A mountable sensor assembly for mounting on the sheet metal panel of a vehicle. The mountable sensor assembly may include a sensor circuit and a sensor housing assembly. The sensor housing assembly may include a first mounting surface, a second mounting surface, and a connector. The first mounting surface being on first side of the connector such that mounting first mounting surface to the dry side of the sheet metal panel would comprise a dry side mounting of the mountable sensor assembly, and mounting the second mounting surface to the wet side of the sheet metal panel would comprise a wet side mounting of the mountable sensor assembly.
|
1. A mountable sensor assembly for mounting on a sheet metal panel of a vehicle assembly, the sheet metal panel having a wet side and a dry side, the mountable sensor assembly comprising:
a sensor circuit; and
a sensor housing assembly comprising a first mounting surface, a second mounting surface, and a connector, the first mounting surface being a first side of the connector such that mounting the sensor housing using the first mounting surface would comprise a dry side mounting of the mountable sensor assembly, and mounting the sensor housing using the second mounting surface would comprise a wet side mounting of the mountable sensor assembly.
10. A mountable sensor assembly for mounting on sheet metal of a vehicle assembly, the sheet metal panel having a wet side and a dry side, the mountable sensor assembly comprising:
a sensor circuit;
a sensor housing comprising a cavity configured to receive the sensor circuit and a connector;
a cover configured to extend over the sensor housing, the cover comprising a first mounting surface and a second mounting surface, the first mounting surface being on a first side of the connector such that mounting the first mounting surface of the sensor housing to a dry side of the sheet metal panel would comprise a dry side mounting of the mountable sensor assembly, and mounting the second surface of the sensor housing to the wet side of the sheet metal panel would comprise a wet side mounting of the mountable sensor assembly; and
a gasket positioned between the cover and the sensor housing to seal the cavity.
20. A mountable sensor assembly for mounting on sheet metal of a vehicle assembly, the sheet metal having a wet side and a dry side, the mountable sensor assembly comprising:
a sensor circuit;
a sensor housing comprising a cavity configured to receive the sensor circuit and an connector;
a cover configured to extend over the sensor housing, the cover comprising a first mounting surface and a second mounting surface, the first mounting surface being of first side of the connector such that mounting the sensor housing using the first mounting surface would comprise a wet mounting of the mountable sensor assembly and mounting the sensor housing using the second mounting surface would comprise a dry mounting of the mountable sensor assembly, wherein the cover has a first mounting hole on a first side of the connector and a second mounting hold on a second of the connector, wherein the first mounting surface is offset from the connector to a first standoff between the electrical connector and the sheet metal in a wet mounting configuration and the second mounting surface is offset from the connector to provide a second standoff between the electrical connector and the sheet metal in a dry mounting configuration; and
a gasket positioned between the sensor housing and the cover to seal the cavity.
2. The sensor assembly according to
3. The sensor assembly according to
4. The sensor assembly according to
5. The sensor assembly according to
6. The sensor assembly according to
7. The sensor assembly according to
8. The sensor assembly according to
9. The sensor assembly according to
11. The sensor assembly according to
12. The sensor assembly according to
13. The sensor assembly according to
14. The sensor assembly according to
15. The sensor assembly according to
16. The sensor assembly according to
17. The sensor assembly according to
18. The sensor assembly according to
19. The sensor assembly according to
|
The present application relates generally to sensor assembly that is configured to be mounted on either a wet side or a dry side of a vehicle panel.
In satisfying the above need, as well as overcoming the many drawbacks and other limitations of the related art, the present application provides a sensor assembly for combination wet side and dry side mounting. Specifically, the sensor housing may be designed for mounting on either the wet side of the sheet metal or the dry side of the sheet metal. As such, the mounting surface may be on either a first side of the housing assembly where only the pressure port extends through a hole in the sheet metal and the rest of the sensor assembly remains on the dry side of the sheet metal or the mounting surface is on a second side of the housing assembly where the entire housing assembly is mounted on the wet side of the sheet metal.
The mountable sensor assembly may include a sensor circuit and a sensor housing assembly. The sensor housing assembly may include a first mounting surface, a second mounting surface, and a connector. The first mounting surface being on first side of the connector such that mounting the sensor housing using the first mounting surface would comprise a wet side mounting of the mountable sensor assembly and mounting the sensor housing using the second mounting surface would comprise a dry side mounting of the mountable sensor assembly.
Further objects, features and advantages of this application will become readily apparent to persons skilled in the art after a review of the following description, with reference to the drawings and claims that are appended to and form a part of this specification.
In the accompanying drawings the components are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the application. Moreover, like reference numerals designate corresponding parts throughout the views.
Currently there are two options for the location to mount a pressure sensor. They can be mounted on the dry side of a vehicle door panel and have a pressure port protruding into the wet side for pressure transmission, or the sensor assembly can be located entirely on the wet side of the door panel. This methodology necessitates two separate designs to accommodate both mounting types. However, the implementations discussed herein improve upon this sub-optimal design by allowing for a single housing to be mounted on either the wet side or the dry side of a door panel This allows for a more singular design approach and increased volume on that single design. The implementations provided include a “snap fit” configuration for assembly but other methods of assembling the components may be readily used. Various different methods of assembly may include (laser weld, vibration weld, potting, etc.)
One feature of the described implementations is a mounting configuration that allows for pressure sensing regardless of desired mounting location (wet side or dry side). This configuration may involve mounting surfaces extending out to the edge of the package to allow for mating with the vehicle sheet metal on both sides of the housing assembly. The dual wet side and dry side mounting allows for the number of pressure sensor designs to be reduced from two separate wet side and dry side designs to one single design.
Another feature of the described implementations may be the use of countersunk holes to allow for a shorter mounting bolt to be used to attach this sensor assembly to the vehicle (from both sides). The countersunk holes allow for the use of shorter (less expensive) mounting bolts to be used to attach this sensor assembly to the vehicle.
As such, the designs discussed could be sold to all OEMs that use pressure sensors with wet side mounting or dry side mounting configurations.
A pressure port 210 may extend from the first mounting surface 130 such that when the first mounting surface 130 is mounted against a dry side 412 of the sheet metal panel 400 of the door, the pressure port 210 may extend through an opening 416 in the sheet metal panel 400 and allow communication to a wet side 410 of the sheet metal panel 400. When the second mounting surface 132 is mounted against the wet side 410 of the sheet metal panel 400, both the pressure port 210 and the connector portion 114 may be located on the same side, the wet side 410, of the sheet metal panel 400. For example, both the connector 114 and the pressure port 210 may be located in the wet area or the external side of the sheet metal.
The cover 126 may be provided with two mounting holes 140 and 142. In some standards, a mounting hole may be expected to have a certain relative position to a connector 114. To maintain the expected geometric configuration between the mounting hole and the connector 114 position, mounting hole 140 may be used with one of the two mounting surfaces 130, 132 while mounting hole 142 may be used with the other of the two mounting surface 130, 132. However, in some implementations, both mounting holes 140, 142 may be used if maintaining the standard geometric configuration is not of particular concern.
The gap 420 and gap 422 may be a function of the standoff between the connector 114 and the first mounting surface 130 and the standoff between connector 114 and the second mounting surface 132. In addition, the first mounting surface 130 being parallel to the second mounting surface 132 may provide the minimum clearance when mounting on either surface. In addition, the connector 114 being locked into the opening of the housing in an orientation parallel with both the first mounting surface 130 and the second mounting surface 132 provides a symmetric geometry that may lend itself to both dry side mounting and wet side mounting scenarios. In some implementations, gap 420 (e.g. standoff) may be equal to the gap 422. In some implementations, the gap 420 and the gap 422 may be greater than 10 mm.
Certain mounting standards in the industry can specify the position of the connector 114 relative to the mounting holes 140, 142. As such, the cover 126 may be provided with two mounting holes 140, 142, one on each side of the cover 126. Accordingly, in the dry side mounting scenario, one of the two holes 140, 142 may be used in a wet side mounting scenario, and the other of the two holes 140, 142 may be used in a dry side mounting scenario, according to the standard. As such, the location and orientation of the first mounting hole 140 may correspond to a location and orientation defined in a standard relative to a position of the connector 114 with the first mounting surface 130 against the dry side 410 of sheet metal panel 400 (e.g. the dry side mounting scenario). Also, the location and orientation of the second mounting hole 142 may correspond to a location and orientation defined in a standard relative to a position of the connector 114 with the second mounting surface 132 against the wet side 412 of sheet metal panel 400.
As a person skilled in the art will readily appreciate, the above description is meant as an illustration of the principles of this application. This description is not intended to limit the scope or application of the claim in that the assembly is susceptible to modification, variation and change, without departing from spirit of this application, as defined in the following claims.
Patent | Priority | Assignee | Title |
ER415, |
Patent | Priority | Assignee | Title |
6244287, | Aug 03 1999 | Syltone Industries, LLC | System and method for dynamically purging cargo tank wet lines |
7291023, | Nov 21 2006 | VEONEER US SAFETY SYSTEMS, LLC | Electric vehicle motion sensor |
7380458, | Mar 02 2007 | Arriver Software LLC | Pressure sensor port |
8581116, | Oct 15 2009 | Robert Bosch GmbH | Component carrier |
8707783, | Jul 03 2008 | Robert Bosch GmbH | Sensor housing cover and method for manufacturing such a sensor housing cover |
9003891, | Apr 30 2010 | Continental Automotive GmbH | Method and fastening device for fastening an assembly in an opening of a wall of a vehicle |
9260071, | Mar 11 2014 | TRW AUTOMOTIVE U S LLC | Apparatus for snap mounting a crash sensor |
9709425, | Nov 11 2013 | NITERRA CO , LTD | Sensor with foamed rubber sealing member mounted to circuit board |
20090199647, | |||
20140182376, | |||
20160061682, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 19 2017 | VEONEER US, INC. | (assignment on the face of the patent) | / | |||
Oct 19 2017 | PUSHECK, JACOB | Autoliv ASP, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043909 | /0200 | |
May 18 2018 | Autoliv ASP, Inc | VEONEER US, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 046392 | /0039 | |
Apr 01 2022 | VEONEER US, INC | Veoneer US, LLC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 061048 | /0615 | |
May 31 2023 | Veoneer US, LLC | VEONEER US SAFETY SYSTEMS, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 064627 | /0562 | |
Mar 01 2024 | VEONEER US SAFETY SYSTEMS, LLC | ALLY BANK, AS COLLATERAL AGENT | SECURITY AGREEMENT | 066742 | /0672 |
Date | Maintenance Fee Events |
Oct 19 2017 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Sep 21 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Mar 31 2023 | 4 years fee payment window open |
Oct 01 2023 | 6 months grace period start (w surcharge) |
Mar 31 2024 | patent expiry (for year 4) |
Mar 31 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 31 2027 | 8 years fee payment window open |
Oct 01 2027 | 6 months grace period start (w surcharge) |
Mar 31 2028 | patent expiry (for year 8) |
Mar 31 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 31 2031 | 12 years fee payment window open |
Oct 01 2031 | 6 months grace period start (w surcharge) |
Mar 31 2032 | patent expiry (for year 12) |
Mar 31 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |