A touchless human computer interface (HCI) provides a virtual surface in three-dimensional space and a zone of restriction for defining a level of sensitivity to movements in order to cancel noise that may be caused by natural wobble of a human appendage. The touchless HCI may receive input regarding a user movement, process the input to generate clean gesture data and analyze at least one dynamic variable to determine an interpreted action based upon a relationship of the clean gesture data with respect to the virtual surface.
|
18. A system for analyzing human computer interaction comprising:
a processor; and
a memory storing thereon computer-executable instructions that, when executed by the processor, configure the system to:
process input data to generate gesture data, the input data received from an appendage detection device; and
determine an interpreted action based upon a spatial relationship of the gesture data with respect to a zone of restriction, wherein the zone of restriction is an area or perimeter in X and Y dimensions that is a function of a z coordinate in a z dimension that extends from a user through a virtual space defined in a three-dimensional space, the zone of restriction being smaller than an area-of-detection of the appendage detection device relative to the X and Y dimensions for values of the z coordinate between the user and a virtual surface, and wherein the spatial relationship defines a sensitivity with which the gesture data is tracked, the sensitivity being non-zero within at least a portion of the zone of restriction.
1. A method for controlling a computing device, the method comprising:
defining a zone of restriction as an area or perimeter in X and Y dimensions that is a function of a z coordinate in a z dimension extending from a user through a virtual space defined in a three-dimensional space;
receiving data regarding movement of an appendage in the three-dimensional space, the data received from an appendage detection device having a field-of-detection (FOD) that is larger than the zone of restriction relative to the X and Y dimensions for values of the z coordinate between the user and a virtual surface;
processing the received data to generate processed gesture data;
determining at least one physical attribute of the processed gesture data, the at least one physical attribute including three-dimensional coordinates of the appendage in the X, Y, and z dimensions; and
analyzing the at least one physical attribute of the processed gesture data to determine an interpreted action responsive to the three-dimensional coordinates of the appendage being within the zone of restriction.
12. A computer readable storage device storing instructions for human computer interaction, wherein the computer readable storage device is not a transitory signal, the instructions comprising:
defining a zone of restriction as an area or perimeter in X and Y dimensions that increases in size as a function of a z coordinate in a z dimension extending from a user through a virtual space defined in a three-dimensional space;
receiving data regarding movement of an appendage in the three-dimensional space, the data received from an appendage detection device having a field-of-detection (FOD) that is larger than the zone of restriction relative to the X and Y dimensions for values of the z coordinate between the user and a virtual surface;
processing the data to generate processed gesture data;
determining at least one physical attribute of the processed gesture data; and
analyzing the at least one physical attribute of the processed gesture data to determine an interpreted action based at least upon a spatial relationship of the processed gesture data with respect to the zone of restriction, the spatial relationship defining a sensitivity with which movements of the appendage are interpreted, the sensitivity being non-zero within at least a portion of the zone of restriction.
2. The method according to
3. The method according to
4. The method according to
5. The method according to
6. The method according to
7. The method according to
8. The method according to
9. The method according to
10. The method according to
11. The method according to
13. The computer readable storage device according to
14. The computer readable storage device according to
15. The computer readable storage device according to
16. The computer readable storage device according to
17. The computer readable storage device according to
19. The system according to
|
This application is a continuation of U.S. patent application Ser. No. 12/363,094 filed on Jan. 30, 2009, the entire contents are incorporated herein by reference.
Advances in the human computer interface (“HCI”) represent a new frontier in human machine interaction. Typically people interact with computers using a mouse and keyboard. Video games generally use wired or wireless controllers with a series of buttons and/or joysticks.
It is desirable to provide new modes for HCI especially for interaction with entertainment or game titles. In particular, it is desirable to allow humans to interact with computers using natural gestures using wired or wireless controllers. However, it would be advantageous to eliminate the need for a physical controller and allow humans to utilize their own bodies and gestures for interaction.
Recently, new forms of HCI have emerged using touch. A user interacts with a computer and/or entertainment device by physically touching portions of a touch interface. Typically, the touch interface is the display device itself.
Although the use of gestures for HCI are known, controlling computers or specialized entertainment devices via interpretation of human gestures in a three-dimensional context is not well known. One significant problem with touchless interaction is that there is no notion of a physical plane. That is, with touch interaction there exists a physical interface such as the glass overlay on the display device that is nonexistent in the touchless paradigm. Thus, there is a need for new forms of HCI in a three-dimensional environment.
A touchless HCI provides a virtual surface in three-dimensional space. The touchless HCI may receive input regarding a user movement, process the input to generate clean gesture data and analyze at least one dynamical variable to determine an interpreted action based upon a relationship of the clean gesture data with respect to the virtual surface. In addition to the virtual surface, a zone or restriction may be defined in order to eliminate noise due to wobble of the human arm as it extends along an axis in front of a user.
A Z-In and Z-Out state may be defined to indicate whether a user has currently extended the human appendage (“HA”) within the virtual surface. Dynamical variables regarding the user's interaction within and without of the virtual surface may be interpreted to determine a select action, a hover and highlight action, a drag action and a swipe action.
A data plane and associated cursor may be dynamically modified to provide feedback based upon a user's touchless interaction. The cursor may become more focused as movement along the Z dimension in front of the user is performed. Other visual display attributes may be dynamically modified to show panning and scrolling of a data plane in response to touchless user interaction.
A system for analyzing HCI in a touchless environment may include a camera, a gesture engine, a physics engine, a virtual surface, a zone of restriction and an action interpretation engine. The camera may generate a signal as a function of a 3-D environment. The signal may be received by the gesture engine, which may process the camera signal to generate a clean gesture signal. The physics engine may receive the clean gesture signal and in turn update dynamical variables associated with a human appendage, the virtual surface and the zone of restriction. The action interpretation engine may interpret the clean gesture signal as a function of the virtual surface and virtual zone of restriction.
Virtual surface 112 comprises an imaginary surface of arbitrary shape. The surface is “virtual” in the sense that its dimensions, extent and geometry are not physically manifested but are instead imaginary and represented in a computing device (not shown in
Virtual surface may be planer in shape, e.g., 112(1). According to one embodiment, virtual surface extends around user 116 in a manner to suit the ergonomics of the human body. According to this embodiment, virtual surface 112 comprises flat portion 128 directly in front of user 116, first curved portion to the left 130 and second curved portion right 132 of user 116, e.g., 112(2). Virtual surface 112 may be fixed in space. However, instead virtual surface 112 may be variable in space, its origin moving as a function of a location of user 116. That is, according to one embodiment, an origin of virtual surface 112 is located at a point such as the center of mass (“COM”) of user 116. Thus, for example, the origin of the virtual surface 112 may move in conjunction with the location of the solar plexus, for example relative to the chest of user 116. A method to accomplish this is described below. Furthermore, the geometry of virtual surface may be customized to individual users 116.
User interaction within the 3-D environment is interpreted with respect to an orientation of HA 18, for example an arm, in relation to virtual surface as will become evident as the method and system is further described. A front zone 102, back zone 102 and neutral zone 18 are respectively defined in front and in back of virtual surface 112, which may be used in specific contexts to interpret gestures as described in detail below.
Z-out threshold 114 may define a threshold or reference point along the Z-axis, which is used to interpret gestures as described in detail below. For example, movement of arm 18 may be determined within the Z dimension. Accordingly, Z-Out threshold 114 may be utilized to determine whether HA 18 should be considered in back of virtual surface 112. According to one embodiment, it is desirable to define a “neutral” 18 or “no action” zone close to the user's chest out to Z-out threshold 114. Until HA 18 extends forward beyond neutral zone no gestures are interpreted.
Due to the geometry of the human body, as user 116 zooms in and out along the Z-axis the human hand tends to diverge from movement along a straight line. According to empirical measurements, the wobble tends to become move pronounced in the X and Y dimensions as the z coordinated increases (in the forward direction). In other words, there exists a natural wobble clue to the geometry of the human arm and hand and the bone configuration. According to one embodiment, this wobble, which may be viewed as noise, must be canceled in order to achieve accurate interpretation of human gestures.
Zone_Restriction(z)=f(X(z),Y(z))
Zone of restriction 110 defines a level of sensitivity to movement of HA 18 within the X and Y dimensions. The larger the area of the zone as a function of the z coordinate, the less sensitive the system is to wobble. In order to compensate for the natural wobble of the human arm movement, zone of restriction 110 may be a conical shape. That is, at the beginning of the cone, the system is more sensitive to movement in the X and Y dimensions while as HA 18 moves forward, the system becomes less sensitive to variations in X and Y dimensions. This results in cancellation of X and Y wobble or noise. Zone of restriction 110 may be a linear or nonlinear function of z.
In other words, zone of restriction 110 provides a mathematical definition for noise cancellation due to natural wobble due to the geometry of the human arm. Viewed from another perspective, zone of restriction 110 represents the certainty of a selection event occurring. The more certain that a select event will occur (the closer HA 18 is in front of virtual surface 112), the more noise is eliminated.
Thus, as shown in
Display of cursor 302 may also be dynamically modified depending upon a mode as determined by an action interpreted based upon a human gesture. For example, if an item on data plane 120 is selected cursor 302 may be displayed in a manner to signal that a selection has occurred.
According to an alternative embodiment, a user may hold a simple device such as a small ball rather than use the HA alone for touchless interaction. The object such as a ball might provide feedback to the system to indicate that touchless interaction is now engaged. Further, the object might have a button that is used to signal select actions (described below). The object might also provide haptic feedback such as, for example, a rumble. The object might also employ a reflective surface that is highly visible to camera 140.
Digital signal 130 may be a sampled time series of pixel values in a three-dimensional lattice representing the time evolution of user 116 in space and time. The pixel values may be of any bit resolution and depth representing either color or grey scale data and the sampling rate may be arbitrarily adjusted based upon the a characteristic time scale of user 116 interaction.
Computing device 108 comprises gesture engine 124, physics engine 126, action interpretation module 144 and UI update module 128. Gesture engine 124 receives a digital signal 130 from camera 140 representing the spatial orientation of user 116 in a 3-D environment. Upon receiving digital signal 130 from camera 140, gesture engine 124 filters digital signal to generate clean gesture signal 132. Clean gesture signal 132 may be a time series representation of the dynamical behavior of a particular point of user 116 such as the COM of user 116. Thus, gesture engine 124 may utilize compute vision techniques such as optical flow or other techniques to isolate the dynamical behavior of a particular point of user 116 such as COM. In addition, as noted, gesture engine 124 may remove noise and/or perform other filtering of received digital signal 130.
Gesture engine 124 provides clean gesture signal 132 to physics engine 126. Physics engine 126 may generate a mathematical representation of dynamical behavior of desired point(s) such as COM on user 116 by analyzing clean gesture signal in the form of dynamic variables 148 such as spatial position. Thus, for example, physics engine 126 may generate a time series representation of the spatial location of COM of user 116. Physics engine 126 may also generate other dynamical variables such as velocity, acceleration and any other information of interest based upon clean gesture signal 132. Furthermore, physics engine 126 may provide an update of the origin location of both virtual surface 112 and zone of restriction 110 as a function of the determined current location of user 116.
Physics engine 126 provides a time series of dynamical variables representing one or more points on user 116 to action interpretation module 144. Action interpretation module converts dynamical variables representing point(s) on user 116 such as COM into an interpreted action such as a select, hover and highlight, drag, swipe, etc. as described below. In particular, action interpretation module may generate action object 146, which is a data structure representing the type of action (e.g., select, swipe, highlight and hover, drag, etc.) and other parameters describing that action and provide action object 146 to UI update module 128. Action interpretation module 144 may interpret actions based upon the orientation of HA 18 with respect to virtual surface 112 and zone of restriction 110.
UI update module receives action object 146 and uses this information to update a user interface for controlling the display data in data plane 120. UI update module 128 may also control the dynamics and visual representation of cursor 302 as a function of a current action and associated spatial orientation of user 116 and in particular HA 18.
The output of UI update 128 is provided to display 142 in order to display data plane 120, which includes a perspective view of currently viewed data and cursor 302 as a function of a current state of user 116 dynamics and spatial orientation.
Conversely, as shown in
According to an alternative embodiment, instead of changing the shape of cursor 302, upon user 116 selecting an item, or data object shown in data plane 120, the selected item in data plane 120 may be displayed to move forward and back along the Z dimension indicating that user 116 has activated that UI layer or item. Conceptually this may be analogized to reaching below a water surface to grab the UI
With respect to physics engine 106, in 412, it is determined whether a time has expired. If not (‘No’ branch of 412), flow continue with 414. If so (‘Yes’ branch of 412), flow continues with 414 and new dynamic variables 148 is generated, which may include dynamic variables for HA 18, virtual surface 112 and zone of restriction 110. In 416, dynamic variables are placed in a buffer where they are made available for action interpretation module 144.
If a Z-In/Z-Out transition is detected in 422 (‘Yes’ branch of 422), flow continues with 426. In 426 it is determined whether a timer has run before a Z-Out transition (i.e., is less than a threshold T). If so (‘No’ branch of 426), flow continues with 432 and it is understood that user 116 has grabbed data plane 120. In 438 it is determined whether user 116 has provide X/Y motion in the lateral plane. If not (‘No’ branch of 438), flow continues with 438. If so (‘Yes’ branch of 438), flow continues with 440 and the interpreted action is swipe 204 in 440.
If, on the other hand, the timer is less than the threshold T and a Z-Out transition has occurred in 426, flow continues with 436 and select action 202 is interpreted as occurring.
The system, methods and components of the navigation techniques described herein may be embodied in a multi-media console, such as a gaming console, or in any other computing device in which it is desired to recognize gestures of a user for purposes of user input, including, by way of example and without any intended limitation, satellite receivers, set top boxes, arcade games, personal computers (PCs), portable telephones, personal digital assistants (PDAs), and other hand-held devices.
A graphics processing unit (GPU) 508 and a video encoder/video codec (coder/decoder) 514 form a video processing pipeline for high speed and high resolution graphics processing. Data is carried from the graphics processing unit 508 to the video encoder/video codec 514 via a bus. The video processing pipeline outputs data to an A/V (audio/video) port 540 for transmission to a television or other display. A memory controller 510 is connected to the GPU 508 to facilitate processor access to various types of memory 512, such as, but not limited to, a RAM (Random Access Memory).
The multimedia console 500 includes an I/O controller 520, a system management controller 522, an audio processing unit 523, a network interface controller 524, a first USB host controller 526, a second USB controller 528 and a front panel I/O subassembly 530 that are preferably implemented on a module 518. The USB controllers 526 and 528 serve as hosts for peripheral controllers 542(1)-542(2), a wireless adapter 148, and an external memory device 546 (e.g., flash memory, external CD/DVD ROM drive, removable media, etc.). The network interface 124 and/or wireless adapter 548 provide access to a network (e.g., the Internet, home network, etc.) and may be any of a wide variety of various wired or wireless adapter components including an Ethernet card, a modem, a Bluetooth module, a cable modem, and the like.
System memory 543 is provided to store application data that is loaded during the boot process. A media drive 544 is provided and may comprise a DVD/CD drive, hard drive, or other removable media drive, etc. The media drive 544 may be internal or external to the multimedia console 500. Application data may be accessed via the media drive 544 for execution, playback, etc. by the multimedia console 500. The media drive 544 is connected to the I/O controller 520 via a bus, such as a Serial ATA bus or other high speed connection (e.g., IEEE 1394).
The system management controller 522 provides a variety of service functions related to assuring availability of the multimedia console 500. The audio processing unit 523 and an audio codec 532 form a corresponding audio processing pipeline with high fidelity and stereo processing. Audio data is carried between the audio processing unit 523 and the audio codec 532 via a communication link. The audio processing pipeline outputs data to the A/V port 540 for reproduction by an external audio player or device having audio capabilities.
The front panel I/O subassembly 530 supports the functionality of the power button 550 and the eject button 552, as well as any LEDs (light emitting diodes) or other indicators exposed on the outer surface of the multimedia console 500. A system power supply module 536 provides power to the components of the multimedia console 500. A fan 538 cools the circuitry within the multimedia console 500.
The CPU 501, GPU 508, memory controller 510, and various other components within the multimedia console 500 are interconnected via one or more buses, including serial and parallel buses, a memory bus, a peripheral bus, and a processor or local bus using any of a variety of bus architectures. By way of example, such architectures can include a Peripheral Component Interconnects (PCI) bus, PCI-Express bus, etc.
When the multimedia console 500 is powered ON, application data may be loaded from the system memory 543 into memory 512 and/or caches 502, 504 and executed on the CPU 501. The application may present a graphical user interface that provides a consistent user experience when navigating to different media types available on the multimedia console 500. In operation, applications and/or other media contained within the media drive 544 may be launched or played from the media drive 544 to provide additional functionalities to the multimedia console 500.
The multimedia console 500 may be operated as a standalone system by simply connecting the system to a television or other display. In this standalone mode, the multimedia console 500 allows one or more users to interact with the system, watch movies, or listen to music. However, with the integration of broadband connectivity made available through the network interface 524 or the wireless adapter 548, the multimedia console 500 may further be operated as a participant in a larger network community.
When the multimedia console 500 is powered ON, a set amount of hardware resources are reserved for system use by the multimedia console operating system. These resources may include a reservation of memory (e.g., 16 MB), CPU and GPU cycles (e.g., 5%), networking bandwidth (e.g., 8 kbs), etc. Because these resources are reserved at system boot time, the reserved resources do not exist from the application's view.
In particular, the memory reservation preferably is large enough to contain the launch kernel, concurrent system applications and drivers. The CPU reservation is preferably constant such that if the reserved CPU usage is not used by the system applications, an idle thread will consume any unused cycles.
With regard to the GPU reservation, lightweight messages generated by the system applications (e.g., popups) are displayed by using a GPU interrupt to schedule code to render popup into an overlay. The amount of memory required for an overlay depends on the overlay area size and the overlay preferably scales with screen resolution. Where a full user interface is used by the concurrent system application, it is preferable to use a resolution independent of application resolution. A scaler may be used to set this resolution such that the need to change frequency and cause a TV resynch is eliminated.
After the multimedia console 500 boots and system resources are reserved, concurrent system applications execute to provide system functionalities. The system functionalities are encapsulated in a set of system applications that execute within the reserved system resources described above. The operating system kernel identifies threads that are system application threads versus gaming application threads. The system applications are preferably scheduled to run on the CPU 501 at predetermined times and intervals in order to provide a consistent system resource view to the application. The scheduling is to minimize cache disruption for the gaming application running on the console.
When a concurrent system application requires audio, audio processing is scheduled asynchronously to the gaming application due to time sensitivity. A multimedia console application manager (described below) controls the gaming application audio level (e.g., mute, attenuate) when system applications are active.
Input devices (e.g., controllers 542(1) and 542(2)) are shared by gaming applications and system applications. The input devices are not reserved resources, but are to be switched between system applications and the gaming application such that each will have a focus of the device. The application manager preferably controls the switching of input stream, without knowledge the gaming application's knowledge and a driver maintains state information regarding focus switches.
As another example,
Computer 241 typically includes a variety of computer readable media. Computer readable media can be any available media that can be accessed by computer 241 and includes both volatile and nonvolatile media, removable and non-removable media. The system memory 222 includes computer storage media in the form of volatile and/or nonvolatile memory such as read only memory (ROM) 223 and random access memory (RAM) 260. A basic input/output system 224 (BIOS), containing the basic routines that help to transfer information between elements within computer 241, such as during start-up, is typically stored in ROM 223. RAM 260 typically contains data and/or program modules that are immediately accessible to and/or presently being operated on by processing unit 259. By way of example, and not limitation,
The computer 241 may also include other removable/non-removable, volatile/nonvolatile computer storage media. By way of example only,
The drives and their associated computer storage media discussed above and illustrated in
The computer 241 may operate in a networked environment using logical connections to one or more remote computers, such as a remote computer 246. The remote computer 246 may be a personal computer, a server, a router, a network PC, a peer device or other common network node, and typically includes many or all of the elements described above relative to the computer 241, although only a memory storage device 247 has been illustrated in
When used in a LAN networking environment, the computer 241 is connected to the LAN 245 through a network interface or adapter 237. When used in a WAN networking environment, the computer 241 typically includes a modern 250 or other means for establishing communications over the WAN 249, such as the Internet. The modern 250, which may be internal or external, may be connected to the system bus 221 via the user input interface 236, or other appropriate mechanism. In a networked environment, program modules depicted relative to the computer 241, or portions thereof, may be stored in the remote memory storage device. By way of example, and not limitation,
Andrews, Anton, Yeung, Brian Y.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4843568, | Apr 11 1986 | Real time perception of and response to the actions of an unencumbered participant/user | |
5563988, | Aug 01 1994 | Massachusetts Institute of Technology | Method and system for facilitating wireless, full-body, real-time user interaction with a digitally represented visual environment |
5875108, | Dec 23 1991 | Microsoft Technology Licensing, LLC | Ergonomic man-machine interface incorporating adaptive pattern recognition based control system |
5913727, | Jun 02 1995 | Interactive movement and contact simulation game | |
6057909, | Jun 22 1995 | MICROSOFT INTERNATIONAL HOLDINGS B V | Optical ranging camera |
6100517, | Jun 22 1995 | MICROSOFT INTERNATIONAL HOLDINGS B V | Three dimensional camera |
6141463, | Oct 10 1997 | Microsoft Technology Licensing, LLC | Method and system for estimating jointed-figure configurations |
6167433, | Aug 01 1997 | MUSE TECHNOLOGIES, INC | Shared multi-user interface for multi-dimensional synthetic environments |
6181343, | Dec 23 1997 | Philips Electronics North America Corp | System and method for permitting three-dimensional navigation through a virtual reality environment using camera-based gesture inputs |
6222465, | Dec 09 1998 | Lucent Technologies Inc. | Gesture-based computer interface |
6256033, | Oct 15 1997 | Microsoft Technology Licensing, LLC | Method and apparatus for real-time gesture recognition |
6308565, | Mar 03 1998 | Impulse Technology LTD | System and method for tracking and assessing movement skills in multidimensional space |
6414672, | Jul 07 1997 | Sony Corporation | Information input apparatus |
6430997, | Nov 06 1995 | Impulse Technology LTD | System and method for tracking and assessing movement skills in multidimensional space |
6498628, | Oct 13 1998 | Sony Corporation | Motion sensing interface |
6502515, | Dec 14 1999 | Rheinmetall W & M GmbH | Method of making a high-explosive projectile |
6512838, | Sep 22 1999 | Microsoft Technology Licensing, LLC | Methods for enhancing performance and data acquired from three-dimensional image systems |
6539931, | Apr 16 2001 | Koninklijke Philips Electronics N V | Ball throwing assistant |
6554433, | Jun 30 2000 | Intel Corporation | Office workspace having a multi-surface projection and a multi-camera system |
6674877, | Feb 03 2000 | Microsoft Technology Licensing, LLC | System and method for visually tracking occluded objects in real time |
6677969, | Sep 25 1998 | SANYO ELECTRIC CO , LTD | Instruction recognition system having gesture recognition function |
6720949, | Aug 22 1997 | Man machine interfaces and applications | |
6749432, | Oct 20 1999 | Impulse Technology LTD | Education system challenging a subject's physiologic and kinesthetic systems to synergistically enhance cognitive function |
6765726, | Nov 06 1995 | Impluse Technology Ltd. | System and method for tracking and assessing movement skills in multidimensional space |
6771277, | Oct 06 2000 | SONY NETWORK ENTERTAINMENT PLATFORM INC ; Sony Computer Entertainment Inc | Image processor, image processing method, recording medium, computer program and semiconductor device |
6876496, | Nov 06 1995 | Impulse Technology Ltd. | System and method for tracking and assessing movement skills in multidimensional space |
6890262, | Jul 19 2001 | KONAMI DIGITAL ENTERTAINMENT CO , LTD | Video game apparatus, method and recording medium storing program for controlling viewpoint movement of simulated camera in video game |
6950534, | Aug 10 1998 | JOLLY SEVEN, SERIES 70 OF ALLIED SECURITY TRUST I | Gesture-controlled interfaces for self-service machines and other applications |
7006236, | May 22 2002 | HEILONGJIANG GOLDEN JUMPING GROUP CO , LTD | Method and apparatus for approximating depth of an object's placement onto a monitored region with applications to virtual interface devices |
7036094, | Aug 10 1998 | JOLLY SEVEN, SERIES 70 OF ALLIED SECURITY TRUST I | Behavior recognition system |
7042440, | Aug 22 1997 | Man machine interfaces and applications | |
7050177, | May 22 2002 | HEILONGJIANG GOLDEN JUMPING GROUP CO , LTD | Method and apparatus for approximating depth of an object's placement onto a monitored region with applications to virtual interface devices |
7058204, | Oct 03 2000 | Qualcomm Incorporated | Multiple camera control system |
7151530, | Aug 20 2002 | HEILONGJIANG GOLDEN JUMPING GROUP CO , LTD | System and method for determining an input selected by a user through a virtual interface |
7224384, | Sep 08 1999 | MICROSOFT INTERNATIONAL HOLDINGS B V | 3D imaging system |
7227526, | Jul 24 2000 | Qualcomm Incorporated | Video-based image control system |
7233316, | May 01 2003 | INTERDIGITAL CE PATENT HOLDINGS; INTERDIGITAL CE PATENT HOLDINGS, SAS | Multimedia user interface |
7259747, | Jun 05 2001 | Microsoft Technology Licensing, LLC | Interactive video display system |
7293356, | Mar 11 2005 | Samsung Electro-Mechanics Co., Ltd. | Method of fabricating printed circuit board having embedded multi-layer passive devices |
7308112, | May 14 2004 | Ohio State University Research Foundation | Sign based human-machine interaction |
7310431, | Apr 10 2002 | Microsoft Technology Licensing, LLC | Optical methods for remotely measuring objects |
7317836, | Mar 17 2005 | HONDA MOTOR CO , LTD ; Ohio State University Research Foundation, The | Pose estimation based on critical point analysis |
7340077, | Feb 15 2002 | Microsoft Technology Licensing, LLC | Gesture recognition system using depth perceptive sensors |
7348963, | May 28 2002 | Microsoft Technology Licensing, LLC | Interactive video display system |
7359121, | Nov 06 1995 | Impulse Technology Ltd. | System and method for tracking and assessing movement skills in multidimensional space |
7367887, | Feb 18 2000 | BANDAI NAMCO ENTERTAINMENT INC | Game apparatus, storage medium, and computer program that adjust level of game difficulty |
7379563, | Apr 15 2004 | Qualcomm Incorporated | Tracking bimanual movements |
7452275, | Jun 29 2001 | KONAMI DIGITAL ENTERTAINMENT CO , LTD | Game device, game controlling method and program |
7590262, | May 29 2003 | Honda Motor Co., Ltd. | Visual tracking using depth data |
7598942, | Feb 08 2005 | OBLONG INDUSTRIES, INC | System and method for gesture based control system |
7646372, | Sep 15 2003 | SONY INTERACTIVE ENTERTAINMENT INC | Methods and systems for enabling direction detection when interfacing with a computer program |
7701439, | Jul 13 2006 | Northrop Grumman Systems Corporation | Gesture recognition simulation system and method |
7755608, | Jan 23 2004 | Hewlett-Packard Development Company, L.P.; HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Systems and methods of interfacing with a machine |
7791808, | Nov 06 1995 | Impulse Technology Ltd. | System and method for tracking and assessing movement skills in multidimensional space |
7854655, | Jul 27 2002 | Sony Interactive Entertainment LLC | Obtaining input for controlling execution of a game program |
7874917, | Sep 15 2003 | SONY INTERACTIVE ENTERTAINMENT INC | Methods and systems for enabling depth and direction detection when interfacing with a computer program |
7898522, | Jul 24 2000 | Qualcomm Incorporated | Video-based image control system |
8738701, | Feb 28 2012 | Microsoft Technology Licensing, LLC | Arbitration of disk ownership in a storage pool |
20010002126, | |||
20010040572, | |||
20020036617, | |||
20030017872, | |||
20040207597, | |||
20040215689, | |||
20050059488, | |||
20050088409, | |||
20050166163, | |||
20050238201, | |||
20060010400, | |||
20060094503, | |||
20060139314, | |||
20060187196, | |||
20060188144, | |||
20060210112, | |||
20060211462, | |||
20060239558, | |||
20070013718, | |||
20070060336, | |||
20070098222, | |||
20070124694, | |||
20070216894, | |||
20070260984, | |||
20070279485, | |||
20070283296, | |||
20070294639, | |||
20070298882, | |||
20080001951, | |||
20080013793, | |||
20080062257, | |||
20080100620, | |||
20080111710, | |||
20080117168, | |||
20080126937, | |||
20080134102, | |||
20080152191, | |||
20080187178, | |||
20080214253, | |||
20080215679, | |||
20080215972, | |||
20080215973, | |||
20080256494, | |||
20090017910, | |||
20090058850, | |||
20090104993, | |||
20090141933, | |||
20090167679, | |||
20090217211, | |||
20090221368, | |||
20090228841, | |||
20100041478, | |||
20100103106, | |||
20100111358, | |||
20100166258, | |||
20100210359, | |||
20100222144, | |||
20170228184, | |||
CN101254344, | |||
EP583061, | |||
JP2000163178, | |||
JP844490, | |||
WO159975, | |||
WO2082249, | |||
WO3001722, | |||
WO3046706, | |||
WO3054683, | |||
WO3071410, | |||
WO3073359, | |||
WO2009059065, | |||
WO9310708, | |||
WO9717598, | |||
WO9915863, | |||
WO9944698, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 14 2009 | YEUNG, BRIAN | Microsoft Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045484 | /0119 | |
Apr 14 2009 | ANDREWS, ANTON | Microsoft Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045484 | /0119 | |
Oct 14 2014 | Microsoft Corporation | Microsoft Technology Licensing, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045484 | /0123 | |
Apr 27 2017 | Microsoft Technology Licensing, LLC | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
May 26 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 24 2023 | 4 years fee payment window open |
Sep 24 2023 | 6 months grace period start (w surcharge) |
Mar 24 2024 | patent expiry (for year 4) |
Mar 24 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 24 2027 | 8 years fee payment window open |
Sep 24 2027 | 6 months grace period start (w surcharge) |
Mar 24 2028 | patent expiry (for year 8) |
Mar 24 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 24 2031 | 12 years fee payment window open |
Sep 24 2031 | 6 months grace period start (w surcharge) |
Mar 24 2032 | patent expiry (for year 12) |
Mar 24 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |