In some embodiments, a display system is provided. The display system comprises a plurality of light pipes and a plurality of light sources configured to emit light into the light pipes. The display system also comprises a spatial light modulator configured to modulate light received from the light pipes to form images. The display system may also comprise one or more waveguides configured to receive modulated light from the spatial light modulator and to relay that light to a viewer.
|
1. A display system comprising:
a plurality of light pipes;
a plurality of light sources configured to emit light into the light pipes; and
a spatial light modulator configured to modulate light received from the light pipes to form images,
wherein each of the light pipes comprises first and second opposing ends and a sidewall extending from the first end to the second end,
wherein the first end comprises a light input surface configured to receive light from an associated light source,
wherein the second end comprises a light output surface configured to output light to the spatial light modulator, and
wherein each light pipe is oriented to localize outputted light on a different location on the spatial light modulator than other light pipes.
34. A display system comprising:
a partially transmissive reflector;
a first light source;
a first light pipe proximate to and configured to:
receive light from the first light source; and
direct the light from the first light source to the reflector in a first direction;
a second light source;
a second light pipe proximate to and configured to:
receive light from the second light source; and
direct the light from the second light source to the reflector in a second direction,
wherein the partially transmissive reflector is configured to:
transmit light from the first light source; and
reflect light from the second light source,
wherein each of the light pipes comprises first and second opposing ends and a sidewall extending from the first end to the second end,
wherein the first end comprises a light input surface configured to receive light from an associated light source,
wherein the second end comprises a light output surface configured to output light to the spatial light modulator, and
wherein each light pipe is oriented to localize outputted light on a different location on the spatial light modulator than other light pipes.
2. The display system of
3. The display system of
4. The display system of
5. The display system of
6. The display system of
7. The display system of
8. The display system of
9. The display system of
10. The display system of
11. The display system of
a stack of waveguides, each waveguide comprising a light incoupling optical element configured to receive light from the spatial light modulator,
wherein the light incoupling optical element of one or more first waveguides is spatially offset from the light incoupling optical element of two or more other waveguides, as seen in a plan view viewed from a direction along the axis of propagation of the light into the stack, and
wherein the light incoupling optical elements of at least two of the two or more other waveguides at least partially overlap, as seen in the plan view.
12. The display system of
wherein the light incoupling optical elements of at least two of the two or more other waveguides are laterally shifted relative to one another such that none of the light incoupling optical elements of at least two of the two or more other waveguides are centered on a light pipe transmitting light to be incoupled into the two or more other waveguides.
13. The display system of
14. The display system of
15. The display system of
16. The display system of
17. The display system of
18. The display system of
19. The display system of
20. The display system of
21. The display system of
22. The display system of
23. The display system of
24. The display system of
25. The display system of
26. The display system of
one or more of a phosphor and quantum dot configured to receive blue light from and emit light of another color.
27. The display system of
28. The display system of
29. The display system of
30. The display system of
31. The display system of
33. The display system of
35. The display system of
36. The display system of
|
This application claims the benefit of priority under 35 U.S.C. § 119(e) of U.S. Provisional Application No. 62/300,749, filed on Feb. 26, 2016, entitled “DISPLAY SYSTEM HAVING A PLURALITY OF LIGHT PIPES FOR A PLURALITY OF LIGHT EMITTERS,” the disclosure of which is hereby incorporated by reference in its entirety.
This application also incorporates by reference the entirety of each of the following patent applications and publications: U.S. application Ser. No. 14/555,585 filed on Nov. 27, 2014; U.S. application Ser. No. 14/690,401 filed on Apr. 18, 2015; U.S. application Ser. No. 14/212,961 filed on Mar. 14, 2014; and U.S. application Ser. No. 14/331,218 filed on Jul. 14, 2014.
Field
The present disclosure relates to display devices and, more particularly, to display devices utilizing light pipes to deliver light from light emitters.
Description of the Related Art
Display devices may form images by modulating light from a light emitter and directing the modulated light to a viewer. As a result, the quality and brightness of the images may depend upon the quality of the light received by a light modulator from the light emitter. Providing light output of adequate quality may be particularly challenging in the context of augmented reality and virtual reality systems in which multiple views of an image are generated.
According, there is a continuing need for systems and methods of providing high quality light to a light modulator, including light modulators for augmented reality and virtual reality systems.
In some embodiments, a display system is provided. The display system comprises a plurality of light pipes and a plurality of light sources configured to emit light into the light pipes. The display system also comprises a spatial light modulator configured to modulate light received from the light pipes to form images. The display system may also comprise one or more waveguides configured to receive modulated light from the spatial light modulator and to relay that light to a viewer.
In some other embodiments, a display system is provided. The display system comprises a partially transmissive reflector; a first light source; and a first light pipe proximate to and configured to: receive light from the first light source; and direct the light from the first light source to the reflector in a first direction. The display system also comprises a second light source; a second light pipe proximate to and configured to: receive light from the second light source; and direct the light from the second light source to the reflector in a second direction. The partially transmissive reflector is configured to: transmit light from the first light source; and reflect light from the second light source.
In yet other embodiments, a method for forming an optical device is provided. The method comprises forming a light pipe with a roughened sidewall surface; coupling the light pipe to a light emitter; and coupling an assembly comprising the light pipe and the light emitter to a spatial light modulator.
The drawings are provided to illustrate example embodiments and are not intended to limit the scope of the disclosure.
According to some embodiments, a light module for providing light to a light modulator, such as a spatial light modulator, includes a plurality of light emitters and light pipes. Each of the light emitters may have an associated light pipe that transmits light from the light emitter to the light modulator. The light modulator may be configured to modulate light received from the light pipes and this modulated light is ultimately outputted or projected to a viewer, who perceives an image when their eye receives the modulated light. Thus, an assembly including the light module and the light modulator may be referred to as a projector.
In some embodiments, each light pipe is configured to direct light to a unique corresponding light-modulating area on the light modulator, from which the light propagates to a unique corresponding light input area on an eyepiece that directs the light to the viewer. Consequently, a display system may have a plurality of light pipes, each associated with a plurality of light modulating areas on a light modulator, which in turn are associated with a plurality of light input areas on an eyepiece. For example, each of the light pipes may be spatially arranged to align uniquely (possibly through other optical structures) with a light input area associated with a given light pipe. As a result, there may be a one-to-one correspondence between a light pipe, an area on the light modulator, and a light input area on the eyepiece. In some embodiments, the eyepiece may be a stack of waveguides, with each waveguide including at least one of the light input areas.
In some embodiments, at least some of the waveguides may be configured to emit light of different colors and/or may have different optical power than other waveguides. For example, each of the light emitters directing light into the light pipes may emit light of a particular range of wavelengths that may correspond to different colors. For example, different light emitters may emit light of different wavelengths corresponding to 3 or more colors, e.g. the colors red, green, and blue. These different colors may be component colors that form a full color image when perceived by the same viewer. In addition or alternatively, some of the waveguides of the eyepiece may have different optical power and may output light to a viewer with different amounts of divergence, which may be perceived by the viewer as corresponding to different depth planes in embodiments where the display device provides a three-dimensional rendering of an image.
In some embodiments, the light source may be a discrete light emitter, such as a light emitting diode (LED). Each light pipe may have an associated light emitter. In some embodiments, one or more light pipes may have multiple associated light emitters. In some embodiments, multiple light pipes may be formed as an integral unit.
Advantageously, the light pipes may output light with high spatial uniformity and high angular uniformity. Without being limited by theory, the reflection of light off the wall of a light pipe as the light propagates in the light pipe may aid in homogenizing the light, thereby providing light that is more spatially and angularly uniform than the light generated and originally emitted by the light emitter. In some embodiments, optical structures, such as diffusive structures, may be provided at the light input and/or light output surfaces of the light pipe to further improve the uniformity of the light output. In addition, in some embodiments, the light pipe may have different dimensions and/or cross-sectional shapes at their light input and light output surfaces or ends, thereby allowing light emitters and light modulators having different cross-sectional shapes to be effectively coupled together. Also, in some embodiments, the cross-sectional areas of some of the light pipes may be different from the cross-sectional areas of others of the light pipes, and/or the heights of the light pipes may vary, which may facilitate the transmission and appropriate focusing of light of different wavelengths to a light modulator; for example, the height of the light pipe may be selected based upon the wavelengths of the light that is injected into the light pipe. It will be appreciated that light of smaller wavelengths may be effectively transmitted by a shorter light pipe than light of longer wavelengths, to maintain a desired separation between a light emitter and an area, e.g., in a waveguide, onto which the light exiting the light pipe will be directed. In addition, the cross-sectional areas of the light input surfaces of the light pipes may be varied depending upon the sizes of the light emitters to which the light pipes are coupled, and the cross-sectional areas of the light output surfaces of the light pipes may also be vary depending upon the sizes of the optical features (e.g., incoupling optical elements) configured to receive light from light pipes.
Reference will now be made to the drawings, in which like reference numerals refer to like parts throughout.
Example Display Systems
With reference to
Referring to
With continued reference to
With continued reference to
With reference now to
It will be appreciated, however, that the human visual system is more complicated and providing a realistic perception of depth is more challenging. For example, many viewers of conventional “3-D” display systems find such systems to be uncomfortable or may not perceive a sense of depth at all. Without being limited by theory, it is believed that viewers of an object may perceive the object as being “three-dimensional” due to a combination of vergence and accommodation. Vergence movements (i.e., rotation of the eyes so that the pupils move toward or away from each other to converge the lines of sight of the eyes to fixate upon an object) of the two eyes relative to each other are closely associated with focusing (or “accommodation”) of the lenses and pupils of the eyes. Under normal conditions, changing the focus of the lenses of the eyes, or accommodating the eyes, to change focus from one object to another object at a different distance will automatically cause a matching change in vergence to the same distance, under a relationship known as the “accommodation-vergence reflex,” as well as pupil dilation or constriction. Likewise, a change in vergence will trigger a matching change in accommodation of lens shape and pupil size, under normal conditions. As noted herein, many stereoscopic or “3-D” display systems display a scene using slightly different presentations (and, so, slightly different images) to each eye such that a three-dimensional perspective is perceived by the human visual system. Such systems are uncomfortable for many viewers, however, since they, among other things, simply provide different presentations of a scene, but with the eyes viewing all the image information at a single accommodated state, and work against the “accommodation-vergence reflex.” Display systems that provide a better match between accommodation and vergence may form more realistic and comfortable simulations of three-dimensional imagery.
The distance between an object and the eye 210 or 220 may also change the amount of divergence of light from that object, as viewed by that eye.
Without being limited by theory, it is believed that the human eye typically can interpret a finite number of depth planes to provide depth perception. Consequently, a highly believable simulation of perceived depth may be achieved by providing, to the eye, different presentations of an image corresponding to each of these limited number of depth planes. The different presentations may be separately focused by the viewer's eyes, thereby helping to provide the user with depth cues based on the accommodation of the eye required to bring into focus different image features for the scene located on different depth plane and/or based on observing different image features on different depth planes being out of focus.
With continued reference to
In some embodiments, the image injection devices 360, 370, 380, 390, 400 are discrete displays that each produce image information for injection into a corresponding waveguide 270, 280, 290, 300, 310, respectively. In some other embodiments, the image injection devices 360, 370, 380, 390, 400 are the output ends of a single multiplexed display which may, e.g., pipe image information via one or more optical conduits (such as fiber optic cables) to each of the image injection devices 360, 370, 380, 390, 400. It will be appreciated that the image information provided by the image injection devices 360, 370, 380, 390, 400 may include light of different wavelengths, or colors (e.g., different component colors, as discussed herein).
In some embodiments, the light injected into the waveguides 270, 280, 290, 300, 310 is provided by a light projector system 520, which comprises a light module 540, which may include a light emitter, such as a light emitting diode (LED). The light from the light module 540 may be directed to and modified by a light modulator 530, e.g., a spatial light modulator, via a beam splitter 550. The light modulator 530 may be configured to change the perceived intensity of the light injected into the waveguides 270, 280, 290, 300, 310. Examples of spatial light modulators include liquid crystal displays (LCD) including a liquid crystal on silicon (LCOS) displays. It will be appreciated that the image injection devices 360, 370, 380, 390, 400 are illustrated schematically and, in some embodiments, these image injection devices may represent different light paths and portions of a common projection system configured to output light into associated ones of the waveguides 270, 280, 290, 300, 310.
A controller 560 controls the operation of one or more of the stacked waveguide assembly 260, including operation of the image injection devices 360, 370, 380, 390, 400, the light source 540, and the light modulator 530. In some embodiments, the controller 560 is part of the local data processing module 140. The controller 560 includes programming (e.g., instructions in a non-transitory medium) that regulates the timing and provision of image information to the waveguides 270, 280, 290, 300, 310 according to, e.g., any of the various schemes disclosed herein. In some embodiments, the controller may be a single integral device, or a distributed system connected by wired or wireless communication channels. The controller 560 may be part of the processing modules 140 or 150 (
With continued reference to
With continued reference to
The other waveguide layers 300, 310 and lenses 330, 320 are similarly configured, with the highest waveguide 310 in the stack sending its output through all of the lenses between it and the eye for an aggregate focal power representative of the closest focal plane to the person. To compensate for the stack of lenses 320, 330, 340, 350 when viewing/interpreting light coming from the world 510 on the other side of the stacked waveguide assembly 260, a compensating lens layer 620 may be disposed at the top of the stack to compensate for the aggregate power of the lens stack 320, 330, 340, 350 below. Such a configuration provides as many perceived focal planes as there are available waveguide/lens pairings. Both the out-coupling optical elements of the waveguides and the focusing aspects of the lenses may be static (i.e., not dynamic or electro-active). In some alternative embodiments, either or both may be dynamic using electro-active features.
In some embodiments, two or more of the waveguides 270, 280, 290, 300, 310 may have the same associated depth plane. For example, multiple waveguides 270, 280, 290, 300, 310 may be configured to output images set to the same depth plane, or multiple subsets of the waveguides 270, 280, 290, 300, 310 may be configured to output images set to the same plurality of depth planes, with one set for each depth plane. This can provide advantages for forming a tiled image to provide an expanded field of view at those depth planes.
With continued reference to
In some embodiments, the out-coupling optical elements 570, 580, 590, 600, 610 are diffractive features that form a diffraction pattern, or “diffractive optical element” (also referred to herein as a “DOE”). Preferably, the DOE's have a sufficiently low diffraction efficiency so that only a portion of the light of the beam is deflected away toward the eye 210 with each intersection of the DOE, while the rest continues to move through a waveguide via TIR. The light carrying the image information is thus divided into a number of related exit beams that exit the waveguide at a multiplicity of locations and the result is a fairly uniform pattern of exit emission toward the eye 210 for this particular collimated beam bouncing around within a waveguide.
In some embodiments, one or more DOEs may be switchable between “on” states in which they actively diffract, and “off” states in which they do not significantly diffract. For instance, a switchable DOE may comprise a layer of polymer dispersed liquid crystal, in which microdroplets comprise a diffraction pattern in a host medium, and the refractive index of the microdroplets may be switched to substantially match the refractive index of the host material (in which case the pattern does not appreciably diffract incident light) or the microdroplet may be switched to an index that does not match that of the host medium (in which case the pattern actively diffracts incident light).
In some embodiments, a camera assembly 630 (e.g., a digital camera, including visible light and infrared light cameras) may be provided to capture images of the eye 210 and/or tissue around the eye 210 to, e.g., detect user inputs and/or to monitor the physiological state of the user. As used herein, a camera may be any image capture device. In some embodiments, the camera assembly 630 may include an image capture device and a light source to project light (e.g., infrared light) to the eye, which may then be reflected by the eye and detected by the image capture device. In some embodiments, the camera assembly 630 may be attached to the frame 80 (
With reference now to
In some embodiments, a full color image may be formed at each depth plane by overlaying images in each of the component colors, e.g., three or more component colors.
In some embodiments, light of each component color may be outputted by a single dedicated waveguide and, consequently, each depth plane may have multiple waveguides associated with it. In such embodiments, each box in the figures including the letters G, R, or B may be understood to represent an individual waveguide, and three waveguides may be provided per depth plane where three component color images are provided per depth plane. While the waveguides associated with each depth plane are shown adjacent to one another in this drawing for ease of description, it will be appreciated that, in a physical device, the waveguides may all be arranged in a stack with one waveguide per level. In some other embodiments, multiple component colors may be outputted by the same waveguide, such that, e.g., only a single waveguide may be provided per depth plane.
With continued reference to
It will be appreciated that references to a given color of light throughout this disclosure will be understood to encompass light of one or more wavelengths within a range of wavelengths of light that are perceived by a viewer as being of that given color. For example, red light may include light of one or more wavelengths in the range of about 620-780 nm, green light may include light of one or more wavelengths in the range of about 492-577 nm, and blue light may include light of one or more wavelengths in the range of about 435-493 nm.
In some embodiments, the light source 540 (
With reference now to
The illustrated set 660 of stacked waveguides includes waveguides 670, 680, and 690. Each waveguide includes an associated in-coupling optical element (which may also be referred to as a light input area on the waveguide), with, e.g., in-coupling optical element 700 disposed on a major surface (e.g., an upper major surface) of waveguide 670, in-coupling optical element 710 disposed on a major surface (e.g., an upper major surface) of waveguide 680, and in-coupling optical element 720 disposed on a major surface (e.g., an upper major surface) of waveguide 690. In some embodiments, one or more of the in-coupling optical elements 700, 710, 720 may be disposed on the bottom major surface of the respective waveguide 670, 680, 690 (particularly where the one or more in-coupling optical elements are reflective, deflecting optical elements). As illustrated, the in-coupling optical elements 700, 710, 720 may be disposed on the upper major surface of their respective waveguide 670, 680, 690 (or the top of the next lower waveguide), particularly where those in-coupling optical elements are transmissive, deflecting optical elements. In some embodiments, the in-coupling optical elements 700, 710, 720 may be disposed in the body of the respective waveguide 670, 680, 690. In some embodiments, as discussed herein, the in-coupling optical elements 700, 710, 720 are wavelength selective, such that they selectively redirect one or more wavelengths of light, while transmitting other wavelengths of light. While illustrated on one side or corner of their respective waveguide 670, 680, 690, it will be appreciated that the in-coupling optical elements 700, 710, 720 may be disposed in other areas of their respective waveguide 670, 680, 690 in some embodiments.
As illustrated, the in-coupling optical elements 700, 710, 720 may be laterally offset from one another. In some embodiments, each in-coupling optical element may be offset such that it receives light without that light passing through another in-coupling optical element. For example, each in-coupling optical element 700, 710, 720 may be configured to receive light from a different image injection device 360, 370, 380, 390, and 400 as shown in
Each waveguide also includes associated light distributing elements, with, e.g., light distributing elements 730 disposed on a major surface (e.g., a top major surface) of waveguide 670, light distributing elements 740 disposed on a major surface (e.g., a top major surface) of waveguide 680, and light distributing elements 750 disposed on a major surface (e.g., a top major surface) of waveguide 690. In some other embodiments, the light distributing elements 730, 740, 750, may be disposed on a bottom major surface of associated waveguides 670, 680, 690, respectively. In some other embodiments, the light distributing elements 730, 740, 750, may be disposed on both top and bottom major surface of associated waveguides 670, 680, 690, respectively; or the light distributing elements 730, 740, 750, may be disposed on different ones of the top and bottom major surfaces in different associated waveguides 670, 680, 690, respectively.
The waveguides 670, 680, 690 may be spaced apart and separated by, e.g., gas, liquid, and/or solid layers of material. For example, as illustrated, layer 760a may separate waveguides 670 and 680; and layer 760b may separate waveguides 680 and 690. In some embodiments, the layers 760a and 760b are formed of low refractive index materials (that is, materials having a lower refractive index than the material forming the immediately adjacent one of waveguides 670, 680, 690). Preferably, the refractive index of the material forming the layers 760a, 760b is 0.05 or more, or 0.10 or less than the refractive index of the material forming the waveguides 670, 680, 690. Advantageously, the lower refractive index layers 760a, 760b may function as cladding layers that facilitate total internal reflection (TIR) of light through the waveguides 670, 680, 690 (e.g., TIR between the top and bottom major surfaces of each waveguide). In some embodiments, the layers 760a, 760b are formed of air. While not illustrated, it will be appreciated that the top and bottom of the illustrated set 660 of waveguides may include immediately neighboring cladding layers.
Preferably, for ease of manufacturing and other considerations, the material forming the waveguides 670, 680, 690 are similar or the same, and the material forming the layers 760a, 760b are similar or the same. In some embodiments, the material forming the waveguides 670, 680, 690 may be different between one or more waveguides, and/or the material forming the layers 760a, 760b may be different, while still holding to the various refractive index relationships noted above.
With continued reference to
In some embodiments, the light rays 770, 780, 790 have different properties, e.g., different wavelengths or different ranges of wavelengths, which may correspond to different colors. The in-coupling optical elements 700, 710, 720 each deflect the incident light such that the light propagates through a respective one of the waveguides 670, 680, 690 by TIR. In some embodiments, the incoupling optical elements 700, 710, 720 each selectively deflect one or more particular wavelengths of light, while transmitting other wavelengths to an underlying waveguide and associated incoupling optical element.
For example, in-coupling optical element 700 may be configured to deflect ray 770, which has a first wavelength or range of wavelengths, while transmitting rays 780 and 790, which have different second and third wavelengths or ranges of wavelengths, respectively. The transmitted ray 780 impinges on and is deflected by the in-coupling optical element 710, which is configured to deflect light of a second wavelength or range of wavelengths. The ray 790 is deflected by the in-coupling optical element 720, which is configured to selectively deflect light of third wavelength or range of wavelengths.
With continued reference to
With reference now to
In some embodiments, the light distributing elements 730, 740, 750 are orthogonal pupil expanders (OPE's). In some embodiments, the OPE's deflect or distribute light to the out-coupling optical elements 800, 810, 820 and, in some embodiments, may also increase the beam or spot size of this light as it propagates to the out-coupling optical elements. In some embodiments, the light distributing elements 730, 740, 750 may be omitted and the in-coupling optical elements 700, 710, 720 may be configured to deflect light directly to the out-coupling optical elements 800, 810, 820. For example, with reference to
Accordingly, with reference to
Example Light Projector Systems and Related Structures
The light module 2040 may include a plurality of light emitters 2020 that emit light of different ranges of wavelengths, corresponding to different colors. Different sets of the plurality of light emitters 2020 (e.g., light emitters 2020a, 2020b, 2020c) may emit light of different ranges of wavelengths, with a set of light emitters including one or more light emitters 2020. In some embodiments, the total number of sets of light emitters 2020 may correspond to the total number of component colors used by the display system to form a full color image.
The perception of a full color image by a viewer may be achieved with time division multiplexing in some embodiments. For example, different light emitters 2020 may be activated at different times to generate different component color images. In such embodiments, the component color images that form a single full color image may be displayed sufficiently quickly that the human visual system does not perceive the component color images as being displayed at different times. For example, the rate at which the component color images are sequentially displayed may be higher than the perception persistence of the human visual system. In some embodiments, the different component color images are sequentially displayed at a rate higher than 60 Hz. It will be appreciated that time division multiplexing may advantageously reduce the computational load on processors (e.g., graphics processors) utilized to form a displayed images. In some embodiments, where sufficient computational power is available, all component color images that form a full color image may be displayed simultaneously.
With continued reference to
As disclosed herein, the eyepiece 2010 may include a plurality of waveguides for each color of a plurality of colors. An individual waveguide may incouple the desired light from the corresponding light emitter and relay it to the eye by use of diffractive optics (e.g., diffractive gratings) or physical optics (e.g., faceted reflectors). In addition, diffractive or physical optics may direct the light through a waveguide, and may also couple the light out of the waveguide. The waveguides may have power in the relay to the eye to make the light seem to come from a given depth or distance from the viewer, as discussed herein (see, e.g.,
Advantageously, the light pipe 2100 can significantly increase the fraction of light from the light emitter 2020 (
With continued reference to
With continued reference to
In some embodiments, the sub pupil formed by the cross-sectional area of the light output surface 2120 may be a circle, oval, square or rectangle or some straight line approximation to these forms.
With continued reference to
In some embodiments, as discussed further below, each light pipe may be surrounded with a light absorbing material to reduce color crosstalk. In some embodiments, the underlying light emitters may include an encapsulation material that may be separated or mostly separated between light emitters and a light absorbent material may be placed around the light emitter encapsulation between light emitters.
The output and input surfaces 2120, 2110 may include various features. For example, as disclosed herein, the output surface 2120 of the light pipe 2100 may have a diffuser fabricated into it or attached to it to improve the uniformity of the outputted light. Both or either output and input surfaces 2120, 2110 may have an anti-reflection coating to improve light throughput. It will be appreciated that the light emitter underlying the light pipe 2100 may be encapsulated by a material which provides mechanical protection and electrical insulation for the light emitter (e.g, for the wire bonds of the light emitter). In some embodiments, the input surface 2110 may be fabricated as part of the light emitter encapsulation so that it is better index matched than having an air interface between them, thereby improving light throughput from the light emitter into the light pipe 2100.
In some embodiments, the length of the light pipe 2100 or light emitter/light pipe position may be changed along the light output axis of the projector system so that the particular sub pupil may be in better focus at the desired waveguide in a stack of waveguides (e.g. waveguide stacks 260 (
With a shifted pupil system, multiple sub pupils may be used to provide images with different colors and/or for different depth planes. It will be appreciated that each light guide may correspond to a sub pupil, and a plurality of light guides provide a plurality of such sub pupils. In addition, sub pupil size may be directly related to the cross-sectional area of the light output surface 2120, with larger cross-sectional areas generally corresponding to larger sub pupil sizes. In order for the system to stay small, the pupils are preferably as small and close together as possible so that the overall system pupil is small. It will be appreciated that the system pupil will determine the size of the optics required and the weight of the display device as well. In addition, sub pupil size may limit the resolution of the system. Thus, sub pupils may have a certain size determined by the resolution that is desired for a given color. Since blue has a smaller wavelength than green or red, its sub pupil may be smaller and still have the same resolution. Sub pupil size is also related to the how much power may be introduced into the system through the sub pupil. The larger the sub pupil, the larger and more powerful a light emitter may be used.
The spacing and the closeness of sub pupils may be limited by one or more of light emitter size, light emitter placement tolerance, color crosstalk in the eyepiece, heating, and electrical considerations. In some embodiments, using a common electrical ground for the light emitters, two light or more emitters may be placed closer together; however, if they have different operating voltages then some efficiency may be sacrificed to have common grounds. In some embodiments, lens may be placed between the light input surface 2110 and then underlying light emitter. The lens may be used to collect light from a light emitter efficiently, although such lenses may limit how close together light emitters may be placed to the light input surface 2110.
With reference now to
In some embodiments, multiple light emitters may inject light into a single light pipe 2100 (see, e.g.,
It some embodiments, the surfaces of the sidewalls of the light pipe 2100 may be rough, which can help to improve the uniformity of outputted light by scattering light within the light pipe 2100. For example, the light pipe 2100 may be roughened by abrasion, e.g., by mechanical polishing or by subjecting the light pipe 2100 to a chemical mechanical polishing process using abrasive particles of a desired grit. In some other embodiments where the light pipe 2100 is formed in a mold, the desired light pipe sidewall roughness may be achieved by roughening ruffling the interior surface of the mold and then forming the light pipe 2100 in that mold, thereby transferring the roughness of the mold to the light pipe 2100. Consequently, an optical device may be formed by forming the light pipe 2100 with a roughened sidewall surface and then coupling the light pipe 2100 to one or more light emitters, which may then be coupled to a spatial light modulator or a polarizing beam splitter, in some embodiments. As noted above, forming a light pipe 2100 with a roughened sidewall surface may include roughening the sidewalls of the light pipe 2100, or forming the light pipe 2100 in the mold that has roughness on its interior surface that is transferred to the light pipe 2100.
Accordingly,
In some embodiments, a plurality of light pipes 2100 may be formed as an integral unit.
In some embodiments, the output surface 2120 may have a diffuser 2170 fabricated into it to increase the uniformity of the light outputted from that surface. In some other embodiments, the diffuser 2170 may be a separate structure attached (e.g., adhered by index matched adhesive) to the output surface 2120. In some embodiments, an anti-reflection coating 2180 may be provided at the output surface 2120. As noted above, the input surfaces 2110 of the various light pipes 2100 may also be glued or made part of the encapsulation material of the light emitters 2020 to provide a better optical interface to improve throughput and collection efficiency.
It will be appreciated that the right light pipe 2100 illustrated in
Nevertheless, another advantageous concept shown in
In some embodiments, combining wedges, prisms, or gratings with the the input surface 2110 may also improve the uniformity of light exiting the light output surface 2120.
Another approach for reducing projector system size and weight is to combine the light output from the light emitters 2020 after the light has been captured by a light pipe for each light emitter.
As noted above, it will be appreciated that crosstalk and/or light leakage between light guides may degrade the quality of images formed using the projector system. In some embodiments, a baffle is provided to optically separate the light pipes.
The baffle structure includes a lower portion 2210 that surrounds and closes sidewalls of the light pipes 2100, and an upper portion or lid 2220 which fits over the lower portion 2210. The lower portion 2210 may be attached to the substrate 2050 that supports the light emitters 2020. The upper portion 2220 may include a plurality of apertures 2200 through which light exiting the output surface 2120 may propagate. In some embodiments, the apertures 2200 may be smaller in area than the light output surface 2120, and may have a desired shape for outputting light to the light modulator.
Various example embodiments of the invention are described herein. Reference is made to these examples in a non-limiting sense. They are provided to illustrate more broadly applicable aspects of the invention. Various changes may be made to the invention described and equivalents may be substituted without departing from the spirit and scope of the invention.
For example, while advantageously utilized with AR displays that provide images across multiple depth planes, the augmented reality content disclosed herein may also be displayed by systems that provide images on a single depth plane.
In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention. Further, as will be appreciated by those with skill in the art that each of the individual variations described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present inventions. All such modifications are intended to be within the scope of claims associated with this disclosure.
The invention includes methods that may be performed using the subject devices. The methods may comprise the act of providing such a suitable device. Such provision may be performed by the user. In other words, the “providing” act merely requires the user obtain, access, approach, position, set-up, activate, power-up or otherwise act to provide the requisite device in the subject method. Methods recited herein may be carried out in any order of the recited events that is logically possible, as well as in the recited order of events.
Example aspects of the invention, together with details regarding material selection and manufacture have been set forth above. As for other details of the present invention, these may be appreciated in connection with the above-referenced patents and publications as well as generally known or appreciated by those with skill in the art. The same may hold true with respect to method-based aspects of the invention in terms of additional acts as commonly or logically employed.
In addition, though the invention has been described in reference to several examples optionally incorporating various features, the invention is not to be limited to that which is described or indicated as contemplated with respect to each variation of the invention. Various changes may be made to the invention described and equivalents (whether recited herein or not included for the sake of some brevity) may be substituted without departing from the spirit and scope of the invention. In addition, where a range of values is provided, it is understood that every intervening value, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the invention.
Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Reference to a singular item, includes the possibility that there are plural of the same items present. More specifically, as used herein and in claims associated hereto, the singular forms “a,” “an,” “said,” and “the” include plural referents unless the specifically stated otherwise. In other words, use of the articles allow for “at least one” of the subject item in the description above as well as claims associated with this disclosure. It is further noted that such claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
Without the use of such exclusive terminology, the term “comprising” in claims associated with this disclosure shall allow for the inclusion of any additional element—irrespective of whether a given number of elements are enumerated in such claims, or the addition of a feature could be regarded as transforming the nature of an element set forth in such claims. Except as specifically defined herein, all technical and scientific terms used herein are to be given as broad a commonly understood meaning as possible while maintaining claim validity.
Curtis, Kevin, Hall, Heidi Leising, St. Hilaire, Pierre, Tinch, David
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5268823, | Dec 01 1992 | Hewlett-Packard Company | Light transmission apparatus for electro-optically coupling to a display panel for an electronic instrument |
6850221, | Sep 05 1995 | SMK-LINK ELECTRONICS CORPORATION | Trigger operated electronic device |
8950867, | Nov 23 2011 | CITIBANK, N A | Three dimensional virtual and augmented reality display system |
9081426, | Jul 05 1996 | ANASCAPE, LTD | Image controller |
9215293, | Oct 28 2011 | CITIBANK, N A | System and method for augmented and virtual reality |
9310559, | Jun 11 2012 | CITIBANK, N A | Multiple depth plane three-dimensional display using a wave guide reflector array projector |
9348143, | Dec 24 2010 | CITIBANK, N A | Ergonomic head mounted display device and optical system |
9417452, | Mar 15 2013 | CITIBANK, N A | Display system and method |
9470906, | Oct 16 2013 | CITIBANK, N A | Virtual or augmented reality headsets having adjustable interpupillary distance |
9547174, | Apr 05 2012 | CITIBANK, N A | Apparatus for optical see-through head mounted display with mutual occlusion and opaqueness control capability |
9671566, | Jul 12 2013 | CITIBANK, N A | Planar waveguide apparatus with diffraction element(s) and system employing same |
9740006, | Sep 11 2012 | CITIBANK, N A | Ergonomic head mounted display device and optical system |
9791700, | Nov 27 2013 | CITIBANK, N A | Virtual and augmented reality systems and methods |
9851563, | Apr 05 2012 | CITIBANK, N A | Wide-field of view (FOV) imaging devices with active foveation capability |
9857591, | May 30 2014 | CITIBANK, N A | Methods and system for creating focal planes in virtual and augmented reality |
9874749, | Nov 27 2013 | CITIBANK, N A | Virtual and augmented reality systems and methods |
20050002097, | |||
20050225866, | |||
20060126178, | |||
20070007442, | |||
20070081329, | |||
20080232133, | |||
20080285310, | |||
20100027289, | |||
20100118276, | |||
20100128155, | |||
20110019258, | |||
20110149591, | |||
20110227487, | |||
20120127062, | |||
20120169235, | |||
20120242959, | |||
20130006074, | |||
20130082922, | |||
20130125027, | |||
20130215636, | |||
20130335821, | |||
20140071539, | |||
20140177023, | |||
20140218468, | |||
20140306866, | |||
20150016777, | |||
20150103306, | |||
20150138510, | |||
20150178939, | |||
20150205126, | |||
20150222883, | |||
20150222884, | |||
20150268415, | |||
20150302652, | |||
20150326570, | |||
20150346490, | |||
20150346495, | |||
20160011419, | |||
20160026253, | |||
D758367, | May 14 2015 | CITIBANK, N A | Virtual reality headset |
WO2017147534, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 24 2017 | Magic Leap, Inc. | (assignment on the face of the patent) | / | |||
Apr 28 2017 | ST HILAIRE, PIERRE | MAGIC LEAP, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 042435 | /0885 | |
Apr 29 2017 | TINCH, DAVID | MAGIC LEAP, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 042435 | /0885 | |
May 01 2017 | CURTIS, KEVIN | MAGIC LEAP, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 042435 | /0885 | |
May 05 2017 | HALL, HEIDI LEISING | MAGIC LEAP, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 042435 | /0885 | |
Aug 20 2019 | MAGIC LEAP, INC | JP MORGAN CHASE BANK, N A | PATENT SECURITY AGREEMENT | 050138 | /0287 | |
Aug 20 2019 | Molecular Imprints, Inc | JP MORGAN CHASE BANK, N A | PATENT SECURITY AGREEMENT | 050138 | /0287 | |
Aug 20 2019 | Mentor Acquisition One, LLC | JP MORGAN CHASE BANK, N A | PATENT SECURITY AGREEMENT | 050138 | /0287 | |
Nov 06 2019 | JPMORGAN CHASE BANK, N A | CITIBANK, N A | ASSIGNMENT OF SECURITY INTEREST IN PATENTS | 050967 | /0138 |
Date | Maintenance Fee Events |
Date | Maintenance Schedule |
Mar 17 2023 | 4 years fee payment window open |
Sep 17 2023 | 6 months grace period start (w surcharge) |
Mar 17 2024 | patent expiry (for year 4) |
Mar 17 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 17 2027 | 8 years fee payment window open |
Sep 17 2027 | 6 months grace period start (w surcharge) |
Mar 17 2028 | patent expiry (for year 8) |
Mar 17 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 17 2031 | 12 years fee payment window open |
Sep 17 2031 | 6 months grace period start (w surcharge) |
Mar 17 2032 | patent expiry (for year 12) |
Mar 17 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |