An access point sends a first frame. The first frame carries a txop handover enforcement THE indication field which is a first value or a second value. The first value instructs a station that has accessed a channel to hand over a held txop to the access point, and the second value instructs the station that has accessed the channel to hand over the held txop to the access point when a handover condition is satisfied. It can be learned that the STA hands over the held txop to the AP. Therefore, the AP may be a txop holder through the txop handover even if the AP fails to obtain the channel through contention, so that a probability of holding the txop by the AP is improved, a probability of scheduling a STA by the AP is improved, and system resource utilization is improved.
|
12. An access point, comprising:
a first transmitter configured to send a first frame, wherein the first frame carries a transmission opportunity (txop) handover enforcement (THE) indication field, the THE indication field is a first value or a second value, the first value instructing a station that has accessed a channel to hand over a held txop to the access point, and the second value instructing the station that has accessed the channel to hand over the held txop to the access point when a handover condition is satisfied,
wherein the handover condition comprises a time used by the station to obtain the channel through contention that is greater than a handover threshold, and wherein the handover threshold is a contention time that is provided by the access point for the station and that is used to contend for the channel.
1. A transmission opportunity (txop) control method, comprising:
generating by an access point, a first frame, wherein the first frame carries a txop handover enforcement (THE) indication field, the THE indication field is a first value or a second value, the first value instructing a station that has accessed a channel to hand over a held txop to the access point, and the second value instructing the station that has accessed the channel to hand over the held txop to the access point when a handover condition is satisfied; and
sending the first frame,
wherein the handover condition comprises a time used by the station to obtain the channel through contention that is greater than a handover threshold, wherein the handover threshold is a contention time provided by the access point for the station to contend for the channel.
9. A transmission opportunity (txop) control method, comprising:
receiving, by a station, a first frame sent by an access point, wherein the first frame carries a txop handover enforcement (THE) indication field;
when the THE indication field is a first value, sending, by the station, a second frame to the access point, wherein the second frame instructs to hand over a txop to the access point;
when the THE indication field is a second value, determining, by the station, whether a handover condition is satisfied, and when the handover condition is satisfied, sending, by the station, the second frame to the access point; and
wherein the handover condition comprises a time used by the station to obtain a channel through contention is greater than a handover threshold, wherein the handover threshold is a contention time provided by the access point for the station and to contend for the channel.
2. The method according to
further comprising, when the handover condition is satisfied:
receiving, by the access point, a second frame sent by the station that has accessed the channel, wherein the second frame instructs to hand over the txop to the access point.
3. The method according to
sending an ACK signal to the station signaling that the access point is holding the txop.
4. The method according to
further comprising:
determining, by the access point, the handover threshold based on a network status, and sending the handover threshold to the station.
5. The method according to
7. The method according to
10. The method according to
11. The method according to
13. The access point according to
further comprising:
a first receiver, configured to receive a second frame sent by the station that has accessed the channel, wherein the second frame instructing to hand over the txop to the access point when the handover condition is satisfied.
14. The access point according to
15. The access point according to
further comprising:
a first processor configured to determine the handover threshold based on a network status, and send the handover threshold to the station.
16. The access point according to
17. The access point according to
|
This application is a continuation of International Application No. PCT/CN2016/107093, filed on Nov. 24, 2016, which claims priority to Chinese Patent Application No. 201511003316.7, filed on Dec. 28, 2015. The disclosures of the aforementioned applications are hereby incorporated by reference in their entireties.
This application relates to the communications field, and in particular, to a transmission opportunity control method and an apparatus.
Devices in a wireless local area network (Wireless Local Area Network, WLAN) need to contend for a right of use of a channel resource, that is, to be a transmission opportunity (Transmission Opportunity, TXOP) holder. Currently, an access point (Access Point, AP) and a non-access point station (Non-Access Point Station, STA for short) have equal contention opportunities.
In the 802.11ax to which an OFDMA technology is introduced, the AP may perform uplink and downlink transmission scheduling for different STAs on different time-frequency resources, so as to improve system resource utilization.
However, when a relatively large quantity of user equipments access a network, contention is relatively strong, and therefore a probability of successfully contending for a channel by the AP is relatively low. If the AP cannot be a TXOP holder, multi-user scheduling transmission cannot be performed, and consequently resource utilization is difficult to improve.
This application provides a transmission opportunity control method and an apparatus, so as to improve an opportunity of an AP to be a TXOP holder, and improve resource utilization of a WLAN system.
To achieve the foregoing objective, this application provides the following technical solutions:
A first aspect of this application provides a transmission opportunity control method, including: sending, by an access point, a first frame, where the first frame carries a TXOP handover enforcement THE indication field, the THE indication field is a first value or a second value, the first value instructs a station that has accessed a channel to hand over a held TXOP to the access point, and the second value instructs the station that has accessed the channel to hand over the held TXOP to the access point when a handover condition is satisfied. In the method in the first aspect, the STA hands over the TXOP to the AP, so that a probability of scheduling a STA by the AP is improved, and resource utilization is improved.
A second aspect of this application provides an access point, including: a first transmitter, configured to send a first frame, where the first frame carries a TXOP handover enforcement THE indication field, the THE indication field is a first value or a second value, the first value instructs a station that has accessed a channel to hand over a held TXOP to the access point, and the second value instructs the station that has accessed the channel to hand over the held TXOP to the access point when a handover condition is satisfied.
In an implementation of the first aspect and the second aspect, the THE indication field is the first value, or the THE indication field is the second value and the station that has accessed the channel satisfies the handover condition; and the method further includes: receiving, by the access point, a second frame sent by the station that has accessed the channel, where the second frame instructs to hand over the TXOP to the access point.
In another implementation of the first aspect and the second aspect, the handover condition includes that a time used by the station to obtain the channel through contention is greater than a handover threshold, where the handover threshold is a contention time that is provided by the access point for the station and that is used to contend for the channel, and the handover threshold is determined by the access point based on a network status, and is sent to the station.
A third aspect of this application provides a transmission opportunity control method, including: receiving, by an access point, a third frame, where the third frame carries first duration and a TXOP transfer grant TTG field, and the first duration is determined by a station that has accessed a channel based on a TXOP held by the station; and when the TTG field is a third value, sending, by the access point, a fourth frame to the station that has accessed the channel, where the fourth frame carries second duration, the second duration is determined based on a TXOP requested by the access point, the second duration is longer than the first duration, and the TXOP requested by the access point is obtained by extending the TXOP held by the station by a preset time. In the method provided in the third aspect, after transmission is completed during a TXOP 1 held by the STA, the AP can hold a TXOP 2, so that resource utilization can be improved.
A fourth aspect of this application provides an access point, including: a second receiver, configured to receive a third frame, where the third frame carries first duration and a TXOP transfer grant TTG field, and the first duration is determined by a station that has accessed a channel based on a TXOP held by the station; and a second transmitter, configured to: when the TTG field is a third value, send a fourth frame to the station that has accessed the channel, where the fourth frame carries second duration, the second duration is determined based on a TXOP requested by the access point, the second duration is longer than the first duration, and the TXOP requested by the access point is obtained by extending the TXOP held by the station by a preset time.
In an implementation of the third aspect and the fourth aspect, the method further includes: when the TTG field is a fourth value, sending, by the access point, a fifth frame carrying the first duration.
In an implementation of the third aspect and the fourth aspect, after the sending, by the access point, a fourth frame to the station that has accessed the channel, the method further includes: holding, by the access point, the TXOP requested by the access point.
In an implementation of the third aspect and the fourth aspect, after the sending, by the access point, a fourth frame to the station that has accessed the channel, the method further includes: receiving, by the access point, a contention free end CF-End-X frame sent by the station that has accessed the channel, where the CF-End-X frame carries the second duration, and the CF-End-X frame is used to indicate that data transmission of the station that has accessed the channel during the first duration ends; and holding, by the access point, the TXOP requested by the access point.
A fifth aspect of this application provides a transmission opportunity control method, including: receiving, by a station, a first frame sent by an access point, where the first frame carries a TXOP handover enforcement THE indication field; and when the THE indication field is a first value, sending, by the station, a second frame to the access point, where information of the second frame instructs to hand over a TXOP to the access point.
A sixth aspect of this application provides a station, including: a third receiver, configured to receive a first frame sent by an access point, where the first frame carries a TXOP handover enforcement THE indication field; and a third transmitter, configured to: when the THE indication field is a first value, send a second frame to the access point, where information of the second frame instructs to hand over a TXOP to the access point.
In an implementation of the fifth aspect and the sixth aspect, the method further includes: when the THE indication field is a second value, determining, by the station, whether a handover condition is satisfied, and if the handover condition is satisfied, sending, by the station, the Second frame to the access point.
In an implementation of the fifth aspect and the sixth aspect, the handover condition includes:
a time used by the station to obtain the channel through contention is greater than a handover threshold, where the handover threshold is a contention time that is provided by the access point for the station and that is used to contend for the channel.
A seventh aspect of this application provides a transmission opportunity control method, including: sending, by a station, a third frame to an access point, where the third frame carries first duration and a TTG field, the first duration is determined by the station based on a TXOP held by the station, the TTG field is a third value or a fourth value, the third value is used to indicate that TXOP handover is allowed, and the fourth value is used to indicate that TXOP handover is not allowed; and receiving, by the station, a fourth frame or a fifth frame sent by the access point, where the fourth frame carries second duration, the second duration is determined based on a TXOP requested by the access point, the second duration is longer than the first duration, the TXOP requested by the access point is obtained by extending the TXOP held by the station by a preset time, and the fifth frame carries the first duration.
An eighth aspect of this application provides a station, including: a fourth transmitter, configured to send a third frame to an access point, where the third frame carries first duration and a TTG field, the first duration is determined by the station based on a TXOP held by the station, the TTG field is a third value or a fourth value, the third value is used to indicate that TXOP handover is allowed, and the fourth value is used to indicate that TXOP handover is not allowed; and a fourth receiver, configured to receive a fourth frame or a fifth frame sent by the access point, where the fourth frame carries second duration, the second duration is determined based on a TXOP requested by the access point, the second duration is longer than the first duration, the TXOP requested by the access point is obtained by extending the TXOP held by the station by a preset time, and the fifth frame carries the first duration.
In an implementation of the seventh aspect and the eighth aspect, the receiving, by the station, a fourth frame or a fifth frame sent by the access point includes: when the TTG field is the third value, receiving, by the station, the fourth frame sent by the access point; or when the TTG field is the fourth value, receiving, by the station, the fifth frame sent by the access point.
In an implementation of the seventh aspect and the eighth aspect, the sending, by a station, a third frame to an access point, where the third frame carries first duration and a TTG field includes: sending, by the station, a last frame in the TXOP held by the station to the access point, where the last frame carries the first duration and the TTG field. The TTG field is carried in the last frame, to help the STA complete transmission of the STA, and a third-party STA is in an awake state when the AP holds the TXOP.
In an implementation of the seventh aspect and the eighth aspect, the sending, by a station, a third frame includes: sending, by the station, a contention free end CF-End-X frame, where the CF-End-X frame carries the second duration, and the CF-End-X frame is used to indicate that data transmission of the station at the TXOP held by the station ends. The CF-End-X frame helps determine TXOP handover, and avoid a transmission fault.
To describe the technical solutions in the embodiments of the present invention more clearly, the following briefly describes the accompanying drawings required for describing the embodiments. Apparently, the accompanying drawings in the following description show some embodiments of the present invention, and a person of ordinary skill in the art may still derive other drawings from these accompanying drawings without creative efforts.
The following describes the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the embodiments of the present invention.
S201. An AP sends a first frame carrying a TXOP handover enforcement (TXOP Handover Enforcement, THE) indication field.
In some embodiments, the first frame may be a beacon frame (Beacon). Further, the AP may send the beacon frame carrying the THE indication field to a STA within a beacon frame interval (Beacon Interval), where the beacon frame instructs the STA in the beacon frame interval to hand over a TXOP.
In some embodiments, a value of the THE indication field is a first value or a second value. The first value (for example, 1) instructs a STA that has accessed a channel to hand over a held TXOP to the AP, and the second value (for example, 0) instructs the STA that has accessed the channel to hand over the held TXOP to the AP when a handover condition is satisfied. That is, the first value instructs the STA to hand over the TXOP unconditionally, and the second value instructs the STA to determine, based on a condition, whether to hand over the TXOP. The AP may set a value of the THE indication field based on a requirement and a network status. For example, if a quantity of accessed STAs is greater than a preset value, and the AP needs to schedule a plurality of STAs, the AP may set the THE indication field to the first value.
S202. A STA successfully accesses a channel after completing backoff, and records a time used from starting the backoff to completing the backoff.
S203. The STA parses a value of the THE indication field after receiving the first frame, and if the THE indication field is a first value, S204 is performed, or if the THE indication field is a second value, S205 is performed.
It should be noted that S201 needs to be performed before S203 in this embodiment, but an execution sequence between S201 and S202 and an execution sequence between S202 and S203 are not limited to the sequence shown in
S204. The STA sends a second frame to the AP, where the second frame instructs to hand over a TXOP to the AP.
S205. The STA determines whether a handover condition is satisfied, and if the handover condition is satisfied, S206 is performed, or if the handover condition is not satisfied, S207 is performed.
In some embodiments, the handover condition is that a time used by the STA to obtain the channel through contention is greater than a handover threshold. The handover threshold is a contention time that is provided by the access point for the station and that is used to contend for the channel. STAs may contend for the channel within the contention time, and cannot contend for the channel after the time expires. For example, the handover threshold is an average value of time periods used by the STA in previous five times of channel contention.
In some embodiments, the AP may determine the handover threshold based on a network status. For example, a network load amount, a quantity of accessed STAs, an average quantity of times of backoff collision between stations, or the like may be used as a basis for determining the handover threshold by the AP. Further, the AP may further adjust a value of the handover threshold based on a value of the network status.
In some embodiments, the handover threshold may be carried in a management frame, a control frame, or a data frame sent by the AP to the STA.
S206. The STA sends a second frame to the AP, where the second frame instructs to hand over the TXOP to the AP.
In some embodiments, the second frame in this embodiment may be a management frame, a control frame, or a data frame that carries TXOP handover information, or may be a newly defined frame different from that in the prior art.
S207. The STA continues to hold the current TXOP.
S208. The AP obtains a TXOP holding right, and performs downlink multi-STA data transmission, sends a trigger frame to trigger a random access, performs uplink multi-STA transmission, or the like at the TXOP.
It can be learned that in the method in this embodiment, the STA can hand over the held TXOP to the AP, and therefore the AP can be a TXOP holder through the TXOP handover even if the AP fails to obtain the channel through contention. Therefore, a probability of holding a TXOP by the AP is improved, a probability of scheduling a STA by the AP is improved, and system resource utilization is improved.
The method shown in
S501. After a STA successfully accesses a channel, the STA sends a third frame to an AP, where the third frame carries first duration and a TXOP transfer grant (TXOP Transfer Grant, TTG) field.
The first duration is determined by the STA based on a TXOP held by the STA. Specifically, a network allocation vector (Network Allocation Vector, NAV) in the third frame is set to the first duration. For a specific manner of setting the NAV, refer to the prior art. Details are not described herein.
In some embodiments, the TTG field is a third value or a fourth value. The third value (for example, 1) is used to indicate that TXOP handover is allowed, and the fourth value (for example, 0) is used to indicate that TXOP handover is not allowed. The STA may set a value of the TTG field based on a requirement. A bit size occupied by the TTG field may be determined based on an actual requirement. In this embodiment, to reduce resource overheads, the TTG field is defined as 1 bit.
S502. The AP parses a value of the TTG field, and if the TTG field is a third value, S503 is performed, or if the TTG field is a fourth value, S504 is performed.
S503. The AP sends a fourth frame to the STA that has accessed the channel, where the fourth frame carries second duration, and the second duration is longer than the first duration.
The second duration is determined based on a TXOP requested by the AP. The TXOP requested by the AP is obtained by extending the TXOP held by the STA by a preset time. Specifically, an NAV in the fourth frame is set to the second duration.
S504. The AP sends a fifth frame to the STA that has accessed the channel, where the fifth frame carries the first duration.
S505. The STA sends a contention free end (Contention Free End, CF-End-X) frame to the AP, where the CF-End-X frame carries the second duration, and the CF-End-X frame is used to indicate that data transmission of the STA at a TXOP 1 ends.
A purpose of S505 is to notify the AP that transmission of the STA at the TXOP 1 ends, and the AP may start to hold a TXOP 2. Therefore, a communication conflict can be avoided.
S506. The AP holds a requested TXOP 2.
S507 (not shown in
A third-party device that cannot identify a TTG field directly sets an NAV of the third-party device based on relatively long duration.
The following is described with an example based on the foregoing process. As shown in
If a frame received by the AP carries TTG=0, the AP sends a feedback frame to the STA according to a rule of an existing standard. For example, a CTS is fed back after an RTS is received, where an NAV is the first duration. If a frame received by the AP carries TTG=1, an NAV in a frame fed back by the AP to the STA is the second duration. After feeding back the frame that carries the second duration, the AP holds the TXOP 2. The AP may determine a length of the TXOP 2 based on a status of the AP and a status of a whole BSS.
It can be learned that in the method in this embodiment, after the STA completes transmission at the TXOP 1, a resource is not released, but a TXOP 1 holding right is released, so that the AP is a holder of the TXOP 2, and continues to access the resource. Therefore, the AP does not need to contend for a channel again, a probability of scheduling a STA by the AP can be improved, and resource utilization can be improved.
S701. After successfully contending for a channel, a STA sends a sixth frame to an AP at a TXOP 1, where the sixth frame carries first duration.
S702. The AP sends a seventh frame to the STA, where the seventh frame carries second duration.
S703. The STA sends an eighth frame to the AP, where the eighth frame carries the second duration and a TTG field, and the TTG field is 1.
S704. The AP holds a TXOP 2.
For example, as shown in
In the method in this embodiment, resource utilization of a WLAN system can be improved.
The first transmitter is configured to send a first frame, the first receiver is configured to receive a second frame sent by a station that has accessed a channel, and the first processor is configured to: determine a handover threshold based on a network status, and send the handover threshold to the station. For specific forms of the first frame and the second frame, a specific function implementation of the access point, and the like, refer to
A structure of an access point shown in
In this embodiment, for some forms of the third frame, the fourth frame, and the fifth frame and a function implementation procedure of the access point, refer to
A structure of a station shown in
A structure of a station shown in
An access point shown in
The foregoing access point and station can implement a change of a TXOP holder from the station to the access point through frame interaction, so as to improve a probability of scheduling a STA by the access point, and improve resource utilization.
The embodiments in the present disclosure are all described in a progressive manner, for same or similar parts in the embodiments, reference may be made to these embodiments, and each embodiment focuses on a difference from other embodiments.
Zhu, Jun, Lin, Yingpei, Su, Hongjia
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
6785283, | Dec 30 1999 | Lucent Technologies Inc. | Quality of service (QOS) enforcement method |
7639658, | Mar 18 2005 | Qualcomm Incorporated | Efficient wireless transmission opportunity handoff |
20030108027, | |||
20060114878, | |||
20060171341, | |||
20060227733, | |||
20060280204, | |||
20070025297, | |||
20070248117, | |||
20080008131, | |||
20080014946, | |||
20100061342, | |||
20100322187, | |||
20110044287, | |||
20120207131, | |||
20140036861, | |||
20140181293, | |||
20150009814, | |||
20150055546, | |||
20150092746, | |||
20150181620, | |||
20150208308, | |||
20150319700, | |||
20150350926, | |||
20160249349, | |||
20160295610, | |||
20160315745, | |||
20160316397, | |||
20170055184, | |||
20170171723, | |||
CN103298027, | |||
CN104488347, | |||
CN1780246, | |||
WO2006102294, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 26 2018 | SU, HONGJIA | HUAWEI TECHNOLOGIES CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 046210 | /0709 | |
Jun 26 2018 | ZHU, JUN | HUAWEI TECHNOLOGIES CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 046210 | /0709 | |
Jun 26 2018 | LIN, YINGPEI | HUAWEI TECHNOLOGIES CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 046210 | /0709 | |
Jun 27 2018 | Huawei Technologies Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 27 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Oct 11 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 28 2023 | 4 years fee payment window open |
Oct 28 2023 | 6 months grace period start (w surcharge) |
Apr 28 2024 | patent expiry (for year 4) |
Apr 28 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 28 2027 | 8 years fee payment window open |
Oct 28 2027 | 6 months grace period start (w surcharge) |
Apr 28 2028 | patent expiry (for year 8) |
Apr 28 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 28 2031 | 12 years fee payment window open |
Oct 28 2031 | 6 months grace period start (w surcharge) |
Apr 28 2032 | patent expiry (for year 12) |
Apr 28 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |