A ceiling system having a perimeter frame; a grid configured to support a plurality of substrates; and a plurality of bracket assemblies coupling the grid to the perimeter frame, the plurality of bracket assemblies adjustable between a plurality of states in which the grid is supported at a different height relative to the perimeter frame in each of the plurality of states.
|
8. A bracket assembly for a ceiling system, the bracket assembly comprising:
a first bracket comprising a first plate with a first hole;
a second bracket comprising a second plate having an elongated slot and an elongated arm extending outwardly therefrom, the elongated arm configured to be coupled to a grid; and
a first fastener extending through the slot and fixedly coupled to the first plate to slideably couple the first and second plates together;
wherein the slot of the second plate comprises opposing undulating edges forming a plurality of wide spots defining a plurality of discrete fastening positions.
1. A bracket assembly for a ceiling system, the bracket assembly comprising:
a first bracket comprising a first plate with a first hole;
a second bracket comprising a second plate having an elongated slot and an elongated arm extending outwardly therefrom, the elongated arm configured to be coupled to a grid; and
a first fastener extending through the slot and fixedly coupled to the first plate to slideably couple the first and second plates together;
wherein the first plate of the first bracket includes a perpendicularly oriented guide flange arranged to engage an edge of the second plate of the second bracket; and
wherein the elongated arm comprises a substantially planar body, and the elongated arm includes a weakened portion separating a tab from other portions of the elongated arm.
15. A bracket assembly for a ceiling system, the bracket assembly comprising:
a first bracket comprising a first plate with a first hole and a first elongated slot;
a second bracket comprising a second plate having a second elongated slot and an elongated arm extending outwardly therefrom, the elongated arm configured to be coupled to a grid; and
a first fastener extending through the second elongated slot and fixedly coupled to the first plate to slideably couple the first and second plates together;
a third plate with a second hole; and
a second fastener extending through the first elongated slot and fixedly coupled to the third plate to slideably couple the first and third plates together;
wherein the first plate includes a first angled mounting protrusion fixed in position on the first plate, and the third plate includes a second angled mounting protrusion spaced apart by a separation distance from the first angled mounting protrusion, the separation distance being adjustable via sliding the third plate relative to the first plate.
17. A bracket assembly for a ceiling system, the bracket assembly comprising:
a first bracket comprising a substantially planar main body and a first angled engaging protrusion configured to engage a ceiling support structure;
a second bracket slideably coupled to the first bracket by a first fastener, the second bracket adjustable relative to the first bracket between a plurality of linear mounting positions;
a third bracket having an elongated first portion comprising an elongated second slot and an elongated second portion extending perpendicularly to the first portion; and
a second fastener extending through the second slot in the first portion and engaged with a first circular hole in the first bracket to couple the first and third brackets together;
the second bracket comprising a second angled engaging protrusion configured to engage the ceiling support structure;
the second angled engaging protrusion being spaced apart from the first angled engaging protrusion by a separation distance which is adjustable via sliding the second bracket relative to the first bracket; and
wherein the first fastener is received through an elongated first slot formed in the first bracket and a second circular hole formed in the second bracket; and
wherein the first portion of the third bracket is adjustable in a plurality of fastening positions relative to the first bracket via the second slot.
2. The bracket assembly according to
3. The bracket assembly according to
4. The bracket assembly according to
5. The bracket assembly according to
6. The bracket assembly according to
7. The bracket assembly according to
9. The bracket assembly according to
10. The bracket assembly according to
11. The bracket assembly according to
12. The bracket assembly according to
13. The bracket assembly according to
14. The bracket assembly according to
16. The bracket assembly according to
18. The bracket assembly according to
|
This application is a continuation of U.S. application Ser. No. 15/686,301, filed Aug. 25, 2017 (now U.S. Pat. No. 10,100,519), which claims the benefit of U.S. Provisional Application No. 62/381,204, filed on Aug. 30, 2016. The disclosures of the foregoing applications are incorporated herein by reference in their entireties.
The present invention generally relates to ceiling systems and mounting brackets for use with the same.
Some ceiling systems, for example grid ceiling systems, can be used with a large variety of ceiling panels or substrates. One variety of these various panels or substrates can have a particular thickness while another variety can have a different thickness. These different thicknesses can result in the need to use different depth perimeter frames and/or different size mounting brackets. Manufacturing many different sizes of this hardware is expensive and requires the maintenance of a large inventory.
The present invention provides a solution to the above described problem of having to use a different mounting bracket for each size ceiling panel. The present invention provides an adjustable mounting bracket that attaches a ceiling grid, or other ceiling system, to a perimeter frame that is, in turn, attached to perimeter walls or other perimeter structure. The mounting bracket permits the ceiling grid to be installed at a plurality of vertical positions relative to the perimeter frame so that the particular panel or substrate can be accommodated. The invention provides a mounting bracket that has one portion that attaches to the perimeter frame and a separate portion that attaches to the grid. The grid portion of the mounting bracket is attachable to the frame portion of the mounting bracket in a plurality of positions, each of the positions corresponding to a different vertical position of the gird relative to the perimeter frame.
According to one embodiment, a ceiling system includes a perimeter frame; a grid configured to support a plurality of substrates; and a plurality of bracket assemblies coupling the grid to the perimeter frame, the plurality of bracket assemblies adjustable between a plurality of states in which the grid is supported at a different height relative to the perimeter frame in each of the plurality of states.
Some embodiments include the plurality of substrates, the plurality of substrates being supported by the grid.
In some embodiments, when the plurality of bracket assemblies are in each of the plurality of states, the plurality of substrates are supported in a substantially horizontal plane.
In some embodiments, each of the plurality of bracket assemblies includes a frame bracket coupled to the perimeter frame; and a grid bracket, the grid bracket comprising a first portion coupled to the frame bracket and a second portion coupled to the grid, the first portion of the grid bracket configured to be coupled to the frame bracket at a selected one of a plurality of different positions relative to the frame bracket, wherein each of the plurality of different positions corresponds to one of the plurality of states of the bracket assembly.
In some embodiments, for each of the plurality of bracket assemblies, the first portion of the grid bracket comprises a first plate and the second portion of the grid bracket comprises a second plate arranged substantially orthogonal to the first plate.
In some embodiments, for each of the plurality of bracket assemblies, the first plate extends along a longitudinal axis from a first end to a second end, the second plate of the grid bracket comprises a grid mounting section extending from the first plate adjacent the first end of the first plate.
In some embodiments, the grid bracket is configured to be mounted to the frame bracket in a selected one of: (1) a first arrangement in which the first end of the first plate is facing downward; and (2) a second arrangement in which the second end of the first plate is facing downward.
In some embodiments, for each of the plurality of bracket assemblies, the frame bracket comprises a guide element that contacts the grid bracket to maintain relative orientation between the frame bracket and the grid bracket.
In some embodiments, for each of the plurality of bracket assemblies, the first portion of the grid bracket comprises an elongated slot; and wherein each of the plurality of bracket assemblies comprises a threaded fastener extending through the elongated slot and threadily engaging the frame bracket, the threaded fastener alterable between: (1) a free state in which the grid bracket can be moved relative to the frame bracket between the plurality of different positions; and (2) a locked state in which the grid bracket is fixed relative to the frame bracket in the selected one of the plurality of different positions.
In some embodiments, for each of the plurality of bracket assemblies, the elongated slot comprises an undulating edge that forms a plurality of nesting regions for receiving a widened portion of the threaded fastener, and wherein when the widened portion of the threaded fastener is in a selected one of the nesting regions, the undulating edge prohibits relative translation between grid bracket and the frame bracket.
In some embodiments, for each of the plurality of bracket assemblies, the grid bracket can be coupled to the frame bracket at the plurality of different positions incrementally.
In some embodiments, the second portion of the grid bracket comprises a grid mounting section and a tab section, the tab section separated from the grid mounting section by a pre-weakened line so as to be alterable from: (1) a first one of the plurality of states in which the tab section is coupled to the grid mounting section and the grid is supported at a first height relative to the perimeter frame; and (2) a second one of the plurality of states in which the tab section is removed from the grid mounting section and the grid is supported at a second height relative to the perimeter frame, the second height being different than the first height.
In some embodiments, the perimeter frame has a plurality of engagement portions, and each of the bracket assemblies has a first engaging portion that engages a first one of the engagement portions, and a second engaging portion that engages a second one of the engagement portions, such that the bracket assembly is positionally fixed relative to the perimeter frame by the engagement of the first and second engaging portions with the first and second engagement portions.
In some embodiments, the second engaging portion of the bracket assembly is movable relative to the first engaging portion of the bracket assembly.
In some embodiments, for each of the plurality of bracket assemblies, the frame bracket comprises a sliding portion that is movable relative to a main portion of the frame bracket, the sliding portion having a guide element that contacts the main portion of the frame bracket to maintain relative orientation between the sliding portion and the main portion of the frame bracket.
In some embodiments, the second engaging portion of the bracket assembly is fixed to the sliding portion of the frame bracket.
In some embodiments, the perimeter frame is symmetrical about a horizontal plane when the perimeter frame is in an installed position.
In some embodiments, each of the plurality of bracket assemblies includes a frame bracket having a first portion coupled to the perimeter frame and a second portion coupled to the grid, wherein the second portion comprises a grid mounting section and a tab section, the tab section being separated from the grid mounting section by a pre-weakened line so as to be alterable from: (1) a first one of the plurality of states in which the tab section is coupled to the grid mounting section and the grid is supported at a first height relative to the perimeter frame; and (2) a second one of the plurality of states in which the tab section is removed from the grid mounting section and the grid is supported at a second height relative to the perimeter frame, the second height being different than the first height.
In some embodiments, the second portion of the frame bracket is arranged substantially orthogonal to the first portion of the frame bracket.
In some embodiments, the pre-weakened line is in a substantially horizontal plane.
In some embodiments, the second portion of the frame bracket is vertically offset relative to a vertical center point of the first portion of the frame bracket.
According to another embodiment, a bracket assembly for use with a ceiling system having a perimeter frame and a grid that supports a plurality of substrates, includes a frame bracket configured to be coupled to the perimeter frame; and a grid bracket, the grid bracket comprising a first portion coupled to the frame bracket and a second portion configured to be coupled to the grid, the first portion of the grid bracket being configured to be coupled to the frame bracket at a selected one of a plurality of different positions relative to the frame bracket such that the grid is supportable at a different height relative to the perimeter frame in each of the plurality of different positions.
According to yet another embodiment, a bracket assembly for use with a ceiling system having a perimeter frame and a grid that supports a plurality of substrates, includes a frame bracket having a first portion configured to be coupled to the perimeter frame, and a second portion configured to be coupled to the grid. The second portion comprises a grid mounting section and a tab section, the tab section being separated from the grid mounting section by a pre-weakened line so as to be alterable from: (1) a first state in which the tab section is coupled to the grid mounting section and the grid is supportable at a first height relative to the perimeter frame; and a second state in which the tab section is removed from the grid mounting section and the grid is supportable at a second height relative to the perimeter frame, the second height being different than the first height.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples, while indicating the preferred embodiment of the invention, are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of embodiments is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
As used throughout, ranges are used as shorthand for describing each and every value that is within the range. Any value within the range can be selected as the terminus of the range. In addition, all references cited herein are hereby incorporated by referenced in their entireties. In the event of a conflict in a definition in the present disclosure and that of a cited reference, the present disclosure controls.
In the description of embodiments disclosed herein, any reference to direction or orientation is merely intended for convenience of description and is not intended in any way to limit the scope of the present invention. Relative terms such as “lower,” “upper,” “horizontal,” “vertical,”, “above,” “below,” “up,” “down,” “top” and “bottom” as well as derivative thereof (e.g., “horizontally,” “downwardly,” “upwardly,” etc.) should be construed to refer to the orientation as then described or as shown in the drawing under discussion. These relative terms are for convenience of description only and do not require that the apparatus be constructed or operated in a particular orientation. Terms such as “attached,” “coupled,” “affixed,” “connected,” “interconnected,” and the like refer to a relationship wherein structures are secured or attached to one another either directly or indirectly through intervening structures, as well as both movable or rigid attachments or relationships, unless expressly described otherwise.
In this example, perimeter frame 100 is symmetrical with respect to a horizontal plane that bisects perimeter frame 100 at its vertical center. This is useful in that perimeter frame 100 can be installed with either flange 110 facing down. If, for example, one of the flanges 110 gets damaged, that section of perimeter frame 100 can be installed with the damaged flange 110 facing upward where it is not visible to users of the building space. In this example, perimeter frame 100 has four engagement portions, or recesses, 102, 104, 106, 108 for receiving bracket assembly 400. Perimeter frame 100 can have more or fewer engagement portions and can also include other recesses, attachment points, holes, etc., for facilitating attachment of other elements to perimeter frame 100 or for attaching perimeter frame 100 to a wall or other structure. For example, in
The bracket assembly 400 shown in
Now turning to grid bracket 510,
In the example shown in the Figures, slot 516 has undulating edges that form a plurality of wide spots in slot 516. Each of the wide spots in slot 516 is sized to receive a widened portion of screw 610 so that a particular relative position of frame bracket main portion 410 and grid bracket 510 can be set similarly for all bracket assemblies used in the ceiling system. Setting all of the bracket assemblies at the same position is important to maintain a level ceiling assembly. Although slot 516 has undulating edges in this embodiment, other embodiments have a slot with straight sides, which allows infinite adjustability in the relative positions of frame bracket main portion 410 and grid bracket 510. A slot with straight sides can be advantageous if the installation requires fine adjustments in the relative position of frame bracket main portion 410 and grid bracket 510. The sides and other parts of slot 516 can be any shape that permits screw 610 to hold frame bracket main portion 410 at the desired position relative to grid bracket 510. For example, the sides of slot 516 can have a shape that is in between straight and the undulating example shown in the drawings.
In this embodiment, frame bracket main portion 410 has a flat area 412 that first portion 514 of grid bracket 510 rests against when grid bracket 510 is tightened against frame bracket main portion 410. In order to keep the proper orientation of grid bracket 510 relative to frame bracket main portion 410, frame bracket main portion 410 has a guide element 414 that an edge of first portion 514 of grid bracket 510 rests against when grid bracket 510 is tightened against frame bracket main portion 410. This is best seen in
As shown in
Similarly to tab 320 described above, tab 520 can be removed to provide even more possible mounting positions of the grid member. Given a slot 516 having 8 positions for screw 610 (as shown in
Bergman, Todd M., Harnish, Scott D., Hanuschak, Ryan D., Van Dore, Jonathan P.
Patent | Priority | Assignee | Title |
11773599, | Feb 12 2021 | Piazza Stone, LLC | Systems, devices, and methods for mounting a lightweight architectural masonry product to a building |
Patent | Priority | Assignee | Title |
3003600, | |||
3350830, | |||
4363459, | Dec 05 1980 | Newell Window Furnishings, Inc | Adjustable wall mounted bracket |
5127760, | Jul 26 1990 | BRADY CONSTRUCTION INNOVATIONS, INC | Vertically slotted header |
5484076, | Nov 18 1993 | ABL IP Holding, LLC | Load bearing mounting bracket for hanging a light fixture from a mounting rail of a grid ceiling system |
5529273, | Aug 19 1994 | Mounting bracket | |
5551792, | Apr 28 1995 | Worthington Armstrong Venture | Connector |
5572844, | Apr 24 1995 | Worthington Armstrong Venture | Runner-trim connector |
6213679, | Oct 08 1999 | EASTERN METAL FRAMING OF NEW JERSEY, LLC | Deflection slide clip |
6305139, | Aug 01 1998 | Worthington Armstrong Venture | Beam clip |
6345800, | Jul 27 1998 | ABL IP Holding, LLC | Universal load-bearing hanger bracket and method for hanging a lighting fixture below a grid ceiling system at on-grid or off-grid locations |
7104024, | Oct 20 2003 | The Steel Network, Inc. | Connector for connecting two building members together that permits relative movement between the building members |
7788878, | Apr 03 2008 | The Steel Network, Inc. | Device and method for bracing a wall structure |
8413402, | Aug 24 2010 | Worthington Armstrong Venture | Beam clip with teeth |
8615948, | May 18 2010 | USG INTERIORS, LLC | Seismic perimeter brace |
8813457, | Jun 29 2012 | USG INTERIORS, LLC | Grid runner to perimeter trim clip |
9045892, | Dec 29 2012 | Brick veneer header bracket | |
20020062617, | |||
20050160696, | |||
20060096219, | |||
20090235603, | |||
20110283634, | |||
20120247059, | |||
20130180572, | |||
20130227908, | |||
20140000205, | |||
20160102454, | |||
20170226736, | |||
20170268228, | |||
20180066425, | |||
JP2005214004, | |||
WO2015069612, | |||
WO2017040104, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 01 2016 | ARMSTRONG WORLD INDUSTRIES, INC | BANK OF AMERICA, N A , AS COLLATERAL AGENT | NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS | 050710 | /0093 | |
Sep 15 2016 | BERGMAN, TODD M | ARMSTRONG WORLD INDUSTRIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 047175 | /0250 | |
Sep 15 2016 | HARNISH, SCOTT D | ARMSTRONG WORLD INDUSTRIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 047175 | /0250 | |
Sep 15 2016 | HANUSCHAK, RYAN D | ARMSTRONG WORLD INDUSTRIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 047175 | /0250 | |
Sep 16 2016 | VAN DORE, JONATHAN P | ARMSTRONG WORLD INDUSTRIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 047175 | /0250 | |
Oct 16 2018 | AWI Licensing LLC | (assignment on the face of the patent) | / | |||
Jan 29 2020 | ARMSTRONG WORLD INDUSTRIES, INC | AWI Licensing LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 051660 | /0574 | |
Dec 07 2022 | AWI Licensing LLC | BANK OF AMERICA, N A , AS THE COLLATERAL AGENT | NOTICE OF GRANT OF SECURITY INTEREST IN PATENTS | 062081 | /0516 |
Date | Maintenance Fee Events |
Oct 16 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Sep 07 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 10 2023 | 4 years fee payment window open |
Sep 10 2023 | 6 months grace period start (w surcharge) |
Mar 10 2024 | patent expiry (for year 4) |
Mar 10 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 10 2027 | 8 years fee payment window open |
Sep 10 2027 | 6 months grace period start (w surcharge) |
Mar 10 2028 | patent expiry (for year 8) |
Mar 10 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 10 2031 | 12 years fee payment window open |
Sep 10 2031 | 6 months grace period start (w surcharge) |
Mar 10 2032 | patent expiry (for year 12) |
Mar 10 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |