the window and inserting the adapter substantially laterally into the window of the housing, thereby longitudinally and torsionally coupling the top drive and the tool.

In one or more of the embodiments described herein, the method further includes moving a lock plate disposed within the housing.

In one or more of the embodiments described herein, the method further includes moving one or more utility connectors at least partially disposed within the housing.

In one or more of the embodiments described herein, the method further includes connecting the lock plate to the adapter.

In one or more of the embodiments described herein, the method further includes supporting a weight of the tool using a compensation assembly.

In one or more of the embodiments described herein, the method further includes connecting the one or more utility connectors to the adapter to transfer at least one of power, data, electronics, hydraulics, and pneumatics.

In one or more of the embodiments described herein, a coupler system for coupling a top drive and a tool, includes a drive member for a top drive configured to transfer torque and support a weight of the tool. The drive member includes a housing with a bore therethrough. The coupler system further includes an adapter of a tool, a lock plate disposed in the housing and longitudinally movable relative to the housing, wherein the lock plate is configured to connect to the adapter, and one or more utility connectors longitudinally movable relative to the housing with the lock plate.

In one or more of the embodiments described herein, the one or more utility connectors are configured to connect to the adapter.

In one or more of the embodiments described herein, the one or more utility connectors are configured to transfer at least one of power, data, electronics, hydraulics, and pneumatics.

In one or more of the embodiments described herein, the coupler system further includes an actuator disposed in the housing and configured to move and connect the one or more utility connectors to the adapter.

In one or more of the embodiments described herein, a coupler system for coupling a top drive and a tool includes a drive member for a top drive. The drive member includes a housing with a bore therethrough and a quill configured to rotate relative to the housing. The coupler system further includes an adapter of a tool configured to be inserted into the bore of the housing and engage the quill and one or more utility connectors, wherein the one or more utility connectors are rotationally stationary.

In one or more of the embodiments described herein, the one or more utility connectors are configured to transfer at least one of power, data, electronics, hydraulics, and pneumatics.

In one or more of the embodiments described herein, the adapter comprises a utility transfer section configured to transfer at least one of power, data, electronics hydraulics, and pneumatics across a rotating interface.

In one or more of the embodiments described herein, the coupler system further includes a compensation assembly configured to support a weight of the tool.

In one or more of the embodiments described herein, the window is formed in the housing at an angle of about thirty degrees or less relative to a horizontal axis of the housing.

In one or more of the embodiments described herein, the adapter is inserted at an angle of about thirty degrees or less relative to a horizontal axis of the housing.

While the foregoing is directed to embodiments of the present invention, other and further embodiments of the invention may be devised without departing from the basic scope thereof, and the scope thereof is determined by the claims that follow.

Liess, Martin

Patent Priority Assignee Title
Patent Priority Assignee Title
10030800, Aug 04 2016 Beto Engineering and Marketing Co., Ltd. Push-to-press inflation adaptor for English valves
1367156,
1610977,
1822444,
1853299,
2266572,
2370354,
2683379,
3147992,
3354951,
3385370,
3662842,
3698426,
3747675,
3766991,
3774697,
3776320,
3842619,
3888318,
3899024,
3913687,
3915244,
3917092,
3964552, Jan 23 1975 HUGHES TOOL COMPANY A CORP OF DE Drive connector with load compensator
4022284, Mar 17 1975 Dresser Industries, Inc. Automatic alignment system for earth boring rig
4051587, Aug 02 1976 VARCO INTERNATIONAL, INC , A CA CORP Pile handling apparatus and methods
4100968, Aug 30 1976 Technique for running casing
4192155, Jul 21 1977 Bralorne Resources Limited Floating cushion sub
4199847, Jan 29 1979 KVAERNER NATIONAL, INC Well riser support having elastomeric bearings
4235469, May 11 1979 Den-Con Tool Company Pipe handling apparatus
4364407, Feb 23 1981 ED V BURGE Mud saver valve
4377179, Oct 28 1980 Bernhardt & Frederick Co., Inc. Pressure balanced ball valve device
4402239, Apr 30 1979 Eckel Manufacturing Company, Inc. Back-up power tongs and method
4449596, Aug 03 1982 VARCO I P, INC Drilling of wells with top drive unit
4478244, Jan 05 1983 Mud saver valve
4497224, Aug 11 1983 Eastman Christensen Company Apparatus for making and breaking screw couplings
4593773, Jan 25 1984 Maritime Hydraulics A.S. Well drilling assembly
4647050, Jul 22 1985 ANADARKO PETROLEUM CORPORATION, A DE CORP Stuffing box for a sucker rod pump assembly
4762187, Jul 29 1987 W-N APACHE CORP , WICHITA FALLS, TX , A DE CORP Internal wrench for a top head drive assembly
4776617, Feb 14 1986 Kabushiki Kaisha Suiken Technology Telescopic swivel pipe joint
4779688, Jul 23 1986 CMV, INC Mud saver valve
4791997, Jan 07 1988 VARCO INTERNATIONAL, INC , A CA CORP Pipe handling apparatus and method
4813493, Apr 14 1987 TRITEN CORPORATION, 5915 BRITTMORE ROAD, HOUSTON, TEXAS 77041 A CORP OF TEXAS Hydraulic top drive for wells
4815546, Apr 02 1987 W-N Apache Corporation Top head drive assembly with axially movable quill
4821814, Apr 02 1987 501 W-N Apache Corporation Top head drive assembly for earth drilling machine and components thereof
4844181, Aug 19 1988 Floating sub
4867236, Oct 09 1987 W-N Apache Corporation Compact casing tongs for use on top head drive earth drilling machine
4916959, Feb 22 1988 Weatherford Lamb, Inc Long stroke well pumping unit with carriage
4932253, May 02 1989 Rod mounted load cell
4955949, Feb 01 1989 SMITH INTERNATIONAL, INC A DELAWARE CORPORATION Mud saver valve with increased flow check valve
4962819, Feb 01 1989 SMITH INTERNATIONAL, INC A DELAWARE CORPORATION Mud saver valve with replaceable inner sleeve
4972741, Oct 13 1988 FRANKS CASING GREW AND RENTAL TOOLS, INC , A CORP OF LA Isolated torsional-transfer combined tong apparatus
4981180, Jul 14 1989 NATIONAL-OILWELL, L P Positive lock of a drive assembly
4997042, Jan 03 1990 Mobil Oil Corporation Casing circulator and method
5018350, May 09 1990 BENDER COMPANY, THE Long stroke deep well pumping unit
5020640, Sep 10 1988 Bongers & Deimann Elevator brake
5036927, Mar 10 1989 W-N Apache Corporation Apparatus for gripping a down hole tubular for rotation
5099725, Oct 19 1990 FRANK S CASING CREW AND RENTAL TOOLS, INC Torque transfer apparatus
5152554, Dec 18 1990 LaFleur Petroleum Services, Inc. Coupling apparatus
5172940, Nov 21 1988 USUI Kokusai Sangyo Kaisha, Ltd. Connector device for connecting small diameter pipe
5191939, Mar 01 1991 Tam International; TAM INTERNATIONAL, A TX CORP Casing circulator and method
5196770, Dec 12 1988 HYDRALIFT Vertically reciprocating constant power drive unit for raising a load step by step
5215153, Nov 08 1991 Apparatus for use in driving or withdrawing such earth entering elements as drills and casings
5245877, Mar 12 1991 Weatherford U.S., Inc. Tong load cell assembly
5282653, Dec 18 1990 LaFleur Petroleum Services, Inc.; LAFLEUR PETROLEUM SERVICES, INC A CORP OF TEXAS Coupling apparatus
5284214, Sep 25 1992 Drill pipe coupling apparatus
5297833, Nov 12 1992 W-N Apache Corporation Apparatus for gripping a down hole tubular for support and rotation
5348351, Dec 18 1990 LaFleur Petroleum Services, Inc. Coupling apparatus
5385514, Aug 11 1993 Excelermalic Inc. High ratio planetary transmission
5404767, Sep 03 1993 Oil well pump power unit
5433279, Jul 20 1993 Tesco Corporation Portable top drive assembly
5440183, Jul 12 1991 DENNE DEVELOPMENTS, LTD Electromagnetic apparatus for producing linear motion
5441310, Mar 04 1994 FMC TECHNOLOGIES, INC Cement head quick connector
5456320, Dec 06 1993 Total Tool, Inc. Casing seal and spool for use in fracturing wells
5479988, Nov 30 1991 APPLETON, ROBERT PATRICK Mud check valves in drilling apparatus (wells)
5486223, Jan 19 1994 TN International Metal matrix compositions and method of manufacture thereof
5501280, Oct 27 1994 Halliburton Company Casing filling and circulating apparatus and method
5509442, Mar 28 1995 Mud saver valve
5540095, Aug 17 1990 Analog Devices, Inc. Monolithic accelerometer
5577566, Aug 09 1995 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Releasing tool
5584343, Apr 28 1995 Davis-Lynch, Inc.; DAVIS-LYNCH, INC Method and apparatus for filling and circulating fluid in a wellbore during casing running operations
5607250, Jul 13 1994 Expertest Pty. Ltd. Quick connect coupling
5645131, Jun 14 1994 SOILMEC S.p.A. Device for joining threaded rods and tubular casing elements forming a string of a drilling rig
5664310, Jun 23 1995 Bilco Tools, Inc. Combination power and backup tong support and method
5682952, Mar 27 1996 Tam International Extendable casing circulator and method
5735348, Oct 04 1996 Frank's International, Inc. Method and multi-purpose apparatus for dispensing and circulating fluid in wellbore casing
5769577, Jul 20 1994 Lawrence O., Boddy Removable spinning tool assembly
5778742, Nov 07 1995 Eckel Manufacturing Company, Inc. Hydraulic backup tong
5839330, Jul 31 1996 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Mechanism for connecting and disconnecting tubulars
5909768, Jan 17 1997 FRANK S CASING CREWS AND RENTAL TOOLS, INC Apparatus and method for improved tubular grip assurance
5918673, Oct 04 1996 Frank's International, Inc.; FRANK S INTERNATIONAL, INC Method and multi-purpose apparatus for dispensing and circulating fluid in wellbore casing
5950724, Sep 04 1996 ANTARES CAPITAL LP, AS SUCCESSOR AGENT Lifting top drive cement head
5971079, Sep 05 1997 Casing filling and circulating apparatus
5992520, Sep 15 1997 Halliburton Energy Services, Inc Annulus pressure operated downhole choke and associated methods
6003412, Apr 20 1998 ENGLISH, BOYD; WALKOM, KEITH Back-up tong body
6011508, Oct 31 1997 MAGNEMOTION, INC Accurate position-sensing and communications for guideway operated vehicles
6053191, Feb 13 1997 Mud-saver valve
6101952, Dec 24 1997 MAGNEMOTION, INC Vehicle guidance and switching via magnetic forces
6102116, Apr 22 1997 SOILMEC S P A Locking device to load and to screw a drill stem and casing tubes for drill rigs
6142545, Nov 13 1998 BJ Services Company Casing pushdown and rotating tool
6161617, Sep 13 1996 Hitec ASA Device for connecting casings
6173777, Feb 09 1999 Single valve for a casing filling and circulating apparatus
6276450, May 02 1999 VARCO I P, INC Apparatus and method for rapid replacement of upper blowout preventers
6279654, May 02 1997 FRANK S INTERNATIONAL, INC Method and multi-purpose apparatus for dispensing and circulating fluid in wellbore casing
6289911, Apr 16 1999 Wellbore Integrity Solutions LLC Mud saver kelly valve
6309002, Apr 09 1999 FRANK S INTERNATIONAL, LLC Tubular running tool
6311792, Oct 08 1999 NABORS DRILLING TECHNOLOGIES USA, INC Casing clamp
6328343, Aug 14 1998 ABB Vetco Gray, Inc. Riser dog screw with fail safe mechanism
6378630, Oct 28 1999 NATIONAL OILWELL VARCO, L P Locking swivel device
6390190, May 11 1998 OFFSHORE ENERGY SERVICES, INC Tubular filling system
6401811, Apr 30 1999 FORUM US, INC Tool tie-down
6415862, May 11 1998 OFFSHORE ENERGY SERVICES, INC Tubular filling system
6431626, Apr 09 1999 FRANK S INTERNATIONAL, LLC Tubular running tool
6443241, Mar 05 1999 VARCO I P, INC Pipe running tool
6460620, Nov 29 1999 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Mudsaver valve
6499701, Jul 02 1999 MAGNEMOTION, INC System for inductive transfer of power, communication and position sensing to a guideway-operated vehicle
6508132, Feb 17 1999 Illinois Tool Works Inc Dynamic load cell apparatus
6527047, Aug 24 1998 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Method and apparatus for connecting tubulars using a top drive
6536520, Apr 17 2000 Wells Fargo Bank, National Association Top drive casing system
6571876, May 24 2001 Halliburton Energy Services, Inc. Fill up tool and mud saver for top drives
6578495, Nov 23 1999 MAGNEMOTION, INC Modular linear motor tracks and methods of fabricating same
6578632, Aug 15 2001 MCCOY GLOBAL INC Swing mounted fill-up and circulating tool
6595288, Oct 04 1996 Frank's International, Inc. Method and multi-purpose apparatus for dispensing and circulating fluid in wellbore casing
6604578, May 11 1998 Tubular filling system
6606569, Jul 16 1999 TEST MEASUREMENT SYSTEMS, INC Methods and systems for dynamic force measurement
6622796, Dec 24 1998 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Apparatus and method for facilitating the connection of tubulars using a top drive
6637526, Mar 05 1999 VARCO I P, INC Offset elevator for a pipe running tool and a method of using a pipe running tool
6640824, Apr 16 1999 Smith International, Inc. Mud saver kelly valve
6666273, May 10 2002 Weatherford Lamb, Inc Valve assembly for use in a wellbore
6675889, May 11 1998 OFFSHORE ENERGY SERVICES, INC Tubular filling system
6679333, Oct 26 2001 CANRIG DRILLING TECHNOLOGY, LTD Top drive well casing system and method
6688398, Aug 24 1998 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Method and apparatus for connecting tubulars using a top drive
6691801, Mar 05 1999 VARCO I P INC Load compensator for a pipe running tool
6705405, Aug 24 1998 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Apparatus and method for connecting tubulars using a top drive
6715542, May 11 1998 Tubular filling system
6719046, Mar 20 2002 Apparatus for controlling the annulus of an inner string and casing string
6722425, May 11 1998 OFFSHORE ENERGY SERVICES, INC Tubular filling system
6725938, Dec 24 1998 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Apparatus and method for facilitating the connection of tubulars using a top drive
6732819, Dec 03 2001 Mudsaver valve with retrievable inner sleeve
6732822, Mar 22 2000 FRANK S INTERNATIONAL, INC Method and apparatus for handling tubular goods
6742584, Sep 25 1998 NABORS DRILLING TECHNOLOGIES USA, INC Apparatus for facilitating the connection of tubulars using a top drive
6742596, May 17 2001 Wells Fargo Bank, National Association Apparatus and methods for tubular makeup interlock
6770004, Mar 26 1999 CONTITECH USA, INC Electrically conductive timing belt
6779599, Sep 25 1998 OFFSHORE ENERGY SERVICES, INC Tubular filling system
6832656, Jun 26 2002 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Valve for an internal fill up tool and associated method
6851476, Aug 03 2001 Wells Fargo Bank, National Association Dual sensor freepoint tool
6883605, Nov 27 2002 OFFSHORE ENERGY SERVICES, INC Wellbore cleanout tool and method
6892835, Jul 29 2002 Wells Fargo Bank, National Association Flush mounted spider
6908121, Oct 22 2001 Wells Fargo Bank, National Association Locking arrangement for a threaded connector
6925807, Jul 30 2002 MOOG INC Actuator control system for hydraulic devices
6938697, May 17 2001 Wells Fargo Bank, National Association Apparatus and methods for tubular makeup interlock
6976298, Aug 24 1998 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Methods and apparatus for connecting tubulars using a top drive
6983701, Oct 01 2001 MAGNEMOTION, INC Suspending, guiding and propelling vehicles using magnetic forces
6994176, Jul 29 2002 Wells Fargo Bank, National Association Adjustable rotating guides for spider or elevator
7000503, Apr 27 2004 MCCOY GLOBAL INC Support system for power tong assembly
7001065, May 05 2003 Ray, Dishaw Oilfield thread makeup and breakout verification system and method
7004259, Dec 24 1998 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Apparatus and method for facilitating the connection of tubulars using a top drive
7007753, Sep 09 2002 MAKO RENTALS, INC Top drive swivel apparatus and method
7017671, Feb 27 2004 Mud saver valve
7021374, Aug 24 1998 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Method and apparatus for connecting tubulars using a top drive
7025130, Oct 12 2001 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Methods and apparatus to control downhole tools
7073598, May 17 2001 Wells Fargo Bank, National Association Apparatus and methods for tubular makeup interlock
7090021, Aug 24 1998 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Apparatus for connecting tublars using a top drive
7096948, Oct 04 1996 Frank's International, Inc. Method and multi-purpose apparatus for dispensing and circulating fluid in wellbore casing
7114235, Sep 12 2002 Wells Fargo Bank, National Association Automated pipe joining system and method
7128161, Dec 24 1998 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Apparatus and methods for facilitating the connection of tubulars using a top drive
7137454, Jul 22 1998 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Apparatus for facilitating the connection of tubulars using a top drive
7140443, Nov 10 2003 NABORS DRILLING TECHNOLOGIES USA, INC Pipe handling device, method and system
7143849, Jul 29 2002 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Flush mounted spider
7147254, Oct 16 2000 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Coupling apparatus
7159654, Apr 15 2004 VARCO I P, INC Apparatus identification systems and methods
7178600, Nov 05 2002 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Apparatus and methods for utilizing a downhole deployment valve
7178612, Aug 29 2003 NATIONAL OILWELL, L P Automated arm for positioning of drilling tools such as an iron roughneck
7213656, Dec 24 1998 Wells Fargo Bank, National Association Apparatus and method for facilitating the connection of tubulars using a top drive
7219744, Aug 24 1998 Weatherford/Lamb, Inc. Method and apparatus for connecting tubulars using a top drive
7231969, Jun 07 2004 VARCO I P INC Wellbore top drive power systems and methods of use
7270189, Nov 09 2004 NABORS DRILLING TECHNOLOGIES USA, INC Top drive assembly
7281451, Feb 12 2002 Wells Fargo Bank, National Association Tong
7281587, May 17 2001 Wells Fargo Bank, National Association Apparatus and methods for tubular makeup interlock
7290476, Oct 20 1998 Control Products, Inc. Precision sensor for a hydraulic cylinder
7303022, Oct 11 2002 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Wired casing
7325610, Apr 17 2000 Wells Fargo Bank, National Association Methods and apparatus for handling and drilling with tubulars or casing
7353880, Aug 24 1998 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Method and apparatus for connecting tubulars using a top drive
7373971, Aug 24 2004 Crostek Management Corp. Pump jack and method of use
7448456, Jul 29 2002 Wells Fargo Bank, National Association Adjustable rotating guides for spider or elevator
7451826, Aug 24 1998 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Apparatus for connecting tubulars using a top drive
7490677, Jul 05 2006 Frank's International Stabbing guide adapted for use with saver sub
7503397, Jul 30 2004 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Apparatus and methods of setting and retrieving casing with drilling latch and bottom hole assembly
7509722, Sep 02 1997 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Positioning and spinning device
7513300, Aug 24 1998 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Casing running and drilling system
7530799, Jul 30 2004 SMITH, NORRIS EDWARD Long-stroke deep-well pumping unit
7579941, Aug 01 2002 SIENA FUNDING LLC Trailer cargo detection using ultrasonic transducers
7591304, Mar 05 1999 VARCO I P, INC Pipe running tool having wireless telemetry
7617866, Aug 16 1999 Wells Fargo Bank, National Association Methods and apparatus for connecting tubulars using a top drive
7635026, Oct 04 1996 FRANK S INTERNATIONAL, LLC Methods and devices for forming a wellbore with casing
7665515, Jun 10 2005 MCCOY GLOBAL INC Casing and drill pipe filling and circulating method
7665530, Dec 12 2006 NATIONAL OILWELL VARCO L P Tubular grippers and top drive systems
7665531, Jul 22 1998 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Apparatus for facilitating the connection of tubulars using a top drive
7669662, Aug 24 1998 Wells Fargo Bank, National Association Casing feeder
7690422, Feb 08 2006 FRANK S INTERNATIONAL LIMITED Drill-string connector
7694730, Mar 19 2004 NABORS DRILLING TECHNOLOGIES USA, INC Spear type blow out preventer
7694744, Jan 12 2005 Wells Fargo Bank, National Association One-position fill-up and circulating tool and method
7699121, Mar 05 1999 VARCO I P, INC Pipe running tool having a primary load path
7712523, Apr 17 2000 Wells Fargo Bank, National Association Top drive casing system
7730698, Dec 16 2004 LAKO TOOL & MANUFACTURING INC Split crimper for heat sealing packaging material
7757759, Apr 27 2006 Wells Fargo Bank, National Association Torque sub for use with top drive
7779922, May 04 2007 OMNI ENERGY SERVICES CORP Breakout device with support structure
7793719, Apr 17 2000 Wells Fargo Bank, National Association Top drive casing system
7817062, Aug 04 2005 Intelliserv, LLC. Surface communication apparatus and method for use with drill string telemetry
7828085, Dec 20 2005 NABORS DRILLING TECHNOLOGIES USA, INC Modular top drive
7841415, Mar 22 2007 NATIONAL OILWELL VARCO L P Iron roughneck extension systems
7854265, Jun 30 2008 NABORS DRILLING TECHNOLOGIES USA, INC Pipe gripping assembly with power screw actuator and method of gripping pipe on a rig
7857043, Aug 09 2006 Polished rod rotator
7866390, Oct 04 1996 FRANK S INTERNATIONAL, LLC Casing make-up and running tool adapted for fluid and cement control
7874352, Mar 05 2003 Wells Fargo Bank, National Association Apparatus for gripping a tubular on a drilling rig
7874361, Oct 04 1996 FRANK S INTERNATIONAL, LLC Methods and devices for forming a wellbore with casing
7878237, Mar 19 2004 NABORS DRILLING TECHNOLOGIES USA, INC Actuation system for an oilfield tubular handling system
7878254, Jun 14 2006 Motion Metrics International Corp Systems, apparatus, and methods for autonomous tripping of well pipes
7882902, Nov 17 2006 Wells Fargo Bank, National Association Top drive interlock
7896084, May 17 2001 Wells Fargo Bank, National Association Apparatus and methods for tubular makeup interlock
7918273, Apr 17 2000 Wells Fargo Bank, National Association Top drive casing system
7958787, Aug 24 2006 NABORS DRILLING TECHNOLOGIES USA, INC Oilfield tubular torque wrench
7971637, Feb 26 2009 Devin International, Inc. Dual mini well surface control system
7975768, Aug 23 2005 Hydril USA Distribution LLC Riser joint coupling
8036829, Oct 31 2008 RAVDOS HOLDINGS INC Apparatus for analysis and control of a reciprocating pump system by determination of a pump card
8118106, Mar 11 2008 WEATHERFORD TECHNOLOGY HOLDINGS, LLC Flowback tool
8141642, May 02 2008 Wells Fargo Bank, National Association Fill up and circulation tool and mudsaver valve
8166730, Jun 20 2007 KRONES AG Device for closing containers with screw caps including quick change mechanism for closing element
8210268, Dec 12 2007 Wells Fargo Bank, National Association Top drive system
8256579, Dec 23 2009 Elevator car brake
8281856, Apr 27 2006 Wells Fargo Bank, National Association Torque sub for use with top drive
8307903, Jun 24 2009 Wells Fargo Bank, National Association Methods and apparatus for subsea well intervention and subsea wellhead retrieval
8328527, Oct 15 2009 Wells Fargo Bank, National Association Calculation of downhole pump fillage and control of pump based on said fillage
8365834, May 02 2008 Wells Fargo Bank, National Association Tubular handling apparatus
8459361, Apr 11 2007 Halliburton Energy Services, Inc Multipart sliding joint for floating rig
8505984, Sep 02 2011 Connection assembly for tubular goods
8567512, Dec 12 2005 Wells Fargo Bank, National Association Apparatus for gripping a tubular on a drilling rig
8601910, Aug 06 2009 FRANK S INTERNATIONAL, LLC Tubular joining apparatus
8616134, Jan 23 2009 ROCKWELL AUTOMATION, INC Transport system powered by short block linear synchronous motors
8624699, Nov 09 2009 INDIGO TECHNOLOGIES, INC Electric coil and method of manufacture
8636067, Aug 28 2009 FRANK S INTERNATIONAL, LLC Method and apparatus for performing cementing operations on top drive rigs
8651175, Jan 14 2011 NABORS DRILLING TECHNOLOGIES USA, INC Top drive output torque measurement method
8668003, Oct 23 2008 Seawell Oil Tools AS Cement head with integrated energy supply for operating valves
8708055, May 02 2008 Wells Fargo Bank, National Association Apparatus and methods for wedge lock prevention
8727021, Dec 12 2007 Wells Fargo Bank, National Association Top drive system
8776898, May 02 2008 Wells Fargo Bank, National Association Apparatus and methods for wedge lock prevention
8783339, Jan 15 2010 FRANK S INTERNATIONAL, LLC Tubular member adaptor apparatus
8839884, Dec 20 2005 NABORS DRILLING TECHNOLOGIES USA, INC Direct modular top drive with pipe handler module and methods
8849954, Oct 15 2003 SAMSUNG ELECTRONICS CO , LTD Apparatus and method for managing multimedia playback
8851860, Mar 23 2009 SSI LIFT CDA 2019 LTD Adaptive control of an oil or gas well surface-mounted hydraulic pumping system and method
8858187, Aug 09 2011 Wells Fargo Bank, National Association Reciprocating rod pump for sandy fluids
8869887, Jul 06 2011 Tolteq Group, LLC System and method for coupling downhole tools
8893772, Aug 29 2011 Modular apparatus for assembling tubular goods
8944188, May 15 2009 Cardinal Trading Company Pty Ltd Retaining arrangement, sub adaptor and/or drill spindle
9068396, Aug 23 2013 Halliburton Energy Services, Inc Anti-stall mechanism
9068406, Nov 19 2009 Wells Fargo Bank, National Association Tong positioning arm
9206851, Aug 16 2012 The Charles Machine Works, Inc. Horizontal directional drill pipe drive connection with locking feature
9528326, Dec 12 2007 Wells Fargo Bank, National Association Method of using a top drive system
9631438, May 19 2011 Subsea Technologies Group Limited Connector
20020043403,
20020074132,
20020084069,
20020129934,
20020170720,
20030098150,
20030107260,
20030221519,
20040003490,
20040069497,
20040216924,
20050000691,
20050173154,
20050206163,
20050257933,
20050269072,
20050269104,
20050269105,
20050274508,
20060037784,
20060124353,
20060151181,
20060180315,
20070030167,
20070044973,
20070074588,
20070074874,
20070102992,
20070131416,
20070140801,
20070144730,
20070158076,
20070251699,
20070251701,
20070257811,
20080018603,
20080059073,
20080093127,
20080099196,
20080125876,
20080202812,
20080308281,
20090151934,
20090159294,
20090200038,
20090205820,
20090205827,
20090205836,
20090205837,
20090229837,
20090266532,
20090272537,
20090274544,
20090274545,
20090316528,
20090321086,
20100032162,
20100101805,
20100200222,
20100206583,
20100206584,
20100236777,
20110036586,
20110039086,
20110088495,
20110214919,
20110280104,
20120020808,
20120048574,
20120152530,
20120160517,
20120212326,
20120234107,
20120298376,
20130045116,
20130055858,
20130056977,
20130062074,
20130075077,
20130075106,
20130076099,
20130105178,
20130186638,
20130207382,
20130207388,
20130233624,
20130269926,
20130271576,
20130275100,
20130299247,
20140069720,
20140090856,
20140116686,
20140131052,
20140202767,
20140233804,
20140262521,
20140305662,
20140312716,
20140326468,
20140352944,
20140360780,
20140374168,
20150014063,
20150053424,
20150083391,
20150107385,
20150337648,
20160024862,
20160138348,
20160145954,
20160177639,
20160215592,
20160230481,
20170037683,
20170044854,
20170044875,
20170051568,
20170067303,
20170067320,
20170074075,
20170211327,
20170211343,
20170284164,
AU2012201644,
AU2013205714,
AU2014215938,
CA2707050,
CA2841654,
CA2944327,
CN201810278,
CN2412105,
DE102007016822,
EP250072,
EP1619349,
EP1772715,
EP1961912,
EP1961913,
EP2085566,
EP2322357,
EP3032025,
GB1487948,
GB2077812,
GB2180027,
GB2228025,
GB2314391,
WO2068788,
WO2004079153,
WO2004101417,
WO2007001887,
WO2007070805,
WO2007127737,
WO2008005767,
WO2009076648,
WO200976648,
WO2012100019,
WO2012115717,
WO2014056092,
WO2014182272,
WO2015000023,
WO2015119509,
WO2015127433,
WO2015176121,
WO2016197255,
WO2017044384,
////////////////////////////////////////////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 21 2017WEATHERFORD TECHNOLOGY HOLDINGS, LLC(assignment on the face of the patent)
Sep 19 2017LIESS, MARTINWEATHERFORD TECHNOLOGY HOLDINGS, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0439990605 pdf
Dec 13 2019Weatherford Technology Holdings LLCWELLS FARGO BANK NATIONAL ASSOCIATION AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0518910089 pdf
Dec 13 2019WEATHERFORD NETHERLANDS B V WELLS FARGO BANK NATIONAL ASSOCIATION AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0518910089 pdf
Dec 13 2019Weatherford Norge ASWELLS FARGO BANK NATIONAL ASSOCIATION AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0518910089 pdf
Dec 13 2019HIGH PRESSURE INTEGRITY INC WELLS FARGO BANK NATIONAL ASSOCIATION AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0518910089 pdf
Dec 13 2019PRECISION ENERGY SERVICES INC WELLS FARGO BANK NATIONAL ASSOCIATION AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0518910089 pdf
Dec 13 2019WEATHERFORD CANADA LTDWELLS FARGO BANK NATIONAL ASSOCIATION AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0518910089 pdf
Dec 13 2019Weatherford Switzerland Trading and Development GMBHWELLS FARGO BANK NATIONAL ASSOCIATION AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0518910089 pdf
Dec 13 2019PRECISION ENERGY SERVICES ULCWELLS FARGO BANK NATIONAL ASSOCIATION AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0518910089 pdf
Dec 13 2019WEATHERFORD U K LIMITEDWELLS FARGO BANK NATIONAL ASSOCIATION AS AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0518910089 pdf
Dec 13 2019WEATHERFORD TECHNOLOGY HOLDINGS, LLCDEUTSCHE BANK TRUST COMPANY AMERICAS, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0514190140 pdf
Dec 13 2019WEATHERFORD U K LIMITEDDEUTSCHE BANK TRUST COMPANY AMERICAS, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0514190140 pdf
Dec 13 2019PRECISION ENERGY SERVICES ULCDEUTSCHE BANK TRUST COMPANY AMERICAS, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0514190140 pdf
Dec 13 2019Weatherford Switzerland Trading and Development GMBHDEUTSCHE BANK TRUST COMPANY AMERICAS, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0514190140 pdf
Dec 13 2019WEATHERFORD CANADA LTDDEUTSCHE BANK TRUST COMPANY AMERICAS, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0514190140 pdf
Dec 13 2019Weatherford Norge ASDEUTSCHE BANK TRUST COMPANY AMERICAS, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0514190140 pdf
Dec 13 2019Precision Energy Services, IncDEUTSCHE BANK TRUST COMPANY AMERICAS, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0514190140 pdf
Dec 13 2019HIGH PRESSURE INTEGRITY, INC DEUTSCHE BANK TRUST COMPANY AMERICAS, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0514190140 pdf
Dec 13 2019WEATHERFORD NETHERLANDS B V DEUTSCHE BANK TRUST COMPANY AMERICAS, AS ADMINISTRATIVE AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0514190140 pdf
Aug 28 2020Weatherford Norge ASWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0542880302 pdf
Aug 28 2020HIGH PRESSURE INTEGRITY, INC WILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0542880302 pdf
Aug 28 2020Precision Energy Services, IncWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0542880302 pdf
Aug 28 2020WEATHERFORD CANADA LTDWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0542880302 pdf
Aug 28 2020Weatherford Switzerland Trading and Development GMBHWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0542880302 pdf
Aug 28 2020Wells Fargo Bank, National AssociationWEATHERFORD U K LIMITEDRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0538380323 pdf
Aug 28 2020Wells Fargo Bank, National AssociationPRECISION ENERGY SERVICES ULCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0538380323 pdf
Aug 28 2020Wells Fargo Bank, National AssociationWeatherford Switzerland Trading and Development GMBHRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0538380323 pdf
Aug 28 2020Wells Fargo Bank, National AssociationPrecision Energy Services, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0538380323 pdf
Aug 28 2020Wells Fargo Bank, National AssociationHIGH PRESSURE INTEGRITY, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0538380323 pdf
Aug 28 2020Wells Fargo Bank, National AssociationWeatherford Norge ASRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0538380323 pdf
Aug 28 2020Wells Fargo Bank, National AssociationWEATHERFORD NETHERLANDS B V RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0538380323 pdf
Aug 28 2020Wells Fargo Bank, National AssociationWEATHERFORD TECHNOLOGY HOLDINGS, LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0538380323 pdf
Aug 28 2020WEATHERFORD U K LIMITEDWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0542880302 pdf
Aug 28 2020PRECISION ENERGY SERVICES ULCWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0542880302 pdf
Aug 28 2020WEATHERFORD NETHERLANDS B V WILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0542880302 pdf
Aug 28 2020WEATHERFORD TECHNOLOGY HOLDINGS, LLCWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0542880302 pdf
Aug 28 2020Wells Fargo Bank, National AssociationWEATHERFORD CANADA LTDRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0538380323 pdf
Sep 30 2021Weatherford Norge ASWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0576830706 pdf
Sep 30 2021WILMINGTON TRUST, NATIONAL ASSOCIATIONPRECISION ENERGY SERVICES ULCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0576830423 pdf
Sep 30 2021WILMINGTON TRUST, NATIONAL ASSOCIATIONWEATHERFORD CANADA LTDRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0576830423 pdf
Sep 30 2021WILMINGTON TRUST, NATIONAL ASSOCIATIONWeatherford Switzerland Trading and Development GMBHRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0576830423 pdf
Sep 30 2021WILMINGTON TRUST, NATIONAL ASSOCIATIONPrecision Energy Services, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0576830423 pdf
Sep 30 2021WILMINGTON TRUST, NATIONAL ASSOCIATIONHIGH PRESSURE INTEGRITY, INC RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0576830423 pdf
Sep 30 2021WILMINGTON TRUST, NATIONAL ASSOCIATIONWeatherford Norge ASRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0576830423 pdf
Sep 30 2021WILMINGTON TRUST, NATIONAL ASSOCIATIONWEATHERFORD NETHERLANDS B V RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0576830423 pdf
Sep 30 2021WILMINGTON TRUST, NATIONAL ASSOCIATIONWEATHERFORD U K LIMITEDRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0576830423 pdf
Sep 30 2021WEATHERFORD TECHNOLOGY HOLDINGS, LLCWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0576830706 pdf
Sep 30 2021WEATHERFORD NETHERLANDS B V WILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0576830706 pdf
Sep 30 2021WILMINGTON TRUST, NATIONAL ASSOCIATIONWEATHERFORD TECHNOLOGY HOLDINGS, LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0576830423 pdf
Sep 30 2021HIGH PRESSURE INTEGRITY, INC WILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0576830706 pdf
Sep 30 2021Precision Energy Services, IncWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0576830706 pdf
Sep 30 2021WEATHERFORD CANADA LTDWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0576830706 pdf
Sep 30 2021Weatherford Switzerland Trading and Development GMBHWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0576830706 pdf
Sep 30 2021WEATHERFORD U K LIMITEDWILMINGTON TRUST, NATIONAL ASSOCIATIONSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0576830706 pdf
Jan 31 2023DEUTSCHE BANK TRUST COMPANY AMERICASWells Fargo Bank, National AssociationPATENT SECURITY INTEREST ASSIGNMENT AGREEMENT0634700629 pdf
Date Maintenance Fee Events
Jun 23 2023M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Jan 07 20234 years fee payment window open
Jul 07 20236 months grace period start (w surcharge)
Jan 07 2024patent expiry (for year 4)
Jan 07 20262 years to revive unintentionally abandoned end. (for year 4)
Jan 07 20278 years fee payment window open
Jul 07 20276 months grace period start (w surcharge)
Jan 07 2028patent expiry (for year 8)
Jan 07 20302 years to revive unintentionally abandoned end. (for year 8)
Jan 07 203112 years fee payment window open
Jul 07 20316 months grace period start (w surcharge)
Jan 07 2032patent expiry (for year 12)
Jan 07 20342 years to revive unintentionally abandoned end. (for year 12)