Various spinal implants and methods for stabilizing the spine are provided. In one exemplary embodiment, a spinal implant is provided having an expandable container with an interior volume that is selectively expandable between a compressed condition and an expanded condition. The expandable container is coupled to a superior endplate member having a bone-contacting surface and an engagement surface effective to mate with a superior surface of the expandable container, and an inferior endplate member having a bone-contacting surface and an engagement surface effective to mate with an inferior surface of the expandable container. In addition, at least one inlet port is formed in the expandable container and is effective to communicate a fluid to at least one cavity disposed within the interior volume of the expandable container.
|
1. A spinal implant, comprising:
a superior endplate having a superior bone contacting surface and an inferior engagement surface;
an inferior endplate having an inferior bone contacting surface and a superior engagement surface;
an expandable articulating pleated member that extends between the superior and inferior endplates and is mated to the engagement surfaces of the superior and inferior endplates, the expandable articulating pleated member being selectively expandable between a compressed condition and an expanded condition, the expandable articulating pleated member having a sidewall with an inward-facing surface, an outward-facing surface, and an interior volume disposed within the sidewall between the inward-facing and outward-facing surfaces, the interior volume having at least one chamber for holding a fluid;
a thru-hole that extends from the superior surface of the superior endplate, through a central opening of the expandable articulating pleated member, to the inferior surface of the inferior endplate;
an expandable balloon configured to receive an expansion material and placed within the central opening of the expandable articulating pleated member; and
an inlet port effective to communicate the expansion material into the expandable balloon;
wherein delivery of the expansion material through the inlet port and into the expandable balloon increases a distance between the superior and inferior endplates and thereby increases a height of the expandable articulating pleated member;
wherein the spinal implant is filled with a fusion promoting material; and
wherein the inlet port extends through the outward-facing surface and the inward-facing surface of the articulating pleated member.
16. A spinal implant, comprising:
a superior endplate having a superior bone contacting surface and an inferior engagement surface;
an inferior endplate having an inferior bone contacting surface and a superior engagement surface;
a single cashew-shaped expandable articulating pleated member that extends between the superior and inferior endplates and is mated to the engagement surfaces of the superior and inferior endplates, the expandable articulating pleated member being selectively expandable between a compressed condition and an expanded condition, the expandable articulating pleated member having a sidewall with an inward-facing surface, an outward-facing surface, and an interior volume disposed within the sidewall between the inward-facing and outward-facing surfaces, the interior volume defining an internal chamber for holding a volume of a fluid;
a thru-hole that extends from the superior surface of the superior endplate, through a central opening of the expandable articulating pleated member, to the inferior surface of the inferior endplate;
an expandable balloon configured to receive an expansion material and placed within the central opening of the expandable articulating pleated member; and
an inlet port effective to communicate the expansion material into the expandable balloon; and
wherein delivery of the expansion material through the inlet port and into the expandable balloon increases a height of the expandable articulating pleated member and thereby increases a distance between the superior and inferior endplates;
wherein the spinal implant is filled with a fusion promoting material; and
wherein the inlet port extends through the outward-facing and inward-facing surfaces of the expandable articulating pleated member sidewall.
9. A spinal implant, comprising:
a superior endplate having a superior bone contacting surface and an inferior engagement surface;
an inferior endplate having an inferior bone contacting surface and a superior engagement surface;
an expandable articulating pleated member that extends between the superior and inferior endplates and is mated to the engagement surfaces of the superior and inferior endplates, the expandable articulating pleated member being selectively expandable between a compressed condition and an expanded condition, the expandable articulating pleated member having a sidewall with an inward-facing surface, an outward-facing surface, and an interior volume disposed within the sidewall between the inward-facing and outward-facing surfaces, the interior volume having at least one internal chamber for holding a volume of a fluid;
a thru-hole that extends from the superior surface of the superior endplate, through a central opening of the expandable articulating pleated member, to the inferior surface of the inferior endplate;
an expandable balloon configured to receive an expansion material and placed within the central opening of the expandable articulating pleated member, and
multiple inlet ports effective to communicate the fluid to the at least one internal chamber of the expandable articulating pleated member and to communicate the expansion material into the expandable balloon,
wherein delivery of the expansion material through at least one of the multiple inlet ports and into the expandable balloon increases a height of the expandable articulating pleated member to increase a separation between the superior and inferior endplates;
wherein the spinal implant is filled with a fusion promoting material; and
wherein at least one of the multiple inlet ports extends through the outward-facing surface and the inward-facing surface of the articulating pleated member sidewall.
3. The implant of
5. The implant of
6. The implant of
7. The implant of
wherein the inferior engagement surface of the superior endplate is planar and an outer periphery of the planar inferior engagement surface is exposed when the expandable articulating pleated member is in the expanded configuration; and
wherein the superior engagement surface of the inferior endplate is planar and an outer periphery of the planar superior engagement surface is exposed when the expandable articulating pleated member is in the expanded configuration.
8. The implant of
10. The implant of
12. The implant of
13. The implant of
14. The implant of
15. The implant of
17. The implant of
18. The implant of
|
The present application is a continuation of U.S. application Ser. No. 13/561,271, filed Jul. 30, 2012, which is a divisional of U.S. application Ser. No. 11/750,113, filed May 17, 2007, and entitled “Self-Distracting Cage,” the disclosures of which are incorporated herein by reference in their entirety.
The present invention relates to methods and devices for spinal stabilization and fusion, and particularly to an expandable intervertebral implant.
A leading cause of lower back pain arises from lumbar intervertebral disc pathology caused by degeneration of the intervertebral disc. As a disc degenerates, the nucleus and annulus functions are compromised. The nucleus becomes thinner and unable to handle compression loads. The annulus fibers become redundant as the nucleus shrinks. The redundant annular fibers are less effective in controlling vertebral motion. The disc pathology can result in the bulging of the annulus into the spinal cord or nerves, narrowing of the space between the vertebra where the nerves exit, tears of the annulus under abnormal loads caused by excessive motion between the vertebra, and disc herniation. Additionally, lower back pain may be caused by collapse of the disc and the dysarthrosis of an unstable or degenerative vertebral facet joint. A technique for managing these problems is to remove the problematic disc and replace it with a porous intervertebral fusion device that restores disc height and allows for bone growth therethrough for the fusion of the adjacent vertebra.
In general, delivery of conventional intervertebral fusion devices requires significantly invasive implantation procedures. In some configurations, the intervertebral implants are not adjustable by the surgeon during an open surgical procedure. Therefore, the surgeon must choose the size that most closely matches the desired height, length, and width dimensions, and then make the implant fit. Because these implants are of a predetermined size and shape, the implant site must correspond to the implant configuration. This can require extensive site preparation to complete implantation. Fusion devices with parallel superior and inferior surfaces either fit tightly posteriorly and loosely anteriorly, or require removal of vertebral bone in order to fit posteriorly. Extensive site preparation such as this can compromise the success of the implantation procedure by causing excessive damage to the receiving vertebral elements. In addition, open surgical implantation of posterior implants requires excision of stabilizing muscles, ligaments, tendons, and bony structures such as facet joints. The implants must therefore overcome the destabilization caused by the surgery, as well as provide additional stabilization to promote bony fusion. In addition, open anterior surgery in the lumbar spine can present risks due to the close proximity of the aorta and bifurcation of the aorta.
To combat some problems associated with open anterior surgeries, minimally invasive procedures have been developed. Current implants, or inner body cages, used in minimally invasive procedures, however, are still unable to conform to the necessary lordotic angle between adjacent vertebra. In addition, surgeons must rely on high manual forces to distract (dilate) the disc space. Finally, current cages do not have a shape that is optimal in terms of support.
Accordingly, there is a need for instrumentation and techniques that allow for a self-distracting, self-leveling, and adjustable inner body cage that can be easily inserted and positioned.
The present invention provides various spinal implants and methods for stabilizing the spine. In one exemplary embodiment, a spinal implant is provided having an expandable container with an interior volume that is selectively expandable between a compressed condition and an expanded condition. The expandable container is coupled to a superior endplate member having a bone-contacting surface and an engagement surface effective to mate with a superior surface of the expandable container and an inferior endplate member having a bone-contacting surface and an engagement surface effective to mate with an inferior surface of the expandable container. In addition, at least one inlet port is formed in the expandable container and is effective to communicate a fluid to at least one cavity disposed within the interior volume of the expandable container.
While the implant can have a variety of configurations, in one exemplary embodiment, the implant can include an angular adjustment mechanism configured to enable continuously variable angular adjustment of the superior and inferior endplate members with respect to a plane extending horizontally therethrough. For example, the angular adjustment mechanism can include an articulating pleated member, such as a bellows, which extends between the superior and inferior endplate members. Alternatively, the angular adjustment mechanism can include an articulating joint, such as a ball joint, disposed within one of the superior and inferior endplate members.
In another aspect of the invention, the implant can include a continuously variable height adjustment mechanism, such as a hydraulic mover. In an exemplary embodiment, the hydraulic mover can be a curable material, an expandable balloon, and/or a piston.
While the implant can have many different sizes, in one exemplary embodiment, the expandable container and the superior and inferior endplate members have a combined minimum height of about 5 mm in the compressed condition and a combined maximum height of about 15 mm in the expanded condition.
In a further aspect of the invention, the superior and inferior endplate members are rigid and can include a biocompatible elastomeric component. In an exemplary embodiment, the elastomeric component can be curable polymers, semi-rigid hydrogels, high-durometer silicones or polyurethanes.
The invention also relates to methods for distracting two adjacent vertebrae. In one embodiment, the method can include surgically delivering a selectively expandable spinal fusion implant into an intervertebral disc space. The implant can then be expanded until a superior endplate and an inferior endplate of the spinal implant contact opposing bony surfaces of the two adjacent vertebrae and adjustments can be made to the expansion of the implant until the two adjacent vertebrae are at a desired separation.
The methods disclosed herein are particularly well suited for a minimally invasive surgical procedure in which the spinal fusion implant is delivered through an access port or a cannula. In one exemplary method, the minimally invasive surgical procedure is conducted while the implant is at a compressed height of about 5 mm. Once positioned between the vertebra, the implant can be selectively expanded to any height appropriate for the intervertebral disc space. Additionally, angular adjustments can be made to the superior and inferior endplates with respect to a plane extending horizontally therethrough to better conform to a natural lordotic angle of the intervertebral disc space.
These and other aspects of the presently disclosed embodiments will be described in detail below.
The invention will be more fully understood from the following detailed description taken in conjunction with the accompanying drawings, in which:
Certain exemplary embodiments will now be described to provide an overall understanding of the principles of the structure, function, manufacture, and use of the devices and methods disclosed herein. One or more examples of these embodiments are illustrated in the accompanying drawings. Those skilled in the art will understand that the devices and methods specifically described herein and illustrated in the accompanying drawings are non-limiting exemplary embodiments and that the scope of the present invention is defined solely by the claims. The features illustrated or described in connection with one exemplary embodiment may be combined with the features of other embodiments. Such modifications and variations are intended to be included within the scope of the present invention.
In general, the presently disclosed embodiments relate to methods for simultaneously distracting two adjacent vertebral bodies and to spinal implants configured for self-distraction of the intervertebral disc space. In particular, the self-distracting spinal implants disclosed herein are incrementally adjustable for height and for lordotic angle. In one embodiment, the implant is of an optimal shape for placement within the intervertebral disc space and is configured to replicate and restore a natural angle between two adjacent vertebrae. In another embodiment, the implant is configured to contain a bone packing material to encourage bony ingrowth between two adjacent vertebrae.
In one exemplary embodiment, a spinal implant is provided having an expandable container with an interior volume that is selectively expandable between a compressed condition and an expanded condition. The expandable container is disposed between a superior endplate member having a bone-contacting surface and an engagement surface effective to mate with a superior surface of the expandable container and an inferior endplate member having a bone-contacting surface and an engagement surface effective to mate with an inferior surface of the expandable container. In some embodiments, the engagement surface of the superior endplate and the engagement surface of the inferior endplate can be planar engagement surfaces. In addition, at least one inlet port is formed in the expandable container and is effective to communicate a fluid to at least one cavity disposed within the interior volume of the expandable container.
In the embodiment illustrated in
As shown in
As shown most clearly in
In another exemplary embodiment, the interior volume 23 within the pleated member 12 can contain more than one cavity or chamber suitable for an expansion material, or alternatively, for multiple expandable balloons. Having more than one chamber within the interior volume 23 will allow for greater flexibility in height and angle customization. For example, one chamber can be filled to a greater extent than another chamber, thereby causing one part of the pleated member 12 to expand to a height greater than another part of the pleated member 12. In addition, one chamber can contain an expandable balloon which is expanded to a greater extent than an expandable balloon within a second chamber. This would allow the implant 10 to be appropriately configured for a more natural lordotic angle within the intervertebral disc space. A person skilled in the art will appreciate that any number of chambers and/or expandable balloons can be used with the pleated member 12 so that the height and angle of the implant 10 is completely customizable.
In an exemplary embodiment in which multiple connected chambers are used within the interior volume of the pleated member 12, a person skilled in the art will appreciate that flow restrictors can be used between the chambers to allow different quantities of material to be injected into different areas of the implant. Additionally or alternatively, the flow rate restrictors can allow material to be injected at different flow rates. Such a design facilitates customization of height and lordotic angle. Alternatively, multiple inlet ports disposed within the sides of the pleated member 12 and/or the endplate members 14a, 14b can be used to fill independent multiple chambers or multiple expandable balloons.
The self-distracting spinal implants disclosed herein can be in a variety of shapes, and
As shown in
In the illustrated embodiment, an inlet port 216 is disposed in the fixed platen member 202 of the implant 200 and is in fluid communication with an interior volume 223 of the piston, which is configured for receiving hydraulic fluid. Fluid is injected into the implant 200 via the inlet port 216 and a hydraulic feed 218 to cause the movable platen member 204 and the pleated member 206 to move relative to the fixed platen member 202 to expand and increase the height of the implant 200.
In the illustrated embodiment, the superior movable platen member 304a is connected to a superior endplate member 306a via an articulating joint 308, such as a ball joint, that enables angulation of the superior endplate member 306a. The inferior movable platen member 304b is likewise connected to an inferior endplate member 306b via an articulating member 308. In an expanded condition, the superior and/or inferior endplate members 306a, 306b can rotate via the articulating joint 308 relative to a horizontal plane 312 extending therethrough, as illustrated in
In use, a variety of surgical techniques, including conventional open surgery and minimally invasive surgery, can be used to place an exemplary self-distracting implant within the intervertebral disc space. Referring to
In another exemplary method involving the implant 10 illustrated in
In another exemplary method involving use of the implants illustrated in
In a further exemplary method involving the use of the implant 300 illustrated in
In still another exemplary method, a person skilled in the art will appreciate that multiple pistons can be used in combination with multiple pleated members within one implant to obtain height customization as well as angle customization within the intervertebral disc space. After the implant is inserted in a compressed condition, each piston member can be independently adjusted to achieve different heights, which allows the implant to conform to any necessary or natural lordotic angle of the disc space. The pleated members are configured for receiving a hydraulic fluid and provide flexibility in the tolerance required for the fluid tight seal that exists between a movable platen member of each of the multiple pistons and a superior endplate member. A hydraulic feed can be used to activate the pistons and can be removed once the required height and angle of the implant has been achieved.
Referring now to
In use, the implant 600 is attached to a distal end of the cannula 602 and is initially in a compressed condition with a height, for example, of about 5 mm. Using the cannula 602, the implant 600 is inserted through a minimally invasive surgery access port 612 that extends through a patient's skin to a site where the implant is to be implanted, and which can be located adjacent to the relevant vertebral bodies 614, 614′. The implant 600 is maneuvered into the intervertebral disc space with the cannula 602. Once in place, the fluid control valve 606 is opened to allow a curable expansion material to flow through the cannula 602 and into the interior volume of the implant 600. As the fluid is injected, the implant 600 expands and causes the distraction of the adjacent vertebrae 614, 614′ to any height up to the implant's maximum height of about 15 mm. By maneuvering the implant 600 and adjusting the fluid flow of the curable material, a surgeon can then make any necessary adjustments to the distraction space and the relative force of the implant 600 on the vertebrae 614, 614′. In addition, angular adjustments can be made to the implant 600 to compensate for any required lordotic angle between the vertebrae 614, 614′. Once these adjustments have been made, the curing energy can be activated to essentially instantaneously cure the material within the implant 600, forming a solid plug that will retain the height and angular requirements of the disc space. The cannula 602 can then be removed from the implant 600, for example, by breaking or snapping a notch attachment. A person skilled in the art will appreciate that the cannula 602 can be joined to and detached from the implant 600 by any method known in the art. A person skilled in the art will also appreciate that the implant 600 can be expanded to and kept at any height within its distraction envelope of between about 5 mm and 15 mm.
The self-distracting spinal implants disclosed herein are particularly well suited for minimally invasive surgery. That is, the self-distracting implants disclosed herein have a compressed envelope with a height of about 5 mm and can easily be inserted via a minimally invasive surgery port, without the need of an open surgical procedure. Such procedures, which are generally well known to those skilled in the art, tend to result in less operative trauma for the patient than more invasive procedures. Minimally invasive procedures also tend to be less expensive, reduce hospitalization time, cause less pain and scarring, speed recovery, and reduce the incidence of post-surgical complications, such as adhesions.
In addition to the various features discussed above, the self-distracting spinal implants described herein can be adapted so as to allow for spinal fusion and/or spinal fixation. Any of the implant designs disclosed herein can include or be formed of a fusion-promoting bioactive material so that the implant actively participates in spinal fusion. In an exemplary embodiment, the implant is made from a bioactive material. In another embodiment, a bioactive material can be formed as a coating on a non-bioactive material from which the implant is formed. In still a further embodiment, the implant can be filled with a bioactive material so that bony ingrowth through the implant and between the vertebra is allowed and encouraged. For example, the implant can be formed of a metal or CFRP and be coated or filled with a fusion-promoting bioactive material. Exemplary fusion promoting bioactive materials can include allograft bone, tricalcium phosphates (TCP), hydroxyapatite, Biocryl Rapid™ (tricalcium phosphate loaded poly-L-lactic acid/Poly-glycolic acid), bioglass, plasma sprayed titanium, hydroxyapatite-coated titanium, surface textured titanium, and polymer composites.
One skilled in the art will appreciate further features and advantages of the invention based on the above-described embodiments. Accordingly, the invention is not to be limited by what has been particularly shown and described, except as indicated by the appended claims. All publications and references cited herein are expressly incorporated herein by reference in their entirety.
Renganath, Naren, Fisher, Michael A., Connolly, Steve, Presbrey, Glen Arthur
Patent | Priority | Assignee | Title |
11432939, | May 17 2007 | DePuy Synthes Products, Inc. | Self-distracting cage |
Patent | Priority | Assignee | Title |
4863476, | Aug 29 1986 | ZIMMER TECHNOLOGY, INC | Spinal implant |
4932975, | Oct 16 1989 | Vanderbilt University | Vertebral prosthesis |
5123926, | Feb 22 1991 | Perumala Corporation | Artificial spinal prosthesis |
5236460, | Feb 12 1990 | MIDAS REX, L P | Vertebral body prosthesis |
5522899, | Jun 28 1988 | Warsaw Orthopedic, Inc | Artificial spinal fusion implants |
5665122, | Jan 31 1995 | Expandable intervertebral cage and surgical method | |
5749916, | Jan 21 1997 | Spinal Innovations, LLC | Fusion implant |
5865848, | Sep 12 1997 | Artifex, Ltd.; BHC Engineering, L.P. | Dynamic intervertebral spacer and method of use |
5893889, | Jun 20 1997 | Artificial disc | |
6045579, | May 01 1997 | ZIMMER SPINE, INC | Adjustable height fusion device |
6102950, | Jan 19 1999 | Intervertebral body fusion device | |
6126689, | Jul 30 1998 | Trinity Orthopedics, LLC | Collapsible and expandable interbody fusion device |
6176882, | Feb 20 1998 | Biedermann Motech GmbH | Intervertebral implant |
6190413, | Apr 16 1998 | ULRICH GMBH & CO KG | Vertebral implant |
6290724, | May 27 1998 | NuVasive, Inc | Methods for separating and stabilizing adjacent vertebrae |
6332894, | Mar 07 2000 | ZIMMER TECHNOLOGY, INC | Polymer filled spinal fusion cage |
6332984, | Sep 25 1998 | SULZER MANAGEMENT AG | Integrated diverter and waste comminutor |
6375682, | Aug 06 2001 | X-Pantu-Flex DRD Limited Liability Company | Collapsible, rotatable and expandable spinal hydraulic prosthetic device |
6387130, | Apr 16 1999 | NuVasive, Inc | Segmented linked intervertebral implant systems |
6395031, | Oct 29 1998 | SDGI Holdings, Inc. | Expandable intervertebral spacers |
6413278, | Mar 30 1998 | Marfly 2, LP | Prosthetic system |
6419705, | Jun 23 1999 | ZIMMER SPINE, INC | Expandable fusion device and method |
6527804, | Dec 11 1998 | STRYKER EUROPEAN HOLDINGS III, LLC | Intervertebral disk prosthesis |
6533817, | Jun 05 2000 | RAYMEDICA, LLC | Packaged, partially hydrated prosthetic disc nucleus |
6579320, | Dec 11 1998 | STRYKER EUROPEAN HOLDINGS III, LLC | Intervertebral disc prosthesis with contact blocks |
6595998, | Jun 01 2001 | SPINE WAVE INC ; SPINE WAVE, INC | Tissue distraction device |
6632235, | Apr 19 2001 | Synthes USA, LLC | Inflatable device and method for reducing fractures in bone and in treating the spine |
6733532, | Dec 11 1998 | STRYKER EUROPEAN HOLDINGS III, LLC | Intervertebral disc prosthesis with improved mechanical behavior |
6733535, | Jun 28 1988 | SDGI Holdings, Inc | Spinal fusion implant having a trailing end adapted to engage an insertion device |
6827743, | Feb 28 2001 | Warsaw Orthopedic, Inc | Woven orthopedic implants |
6835205, | Apr 04 2000 | KRT INVESTORS, INC | Devices and methods for the treatment of spinal disorders |
6835208, | Mar 30 1998 | Marfly 2, LP | Prosthetic system |
6981989, | Apr 22 2003 | X-Pantu-Flex DRD Limited Liability Company | Rotatable and reversibly expandable spinal hydraulic prosthetic device |
6984246, | Jun 06 2003 | Shi, Tain-Yew | Artificial intervertebral disc flexibly oriented by spring-reinforced bellows |
7166131, | Oct 28 2002 | Synthes USA, LLC | Intervertebral disk prosthesis or artificial vertebra |
7326248, | Mar 09 2001 | Warsaw Orthopedic, Inc | Expandable interbody spinal fusion implant with expansion constraining member and method for use thereof |
7503920, | Aug 11 2004 | SEASPINE, INC | Spinal surgery system and method |
7563284, | Aug 15 2002 | Synthes USA, LLC | Intervertebral disc implant |
7655010, | Sep 30 2003 | Depuy Spine, Inc | Vertebral fusion device and method for using same |
7666226, | Aug 16 2005 | IZI Medical Products, LLC | Spinal tissue distraction devices |
7670374, | Aug 16 2005 | IZI Medical Products, LLC | Methods of distracting tissue layers of the human spine |
7703727, | Jul 21 2004 | Universal adjustable spacer assembly | |
7708778, | Aug 05 2003 | Tyler Fusion Technologies, LLC | Expandable articulating intervertebral implant with cam |
7731751, | Mar 31 2005 | ST CLOUD CAPITAL PARTNERS III SBIC, LP | Expandable spinal devices and method of insertion |
7785368, | Aug 16 2005 | IZI Medical Products, LLC | Spinal tissue distraction devices |
7799081, | Sep 14 2004 | Aeolin, LLC | System and method for spinal fusion |
7828846, | Sep 12 2002 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Space keeper for vertebrae or intervertebral disks |
7837734, | Dec 08 2003 | Kyphon SARL | System and method for replacing degenerated spinal disks |
7850733, | Feb 10 2004 | ATLAS SPINE, INC | PLIF opposing wedge ramp |
7862618, | Jul 19 2006 | Warsaw Orthopedic, Inc. | Expandable vertebral body implants and methods of use |
7901409, | Jan 20 2006 | Canaveral Villegas Living Trust | Intramedullar devices and methods to reduce and/or fix damaged bone |
7918874, | Aug 11 2004 | SEASPINE, INC | Devices for introduction into a body along a substantially straight guide to form a predefined curved configuration, and methods employing same |
7918875, | Oct 25 2004 | ZIMMER BIOMET SPINE, INC | Interspinous distraction devices and associated methods of insertion |
7942903, | Apr 12 2005 | Moskowitz Family LLC | Bi-directional fixating transvertebral body screws and posterior cervical and lumbar interarticulating joint calibrated stapling devices for spinal fusion |
8007535, | Jun 02 2005 | ZIMMER SPINE, INC | Interbody fusion ring and method of using the same |
8034110, | Jul 31 2006 | Depuy Synthes Products, LLC | Spinal fusion implant |
8057544, | Aug 16 2005 | IZI Medical Products, LLC | Methods of distracting tissue layers of the human spine |
8070813, | Sep 26 2005 | HOWMEDICA OSTEONICS CORP | Selectively expanding spine cage, hydraulically controllable in three dimensions for vertebral body replacement |
8105382, | Dec 07 2006 | DEPUY SYNTHES PRODUCTS, INC | Intervertebral implant |
8123809, | Apr 16 2009 | Warsaw Orthopedic, Inc. | Deployment system and method for an expandable vertebral implant |
8206423, | Jan 05 2005 | SEASPINE, INC | Devices for introduction into a body via a substantially straight conduit to form a predefined curved configuration, and methods employing such devices |
8206447, | Aug 06 2004 | Simplify Medical Pty Ltd | Methods and apparatus for intervertebral disc prosthesis insertion |
8257440, | Aug 05 2003 | Tyler Fusion Technologies, LLC | Method of insertion of an expandable intervertebral implant |
8262666, | Apr 27 2007 | ATLAS SPINE, INC | Implantable distractor |
8267939, | Feb 28 2008 | STRYKER EUROPEAN HOLDINGS III, LLC | Tool for implanting expandable intervertebral implant |
8273124, | May 17 2007 | DEPUY SYNTHES PRODUCTS, INC | Self-distracting cage |
8343193, | Mar 08 2001 | Spine Wave, Inc. | Method of supporting and distracting opposing vertebral bodies |
8366777, | Nov 23 2006 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Expandable intervertebral implant |
8403990, | Jan 20 2005 | Warsaw Orthopedic, Inc. | Expandable spinal fusion cage and associated instrumentation |
8454617, | Jun 22 2007 | SPINAL ELEMENTS, INC | Devices for treating the spine |
8579981, | Feb 03 2003 | Warsaw Orthopedic, Inc | Expanding interbody implant and articulating inserter and method |
8613768, | Sep 12 2002 | BIEDERMANN TECHNOLOGIES GMBH & CO KG | Space keeper for vertebrae or intervertebral disks |
8632593, | Nov 23 2011 | Globus Medical, Inc.; Globus Medical, Inc | Stabilizing vertebrae with expandable spacers |
8961609, | Aug 16 2005 | IZI Medical Products, LLC | Devices for distracting tissue layers of the human spine |
8968408, | Jun 22 2007 | SPINAL ELEMENTS, INC | Devices for treating the spine |
9101486, | May 17 2007 | DEPUY SYNTHES PRODUCTS, INC | Self-distracting cage |
20030009226, | |||
20030028251, | |||
20030135275, | |||
20030139812, | |||
20030171813, | |||
20040002761, | |||
20040087947, | |||
20040133280, | |||
20040260396, | |||
20050033437, | |||
20050119752, | |||
20050143821, | |||
20050192671, | |||
20050197702, | |||
20060052871, | |||
20060122701, | |||
20060142858, | |||
20060142861, | |||
20060149279, | |||
20060235426, | |||
20060235460, | |||
20060241632, | |||
20060241765, | |||
20060293749, | |||
20070050032, | |||
20070055272, | |||
20070093901, | |||
20070173940, | |||
20070191846, | |||
20070219634, | |||
20070225810, | |||
20070233254, | |||
20070270953, | |||
20080021556, | |||
20080058931, | |||
20080154382, | |||
20080288073, | |||
20090088789, | |||
20120116516, | |||
20120310352, | |||
20120316652, | |||
20130190875, | |||
20140052259, | |||
20180193158, | |||
20180318105, | |||
DE19710392, | |||
WO74605, | |||
WO2004047691, | |||
WO2008144175, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 07 2015 | DePuy Synthes Products, Inc. | (assignment on the face of the patent) | / | |||
Jan 16 2018 | RENGANATH, NAREN | DEPUY SYNTHES PRODUCTS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 049932 | /0231 | |
Jan 18 2018 | FISHER, MICHAEL A | DEPUY SYNTHES PRODUCTS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 049932 | /0231 | |
Sep 05 2018 | CONNOLLY, STEVE | MEDICAL DEVICE BUSINESS SERVICES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 049932 | /0345 | |
May 14 2019 | PRESBREY, GLEN ARTHUR | DEPUY SYNTHES PRODUCTS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 049932 | /0231 | |
May 22 2019 | MEDICAL DEVICE BUSINESS SERVICES, INC | DEPUY SYNTHES PRODUCTS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 049932 | /0422 |
Date | Maintenance Fee Events |
Sep 11 2023 | REM: Maintenance Fee Reminder Mailed. |
Feb 26 2024 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jan 21 2023 | 4 years fee payment window open |
Jul 21 2023 | 6 months grace period start (w surcharge) |
Jan 21 2024 | patent expiry (for year 4) |
Jan 21 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jan 21 2027 | 8 years fee payment window open |
Jul 21 2027 | 6 months grace period start (w surcharge) |
Jan 21 2028 | patent expiry (for year 8) |
Jan 21 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jan 21 2031 | 12 years fee payment window open |
Jul 21 2031 | 6 months grace period start (w surcharge) |
Jan 21 2032 | patent expiry (for year 12) |
Jan 21 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |