An inductor includes a support member, a plurality of conductor patterns disposed on at least one surface of the support member and supported by the support member, and an insulating structure interposed between conductor patterns adjacent each other among the plurality of conductor patterns, the insulating structure including a first insulating layer and a second insulating layer disposed on the first insulating layer, the second insulating layer covering side and upper surfaces of the conductor patterns, the second insulating layer being continuously formed along the side and upper surfaces of the conductor pattern, depending on external shapes of the side and upper surfaces of the conductor pattern disposed below the second insulating layer.
|
1. An inductor comprising:
a support member;
a plurality of conductor patterns disposed on at least one surface of the support member and supported by the support member; and
an insulating structure interposed between conductor patterns adjacent each other among the plurality of conductor patterns, the insulating structure including a first insulating layer and a second insulating layer disposed on the first insulating layer, the second insulating layer covering side and upper surfaces of the conductor patterns, the second insulating layer being continuously formed along the side and upper surfaces of the conductor pattern, depending on external shapes of the side and upper surfaces of the conductor pattern disposed below the second insulating layer,
wherein an outermost side surface of the second insulating layer is arranged inward of an outermost side surface of the first insulating layer, or an innermost side surface of the second insulating layer is arranged outward of an innermost side surface of the first insulating layer.
2. The inductor of
3. The inductor of
5. The inductor of
6. The inductor of
the first conductor layer being a seed layer contacting one surface of the support member and formed of an isotropic plating layer,
the second conductor layer enclosing an outer surface of the first conductor layer and formed of an isotropic plating layer,
the third conductor layer enclosing an outer surface of the second conductor layer and formed of an anisotropic plating layer, and
the first and second insulating layers contacting a side surface of the third conductor layer.
7. The inductor of
the first conductor layer being a seed layer contacting one surface of the support member and formed of an isotropic plating layer,
the second conductor layer enclosing an outer surface of the first conductor layer and formed of an anisotropic plating layer,
the third conductor layer disposed on the second conductor layer and formed of an anisotropic plating layer, and
wherein the second insulating layer contacts only an outer surface of the third conductor layer or simultaneously contacts external surfaces of the second and third conductor layers.
8. The inductor of
9. The inductor of
10. The inductor of
11. The inductor of
12. The inductor of
13. The inductor of
14. The inductor of
15. The inductor of
16. The inductor of
|
This application claims the benefit of priority to Korean Patent Application No. 10-2016-0169878, filed on Dec. 13, 2016 with the Korean Intellectual Property Office, the disclosure of which is incorporated herein by reference in its entirety.
The present disclosure relates to an inductor and, more particularly, to a thin-film type power inductor advantageous for a small size and high inductance.
In accordance with the development of information technology (IT), miniaturization and thinness of an apparatus have been accelerated and desired, and market demand for a small and thin device has increased.
The present disclosure provides a power inductor including a substrate having a via hole so as to be suitable to meet the demand of this technical trend, and coils disposed on both surfaces of the substrate and electrically connected to each other through the via hole of the substrate, in order to provide an inductor having a uniform coil with a large aspect ratio. However, due to limitations of the manufacturing process, there is still a limitation in forming the uniform coil with a large aspect ratio.
An aspect of the present disclosure may provide an inductor capable of having structural stability and reliability in an entire structure, while including a coil with a high aspect ratio.
According to an aspect of the present disclosure, an inductor may include: a support member; a plurality of conductor patterns disposed on at least one surface of the support member and supported by the support member; and an insulating structure interposed between conductor patterns adjacent each other among the plurality of conductor patterns, wherein the insulating structure includes a first insulating layer and a second insulating layer disposed on the first insulating layer to cover side and upper surfaces of the conductor patterns, the second insulating layer being continuously formed along the side and upper surfaces of the conductor pattern, depending on external shapes of the side and upper surfaces of the conductor pattern disposed below the second insulating layer.
The above and other aspects, features, and advantages of the present disclosure will be more clearly understood from the following detailed description, taken in conjunction with the accompanying drawings, in which:
Hereinafter, exemplary embodiments of the present disclosure will be described in detail with reference to the accompanying drawings.
Hereinafter, a plurality of inductors according to exemplary embodiments of the present disclosure will be sequentially described, but are not necessarily limited thereto.
Referring to
First, the first and second external electrodes will be described. The first and second external electrodes may be formed of a metal having excellent electric conductivity. For example, the first and second external electrodes may be formed of one or more of nickel (Ni), copper (Cu), tin (Sn), silver (Ag), and the like, an alloy thereof, or the like. A method of forming the first and second external electrodes and specific shapes of the first and second external electrodes are not limited. For example, the first and second external electrodes may be formed in an letter C shape using a dipping method.
Next, the body 1 may form an exterior of the inductor, have upper and lower surfaces opposing each other in a thickness (T) direction, first and second end surfaces opposing each other in a length (L) direction, and first and second side surfaces opposing each other in a width (W) direction, and be substantially a hexahedron. However, the body 1 is not limited thereto. Here, a length of the body extended in the thickness direction will be referred to as a “thickness” or “height”.
The body 1 may contain a magnetic material having magnetic properties. For example, the magnetic material in the body 1 may be ferrite or a material in which magnetic metal particles are filled in, or disposed in, a resin, wherein the magnetic metal particle may contain one or more selected from the group consisting of iron (Fe), silicon (Si), chromium (Cr), aluminum (Al) and nickel (Ni).
Meanwhile, a support member 11, a plurality of conductor patterns 12 supported by the support member 11, and an insulating structure 13 disposed between the conductor patterns 12 may be included in the body 1, together with the magnetic material.
First, the support member 11 will be described. The purpose of the support member 11 is to help form a thinner coil more easily. The support member may be an insulating substrate formed of an insulating resin. Here, as the insulating resin, a thermosetting resin such as an epoxy resin, a thermoplastic resin such as polyimide, a resin in which a reinforcement material, such as a glass fiber or an inorganic filler, may be impregnated to form a prepreg, an ajinomoto build-up film (ABF), FR-4, or the like, a bismaleimide triazine (BT) resin, a photo-imageable dielectric (PID) resin, or the like, may be used. When the glass fiber is contained in the support member, rigidity may be more excellent. A through hole H may be formed in a central portion of the support member, and the through hole may be filled with a magnetic material to thereby form a core part. Further, the support member may include a via (not illustrated) penetrating from an upper surface of the support member to a lower surface of the support member, and the via may be formed by processing a via hole in the support member and filling the via hole with a conductive material.
Next, the plurality of conductor patterns 12 supported by the support member will be described. The plurality of conductor patterns may be connected to each other to form a single coil, wherein the coil may have, for example, a spiral shape, but a specific shape of the coil is not limited.
The conductor pattern 12 may be formed on both upper and lower surfaces of the support member and be composed of upper and lower conductor patterns 12a and 12b. The upper and lower conductor patterns may be electrically connected to each other through the via included in the support member.
Each of the conductor patterns 12 may be composed of a plurality of plating layers. First, as illustrated in
The first conductor layer 121 may be formed of a seed layer, and the seed layer may be disposed to contact the support member 11. In detail, the seed layer may be formed by performing an electroless plating method, a sputtering method, or the like, on the support member, and performing the etching. The first conductor layer may be formed of an isotropic plating layer, of which a degree of growth of the conductor pattern in the width direction and a degree of growth thereof in the thickness direction are almost equal to each other. A height of the first conductor layer may be about 10 μm to 30 μm, but is not limited thereto. The height of the first conductor layer may be appropriately determined by those skilled in the art in consideration of a total size of the inductor, inductance to be required, and the like, and the necessity for increasing the height of the first conductor layer by a large amount is low, considering that the first conductor layer is formed of the isotropic plating layer.
Next, the second conductor layer 122 may be formed by performing electroplating on the first conductor layer, using the first conductor layer as the seed layer. Since the second conductor layer is formed to fill a space in an insulating structure, to be described below, an inner wall of the insulating structure may contact a side surface of the second conductor layer. The second conductor layer may be formed of an anisotropic plating layer, of which a degree of growth of the conductor pattern in the width direction is larger than a degree of growth thereof in the thickness direction. Although a case in which the second conductor layer is formed of a single layer is illustrated in
A thickness of the second conductor layer may be about 100 μm to 300 μm, but is not limited thereto. Since the thickness of the second conductor layer is substantially equal to a final thickness of the conductor pattern of the inductor, in order to forma conductor pattern having an aspect ratio (AR) of 3.0 or more in the second conductor layer, growth of the conductor pattern in the thickness direction may be promoted.
Meanwhile, the insulating structure 13 may be disposed in a space in which the conductor patterns 12 are spaced apart from each other. The insulating structure 13 may be disposed in a shape corresponding to a shape of the coil formed by the conductor pattern on the support member. The insulating structure 13 may serve to prevent a short-circuit between conductor patterns adjacent each other, and to prevent contact between magnetic materials adjacent the coil in the inductor.
The insulating structure 13 may include a first insulating layer 131 and a second insulating layer 132 disposed on the first insulating layer 131. The first and second insulating layers may have different shapes from each other, which will be described below, in detail.
First, at the time of cutting the insulating structure to be in parallel with the thickness direction, a cross section of the first insulating layer 131 may have a rectangular shape. A length of the first insulating layer in the length direction of the inductor (the length may be referred to as a “width” of the first insulating layer) may be about 10 μm to 30 μm, but is not limited thereto.
The first insulating layer 131 may contain an epoxy-based compound. For example, the first insulating layer may contain a photosensitive material, which is a permanent type photosensitive insulating material containing a bisphenol based epoxy resin as a main ingredient.
The first insulating layer 131 may be formed of a single layer, as illustrated in
A sequence of patterning and disposing the first insulating layer 131 on the support member is not particularly limited, but the first insulating layer is patterned and disposed after formation of the first conductor layer, among the conductor patterns, is completed. Therefore, the first conductor layer may be positioned in an open space between the first insulating layers 131 in a state in which the first insulating layers 131 are spaced apart from each other on the support member at a predetermined interval on the support member.
Unlike an upper surface of the first insulating layer 131 contacting a second insulating layer 132, to be described below, a side surface of the first insulating layer may contact a side surface of a conductor pattern 12 adjacent thereto. A shape of the side surface of the first insulating layer may be substantially flat, as illustrated in
A thickness of the first insulating layer is not particularly limited, but the first insulating layer may be formed to be positioned higher than an upper surface of the first conductor layer in the conductor pattern adjacent thereto. Further, the first insulating layer may have a thickness equal to or thicker than ⅓ of a thickness of the conductor pattern contacting the first insulating layer.
When the first insulating layer has a thickness such that the first insulating layer is positioned lower than the upper surface of the first conductor layer adjacent thereto, it may be difficult to completely remove avoid (a state in which the insulating layer is not suitably filled) between the conductor patterns adjacent thereto, and the thinner the thickness of the first insulating layer, the higher the possibility that a pattern bending phenomenon of the anisotropic plating layer in the conductor pattern, or thickness distribution between the conductor patterns, will be increased. Further, the first insulating layer may have a thickness thicker than or equal to ⅓ of the thickness of the conductor pattern contacting the first insulating layer. Experimentally it has been found, in this case, that a risk of generation of the void between the respective conductor patterns may be substantially and completely removed, regardless of the AR of the coil.
Meanwhile, the first insulating layer may be formed to be positioned higher than an upper surface of the first conductor layer in the conductor pattern adjacent thereto and, at the same time, the first insulating layer may have a thickness equal to or thinner than 9/10 of the thickness of the conductor pattern contacting the first insulating layer. This means that the thickness of the first insulating layer may not exceed 90% of the thickness of the conductor pattern adjacent thereto. When the thickness of the first insulating layer exceeds 90% of the thickness of the conductor pattern adjacent thereto, while the conductor pattern is formed in the space between the first insulating layers by the electroplating method, bending or collapse of the first insulating layer supported by the support member, or the like, may occur, such that it is structurally difficult to secure reliability.
Next, the second insulating layer 132 may be disposed on the upper surface of the first insulating layer to cover the side and supper surfaces of the conductor pattern disposed below the second insulating layer 132.
Since the second insulating layer 132 is disposed to enclose the side and supper surfaces of the conductor pattern disposed below the second insulating layer 132, the second insulating layer may be formed after formation of the conductor pattern is completed.
As is clearly illustrated in
The second insulating layer may be formed to have an entirely uniform thickness, the thickness of the second insulating layer being about 1 μm to 3 μm. In a case in which the thickness of the second insulating layer is thinner than 1 μm, while the magnetic material is filled or stacked on the insulated coil and then compressed or cured, the second insulating layer may be broken, such that a waveform defect due to a contact between the magnetic material and the conductor pattern may occur, and, in a case in which the thickness of the second insulating layer is thicker than 3 μm, an spare space in which the magnetic material may be disposed may not be sufficient, such that there may be a limitation in increasing inductance.
Further, a thickness deviation between a minimum thickness and a maximum thickness of the second insulating layer may be 1 μm or less, and, in a case in which the thickness deviation is greater than 1 μm in a specific region, growth of the second insulating layer may occur excessively or a portion that is not completely insulated may be present, which may have a negative influence on improving inductance, or cause a waveform defect.
A method of forming the second insulating layer is not particularly limited as long as the second insulating layer may be uniformly disposed in accordance with the external shapes of the conductor pattern insulated by the second insulating layer. For example, the second insulating layer may be formed by a chemical vapor deposition (CVD) method.
Any material may be used in the second insulating layer as long as it may form a uniform insulating film formed of a polymer. Examples of the material of the second insulating layer may include poly(p-xylylene), an epoxy resin, a polyimide resin, a phenoxy resin, a polysulfone resin, and a polycarbonate resin, or a resin of a perylene based compound. In particular, the second insulating layer may contain the perylene based compound, and by having this compound contained in the second insulating layer, a uniform and stable insulating layer may be implemented by the chemical vapor deposition method.
Next,
Referring to
The first inner plating layer may serve substantially as a seed layer of each of the conductor patterns, and the first outer plating layer 121b, as the isotropic plating layer, and a second plating layer 122, as an anisotropic plating layer, may be disposed on the seed layer.
In this case, the seed layer having a wider cross-sectional area than that of the seed layer of
Next,
Referring to
Next,
With the inductor illustrated in
As described above, since the inductors according to various exemplary embodiments in the present disclosure include the insulating structure having a uniform and thin thickness, the coil having a high aspect ratio (AR) as compared to an inductor according to the related art, may be formed. In particular, since the second insulating layer in the insulating structure is formed at a thin thickness, in accordance with the shape of the coil pattern, a space in which the magnetic material is contained in the body may be secured to be as wide as possible. This will be described in detail with reference to
Referring to
A magnetic material may be additionally filled in the spare space P and, as a result, permeability and inductance of the inductor may be increased.
As set forth above, according to exemplary embodiments of the present disclosure, the inductor capable of preventing a short-circuit defect from occurring, due to connection between the coil patterns adjacent each other, while preventing avoid from being generated in a space between the coil patterns adjacent each other at the time of configuring the coil, and having a high aspect ratio, is provided.
While exemplary embodiments have been shown and described above, it will be apparent to those skilled in the art that modifications and variations could be made without departing from the scope of the present disclosure, as defined by the appended claims.
Patent | Priority | Assignee | Title |
11348723, | Dec 11 2017 | Samsung Electro-Mechanics Co., Ltd. | Coil component |
11605484, | May 11 2015 | Samsung Electro-Mechanics Co., Ltd. | Multilayer seed pattern inductor and manufacturing method thereof |
Patent | Priority | Assignee | Title |
20140247101, | |||
20150102889, | |||
20150155093, | |||
20150270053, | |||
20160336105, | |||
CN104575935, | |||
CN104934187, | |||
CN106158242, | |||
JP9252087, | |||
KR1019990066108, | |||
KR1020150065075, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 21 2017 | CHOI, WOON CHUL | SAMSUNG ELECTRO-MECHANICS CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043277 | /0728 | |
Aug 11 2017 | Samsung Electro-Mechanics Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 04 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 28 2023 | 4 years fee payment window open |
Oct 28 2023 | 6 months grace period start (w surcharge) |
Apr 28 2024 | patent expiry (for year 4) |
Apr 28 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 28 2027 | 8 years fee payment window open |
Oct 28 2027 | 6 months grace period start (w surcharge) |
Apr 28 2028 | patent expiry (for year 8) |
Apr 28 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 28 2031 | 12 years fee payment window open |
Oct 28 2031 | 6 months grace period start (w surcharge) |
Apr 28 2032 | patent expiry (for year 12) |
Apr 28 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |