An imaging system is provided with an ultrasound catheter and a controller coupled to the ultrasound catheter. The catheter includes a localizer sensor configured to generate positional information for the ultrasound catheter, and an imaging ultrasound sensor having a restricted field of view. The controller co-registers images from the imaging ultrasound sensor with positional information from the localizer sensor.
|
6. A method for imaging tissue within the body of a patient, comprising:
establishing a frame of reference with an x-ray imaging source;
determining a location of an ultrasound imaging catheter within the frame of reference;
receiving from the x-ray imaging source an x-ray image containing the ultrasound imaging catheter and a tissue surrounding the ultrasound imaging catheter;
receiving from the ultrasound imaging catheter at least one ultrasound image of the tissue;
co-registering the x-ray image with the at least one ultrasound image from the ultrasound imaging catheter;
outputting to a display device a graphical representation including the x-ray image, the at least one ultrasound image, and a visual indicator corresponding to the co-registration of the x-ray image with the at least one ultrasound image;
generating a model of a geometry of an anatomical structure and highlighting one or more features on the model corresponding to a location for which the at least one ultrasound image has been captured by the ultrasound imaging catheter;
displaying the highlighted model on the display device; and
projecting a spatial representation of a field of view of the ultrasound imaging catheter onto the model, wherein the spatial representation indicates a portion of the anatomical structure that is or will be imaged based upon the location of the ultrasound imaging catheter.
1. A medical apparatus for co-registering x-ray and ultrasound images, comprising:
a controller adapted to couple to an ultrasound imaging catheter and an x-ray imaging source, the controller configured to:
establish a frame of reference with the x-ray imaging source;
determine a location of the ultrasound imaging catheter within the frame of reference;
receive an x-ray image containing the ultrasound imaging catheter and a tissue surrounding the ultrasound imaging catheter;
receive at least one ultrasound image of the tissue from the ultrasound imaging catheter;
co-register the x-ray image with at least one ultrasound image from the ultrasound imaging catheter;
generate on a display device a graphical representation including the x-ray image from the x-ray imaging source, the at least one ultrasound image from the ultrasound imaging catheter, and a visual indicator corresponding to the co-registration of the x-ray image with the at least one ultrasound image;
generate a model of a geometry of an anatomical structure and highlight one or more features on the model corresponding to a location for which the at least one ultrasound image has been captured by the ultrasound imaging catheter; and
generate a spatial representation of a field of view of the ultrasound imaging catheter onto the model, wherein the spatial representation indicates a portion of the anatomical structure that is or will be imaged based upon the location of the ultrasound imaging catheter.
10. A system for co-registering x-ray and ultrasound images of a patient's body, the system comprising:
a field emitter configured to generate an electrical field within the body;
an ultrasound imaging catheter, comprising:
an elongate body including a proximal section and a distal section;
at least one annular ultrasound imaging sensor disposed on the distal section of the elongate body and configured to image tissue within a field of view surrounding the ultrasound imaging catheter; and
a plurality of positional sensors configured to sense the electrical field generated by the field emitter; and
a controller adapted to couple to the field emitter, the ultrasound imaging catheter, and an x-ray imaging source, wherein the controller is configured to:
establish a frame of reference with the x-ray imaging source;
determine a location of each of the plurality of positional sensors within the frame of reference;
receive an x-ray image containing the ultrasound imaging catheter and the tissue surrounding the ultrasound imaging catheter;
receive at least one ultrasound image of the tissue from the ultrasound imaging catheter;
co-register the x-ray image with the at least one ultrasound image from the ultrasound imaging catheter;
output the x-ray image and the at least one ultrasound image to a display device;
generate a model of a geometry of an anatomical structure and highlight one or more features on the model corresponding to a location for which the at least one ultrasound image has been captured by the ultrasound imaging sensor; and
project a spatial representation of a field of view of the ultrasound imaging catheter onto the model, wherein the spatial representation indicates a portion of the anatomical structure that is or will be imaged based upon the location of the ultrasound imaging catheter.
2. The medical apparatus of
3. The medical apparatus of
4. The medical apparatus of
5. The medical apparatus of
7. The method of
8. The method of
9. The method of
11. The system of
12. The system of
13. The system of
14. The system of
15. The system of
16. The system of
|
This application is a continuation of U.S. patent application Ser. No. 13/778,864, filed 27 Feb. 2013 (the '864 application), now pending, which is a continuation of U.S. patent application Ser. No. 12/650,521, filed 30 Dec. 2009 (the '521 application) now U.S. Pat. No. 8,428,691, issued 23 Apr. 2013, which is a continuation of U.S. patent application Ser. No. 10/994,424, filed 23 Nov. 2004 (the '424 application) now U.S. Pat. No. 7,713,210, issued 11 May 2010. The '864 application, the '521 application and the '424 application are each hereby incorporated by reference in their entirety as though fully set forth herein.
1. Field of the Invention
The present invention relates generally to medical imaging systems, and more particularly to a method and apparatus for localizing an ultrasound imaging catheter.
2. Description of the Related Art
Medical imaging technology is used to improve the diagnosis and treatment of medical conditions. Presently available medical imaging technology includes a wide variety of ultrasound, X-ray, nuclear, magnetic resonance imaging (MRI) and other imaging systems. A technology of particular benefit to diagnosis and treatment of cardiovascular conditions uses imaging ultrasound detectors mounted a percutaneous catheter.
Techniques exist for localizing catheters deployed within a patient's body. One such technique is described in U.S. Pat. No. 6,192,266 to Dupree (“Dupree” hereafter), which is incorporated by reference herein in its entirety. In particular, Dupree generates an electric field with one of a basket electrode and a roving electrode, the electric field being characterized by the physical dimensions and spacing among the basket electrodes. A navigation application is provided which analyzes the spatial variations in the electrical potentials sensed within the field, and provides a location output which locates the roving electrode within the space defined by the basket, in terms of its position relative to the position of the multiple basket electrodes. Other such systems also exist.
The Dupree system, however, may be problematic in some applications due to its use of an electrode generated electric field to determine the location of the probe. In particular, electric fields generated intra-body can generate electrical currents which flow in the body that may cause muscle stimulation, which may result in heart arrhythmias, etc., when used in or near the heart, such as intra-cardiac sensing or treatment. Thus, a need exists for a non-electric field-based catheter locating system that does not induce significant electric currents in the body. There is also a particular need for catheter locating methods that are compatible with ultrasound imaging catheters, and for methods of utilizing localized position information in combination with image rendering.
Other problems with the prior art not described above can also be overcome using the teachings of the present invention, as would be readily apparent to one of ordinary skill in the art after reading this disclosure.
According to an embodiment of the present invention, an imaging system is provided with an ultrasound catheter including a tubular body, and a controller coupled to the ultrasound catheter. The ultrasound catheter includes a localizer sensor adapted and configured to generate positional information for the ultrasound catheter, and an imaging ultrasound sensor positionable relative to the tubular body so as to have a first restricted field of view. The controller co-registers images from the imaging ultrasound sensor with positional information from the localizer sensor. Preferably, the first restricted field of view spans less than 360 degrees about the tubular body.
According to another embodiment of the present invention, a method of displaying medical images from a catheter-based imaging ultrasound sensor having a first restricted field of view is provided including generating at least one image with the imaging ultrasound sensor, calculating a position of the imaging ultrasound sensor, coregistering the calculated position with the at least one generated image, and displaying the at least one generated image based on the calculated positional information, wherein the first restricted field of view spans less than 360 degrees about a body of the catheter.
According to another embodiment of the present invention, an imaging system is provided including means for generating a plurality of two dimensional (2D) images of a structure, means for determining a section of the structure corresponding to each of the plurality of 2D images, and means for displaying a three dimensional (3D) display of at least a portion of the structure from the plurality of 2D images.
Reference will now be made in detail to exemplary embodiments of the present invention. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts.
The various embodiments of the present invention provide capabilities to determine the location of medical instrumentation and/or treatment devices within a patient's body using ultrasound echolocation and/or three dimensional (3D) triangulation techniques, and to use this localized information in conjunction with medical images. Relative positions of one instrument with respect to other instruments and registration of instrumentation positions with respect to the patient's body may be obtained, which is generally referred to herein as “localizing” the instrumentation. Thus, references to catheters as particular types of medical instrumentation and treatment devices are not intended to be limiting since the claimed systems and methods equally apply to other non-catheter probes/medical devices positional within the body, including remote or robotic surgery, esophageal probes, and medical, veterinarian and forensic applications where an instrumentation or tools require positioning within a body where they cannot be observed directly by the operator.
The various embodiments of the present invention employ sensors on a probe, such as a catheter, that are capable of sensing a signal to determine a range or bearing to an emitter in combination with 1, 2, 3 or more emitters in order to determine a one-dimensional (1D), two-dimensional (2D) or three-dimensional (3D) position, respectively, of the probe with respect to the emitters. The range or bearing information is referred to herein as positional information because the information permits determining the position of the sensor with respect to an emitter and/or a frame of reference. The sensors that receive signals from emitters are referred to herein as localizer sensors, because the sensors permit locating the sensor with respect to an emitter and/or a frame of reference. Three types of ranging/directional signals described herein include magnetic fields, electrical fields and ultrasound, but other signals are contemplated consistent with the purpose and techniques described herein. The emitters may be placed on or within a body, preferably at dispersed positions around and near an area in which the probe will be operated.
As will be discussed, the emitters are preferably positioned at predetermined, fixed or determinable (i.e., measurable) positions on, in or near the body to provide a relative frame of reference for locating the probe. When the positions of emitters are based upon the patients body, such as on the chest at measured distances from a part of the anatomy (e.g., the sternum), the emitters provide a relative frame of reference for positioning the probe with respect to the body. Also, emitters may be positioned at predetermined or measured locations with respect to an external or absolute frame of reference, such as an operating table or electrophysiology lab. When the positions of emitters are measured against an external frame of reference, they are said to be “registered” to the external frame of reference and may serve as fiducial references for locating the probe within the external frame of reference.
Magnetic field emitters may be used to localize a probe within a patient's body by using magnetic field sensors positioned on the probe, such as a catheter to measure the magnetic field strength or sense a direction of the magnetic field. In this embodiment, magnetic field emitters are magnets of a known or measurable field strength, such as permanent magnets and electromagnets. Preferably, electromagnets are used so that the emitted magnetic field can be turned on and off sequentially to permit sensors to determine a range or bearing to each electromagnet sequentially.
In an embodiment employing magnetic field strength measurements, a magnetic field strength sensor is positioned at a known or fixed position on a probe, such as a catheter, that is capable of measuring the relative or absolute magnetic field around it. Since the strength of a magnetic field decreases with distance from a magnet, a range or distance to the magnet from the sensor can be calculated using known methods and simple calculations. By measuring the range R.sub.i to three or more magnets, a 3D position of the sensor is easily calculated using well known methods as the intersection of three or more spheres of radius R.sub.i each centered on each magnet.
In an alternative embodiment employing magnetic field direction sensors, a magnetic field direction sensor is positioned at a known or fixed position on a probe, such as a catheter, that is capable of sensing the direction of a local magnetic field. Similar to a compass, this sensor may be configured to sense the direction or bearing to the magnet in 1, 2 or 3 dimensions with respect to the catheter. By measuring the bearing to three or more magnets, a 3D position of the sensor is easily calculated using well known triangulation methods as the intersection of three or more vectors each passing through a magnet.
Electric field emitters may be used to localize a probe within a patient's body by using electric field sensors positioned on the probe, such as a catheter to measure the electric field strength or other electric field properties such as impedance. In such embodiments, an electric field may be applied to the body by means of an electrode to which a voltage or alternating field (such as radio frequency) is applied of a known or measurable strength. The electric field applied to electrodes can be turned on and off sequentially to permit sensors to determine a range to each electrode sequentially.
In an embodiment employing electric field sensors, a voltage sensor, such as an electrode, is positioned at a known or fixed position on a probe, such as a catheter, that is capable of measuring the relative electric (i.e., voltage) field around it. Since the strength of an electric field decreases with distance from an electrode, a range or distance to the magnet from the sensor can be calculated using known methods and simple calculations. By measuring the range R.sub.i to three or more magnets, a 3D position of the sensor is easily calculated using well known methods as the intersection of three or more spheres of radius R.sub.i each centered on each magnet.
In an alternative embodiment employing electric field sensors, a electric field sensor, such as an electrode, is positioned at a known or fixed position on a probe, such as a catheter, that is capable of receiving an alternating electric field and passing the signal, such as via a coaxial cable, to external equipment configured to measure impedance between the emitter electrode and the sensor electrode on the catheter. Since the impedance between the electrode emitter and sensor electrode on the catheter varies with distance, a range or distance to the emitter electrode can be calculated using known methods and simple calculations. Similar to other embodiments, by measuring the range R.sub.i to three or more electrodes, a 3D position of the sensor is easily calculated using well known methods as the intersection of three or more spheres of radius R.sub.i each centered on each electrode.
Ultrasound emitters may be used to localize a probe within a patient's body by using ultrasound sensors positioned on the probe, such as a catheter to measure receive ultrasound pulses emitted by emitters positioned within or external to the body.
According to such an embodiment of the present invention as shown in
A first annular ultrasound sensor 230 may be positioned at or near a proximal end of the catheter 200 and second annular ultrasound sensor 210 may be positioned at some distance from the first annular ultrasound sensor 230. In this embodiment, the first annular ultrasound sensor 230 and the second annular ultrasound sensor 210 are positioned so as to bracket the imaging ultrasound sensor 240 along a length of the catheter 200.
As referenced above, the term “annular” refers to sensors which have a “field of view” that extends substantially all the way around the long axis of the catheter 200. Magnetic, electric and ultrasound sensors may each be configured as annular sensors Annular ultrasound sensors are typically ring shaped transducers that create ultrasound pulses and receive echoes from those pulses around the circumference of the catheter 200. Due to their configuration, annular ultrasound sensors may create and/or receive minimal or no ultrasound pulses along the length (i.e., long axis) of the catheter 200 (see
In addition to annular ultrasound sensors 210, 230, a directional sensor 220 may be circumferentially positioned at a known angle about the catheter axis relative to the imaging ultrasound sensor 240. Preferably, the known angle between the directional sensor 220 and the imaging ultrasound sensor 240 is in the range of about 90 degrees to about 180 degrees. Most preferably, the known angle is about 180 degrees around the catheter circumference from the transmission face of the imaging ultrasound sensor 240. In the exemplary embodiment illustrated in
As referenced above, the term “directional” refers to sensors which do not transmit or which do not have a field of view that extends substantially all the way around the long axis of catheter 200. Due to this configuration, directional ultrasound sensors, for example, create and/or receive ultrasound pulses along a restricted field of view (i.e., a field of view less than 360 degrees about the long axis of catheter 200). Such a field of view may be cone-shaped where the angle of the cone of transmitted and/or received ultrasound may narrow to nearly 180 degrees. However, the breadth of the restricted field of view may vary depending on the particular directional sensor 220 utilized, as would be readily apparent to one of ordinary skill in the art after reading this disclosure.
It should be appreciated that while only three ultrasound sensors 210, 220, 230 are shown as forming the positional ultrasound array, additional sensors may also be provided to improve the accuracy and/or reliability of the position determination as would be readily apparent to one of ordinary skill in the art after reading this disclosure. By way of example, a near-omni directional transducer may be mounted on a tip of catheter 200; e.g. a transducer which has a 4.pi. radians (approximate) field of view except along the length of catheter 200 (i.e., the long axis). This near-omni directional transducer may be substituted for or be provided in addition to the annular ultrasound sensors 210, 230.
It should also be appreciated that ultrasound has a limited path length within the body due to sound absorption by tissue and blood, and therefore more than three sensors may be required in some applications to localize medical devices positioned near or beyond the maximum path length of the particular tissue. Further, in addition to the limited path length issue, multipath issues can also be problematic in ultrasound based localizers. Multipath refers to ultrasound pulses generated by a first source arriving at first receiver at different times due to different path lengths. The speed of ultrasound is different in bones, tissues, and fluids (e.g., blood). Thus a single ultrasound pulse passing through different body structures will arrive at a sensor at slightly different times. Also, ultrasound may refract in, reflect off and preferentially conduct through different body structures, permitting an ultrasound pulse to reach a sensor along different paths. The combined effects are multipath errors that may reduce location accuracy achievable with ultrasound localization because determination of the travel time of an ultrasound pulse does not correlate exactly to the distance traveled. However, by providing more than three sensors, the combined distance measurements can be correlated to help reduce multipath induced errors.
Additionally, one or more of ultrasound sensors 210, 220, 230 may be positioned on a rigid portion of catheter 200, and/or one or more of ultrasound sensors 210, 220, 230 may be positioned on a flexible portion of catheter 200. Preferably, at least imaging ultrasound sensor 240 and directional ultrasound sensor 220 are positioned on a rigid portion of catheter 200. Other configurations are also contemplated. For example, with catheters that may be flexed or bent in one or more angles, additional sensors (e.g., one for each positionable segment) may be used to provide 3D position information on the catheter segments.
As shown in
According to the present embodiment, the ultrasound pulses generated by the first annular ultrasound sensor 230 and the second annular ultrasound sensor 210 as well as the echoes in response thereto are measured (in time and/or strength) and are used to determine the planar angle 250 along the X-Y plane (the “yaw” angle) and the Z offset angle 252 (the “pitch” angle) with respect to the frame of reference using positioning algorithms known in the art. For example, knowing the speed of sound in blood and the time when a pulse is emitted, the measured delay of a received pulse can be used to determine position by spherical triangulation. It should be appreciated that increasing the number of annular ultrasound sensors 210, 230 as previously noted would improve accuracy of the pitch and yaw determination, as more relational data is generated for the positioning algorithms.
In addition to determining the 3D position of the catheter 200, it is also desirable to know the direction an instrument, such as an ultrasound imaging transducer, optical imager or microsurgical instrument, is facing. For example, interpretation of intracardiac echocardiography images would be facilitated if the direction that the imaging ultrasound sensor 240 is facing is known with respect to the frame of reference, particularly for an imaging ultrasound sensor 240 with a limited field of view. This determination can be achieved by receiving in some but not all catheter sensors the ultrasound pulse generated by directional ultrasound sensor 220 as well as the echo off other sensors (in time and/or strength) and the pulses from those other catheter sensors within the field of view of directional ultrasound sensor 220, the data from which is collectively used to calculate the direction the directional ultrasound 220 is pointed. As directional ultrasound sensor 220 is positioned at a known angle from the ultrasound sensor 240 about the catheter 200, the direction 254 of ultrasound sensor 240 (the “roll” of catheter 200) relative to the frame of reference can be determined based on the measured direction of directional ultrasound sensor 220.
The aforementioned configuration thus has the capability of determining the 3D position of the catheter 200 relative to the frame of reference, as well as the direction of imaging ultrasound sensor 240. This provides a user of the system with a greater amount of information as to the position of a given image generated by catheter 200 than in conventional systems. In particular, various embodiments provide the user with the pitch, yaw, and roll position of catheter 200 having an imaging ultrasound sensor 240 with a restricted field of view. Thus a six dimensional (6D) (x, y, z, pitch, yaw, roll) localizing capability is afforded by embodiments of the present invention.
According to another embodiment of the present invention as shown in
According to the exemplary embodiment shown in
Alternatively, instead of annular sensors, two, three, four or more directional ultrasound sensors may be spaced at known angular intervals to provide near-omni directional ultrasound pulses. This alternative embodiment may further feature using different ultrasound frequencies on each such directional sensor or pulsing such sensors at different known times so that received pulses can be processed to identify which of the directional sensors emitted the received pulse. This additional information may be useful in certain applications where multipath errors may be an issue or where high positional precision is required (e.g., when microsurgery is being performed). An exemplary implementation of this technique is shown in greater detail in
It should be appreciated that, while ultrasound positional sensors have been described, other non-ultrasound positional sensors may be used. As previously noted, examples of non-ultrasound positional sensors include magnetic positional sensors and resistance/impedance positional sensors. It should further be appreciated that a combination of the ultrasound and non-ultrasound positional sensors may be used for some applications. Such a combination may be used for positioning catheter 300, positioning catheter 400, and/or catheter 200.
According to another embodiment of the present invention, the positioning catheters 300, 400 and the ultrasound catheter 200 are electrically coupled to controller 299, the controller 299 being adapted and configured to receive the echo data and to determine therefrom a three dimensional (3D) position of the ultrasound catheter 200 relative to a frame of reference from electrical signals generated by positioning catheters 300, 400 and ultrasound catheter 200. The controller 299 may comprise an appropriately programmed microprocessor, an application specific integrated circuit (ASIC) or other similar control and calculation device, as would be readily apparent to one of ordinary skill in the art after reading this disclosure.
According to an embodiment of the present invention, the positioning catheters 300, 400 and the ultrasound imaging catheter 200 are coupled to controller 299 via an integrated positioning and imager junction box. The integrated positioning and imager junction box may include isolation circuitry to reduce or eliminate stray currents from controller 299, which would otherwise be radiated along the length of catheter 200.
In operation, the annular ultrasound sensors 310, 320 of first positioning catheter 300, the annular ultrasound sensors 410, 420 of second positioning catheter 400, and the annular ultrasound sensors 210, 230 of ultrasound catheter 200 record the time of arrive of pulses from all positioning sensors in their field of regard. Additionally, echoes of a given sensor's own pulses bouncing off another catheter may also be received and used to determine location. For example, an imaging ultrasound sensor may image a catheter within its field of view. As such, the field of view and field of regard of a given sensor may differ, where the “field of regard” refers to the direction(s) from which a given sensor may receive echoes (see
Using the known speed of sound through blood, the controller 299 is able to calculate the relative positions of the sensors by spherical triangulation. More specifically, the ultrasound sensors 310, 320 detect the ultrasound sensors 210, 230, 410, 420; the ultrasound sensors 210, 230 detect the ultrasound sensors 310, 320, 410, 420; and the ultrasound sensors 410, 420 detect the ultrasound sensors 310, 320, 210, 230. By measuring the time delay of each pulse and/or the signal strength of received pulses, the relative positions of the three catheters 200, 300 and 400 can be determined using known algorithms, and thus used to calculate the pitch and yaw of catheter 200 relative to the frame of reference.
To further determine the roll of catheter 200, the annular ultrasound sensors 310, 320 of catheter 300, the directional ultrasound sensor 220 of catheter 200, and the annular ultrasound sensors 410, 420 of catheter 400 detect each other. Thus, the ultrasound sensors 310, 320 detect the ultrasound sensors 220, 410, 420; the directional ultrasound sensor 220 detects the ultrasound sensors 310, 320, 410, 420; and the ultrasound sensors 410, 420 detect the ultrasound sensors 310, 320, 220. By measuring the time delay of each pulse and/or the signal strength of received pulses, the relative positions of directional ultrasound sensor 220 from ultrasound sensors 310, 320, 410, 420 can be determined using known algorithms. In this regard, it should be appreciated that not all of ultrasound sensors 310, 320, 410, 420 may detect the directional ultrasound sensor 220 due to the restricted field of view of directional ultrasound sensor 220. However, based off of the measured time delay and/or signal strength of the received pulses (including a measurement of no pulse received), the direction of directional ultrasound sensor 220 can be determined. This allows the direction of imaging ultrasound sensor 240 to be determined based on the known angle between imaging ultrasound sensor 240 and directional ultrasound sensor 220.
The aforementioned location technique can be enhanced by gating each of the ultrasound sensors 310, 320, 210, 220, 230, 410, 420 to operate or emit pulses at different time intervals. Alternatively, each of the ultrasound sensors 310, 320, 210, 220, 230, 410, 420 may operate at different frequencies (preferably also different from imaging ultrasound sensor 240), such that multiple ones of the ultrasound sensors 310, 320, 210, 220, 230, 410, 420 may generate/detect simultaneously. In this manner, the identity of each positioning sensor can be easily determined by the controller 299 according to the received frequency. Other configurations and methods are also contemplated.
According to an embodiment of the present invention as shown in
While the ultrasound catheter 500 of
The aforementioned technique can be performed by pulsing one or more single elements individually (e.g., one on each end of a linear array), by pulsing a plurality of elements together (e.g., non-phased), or by forming a directional pulse via phasing the pulses of each element (which may or may not include directing the direction pulse at specific positional sensors). Due to the high frequency of ultrasound and the high scan rate of a linear phased array ultrasound transducer, periodic localizing pulses may be transmitted so frequently that the positioning mode appears to be operating simultaneously with the imaging mode without noticeably degrading the quality of images.
The embodiment illustrated in
It should be appreciated that the particular frequency of a given ultrasound sensor for any one of the embodiments shown in
According to another embodiment of the present invention, the positioning information from any one of the aforementioned embodiments may be used in control equipment to assist the operator in positioning and operating an ultrasound imaging catheter. Specifically, a rectangle or other shape representing the field of regard of the imaging sensor may be projected onto a 3D (e.g., wire-frame, cartoon or stylized) representation of the patient's heart rendered on a display device to show the operator the portion of the patient's body that is or will be imaged based upon the present position and orientation of the sensor. The image generated by the imaging ultrasound sensor 240, 540 and positional information may be correlated to heart structures within the 3D wire-frame image (or stylized image) of an idealized heart using known image processing techniques. Once the ultrasound image provided by the ultrasound imaging catheter 200 has been correlated to heart structures, and the 3D wire-frame image (or stylized image) has been correlated to those heart structures, the catheter localizer information and ultrasound image can be applied to the 3D wire-frame image (or stylized image) to graphically depict the image including the location of all (or some) catheters within the heart for easier interpretation by the user. This embodiment provides the operator with more visual information, and thus a more easily understood representation of the position of the ultrasound catheters 200, 500 and the image generated thereby. Specifically, a 3D wire-frame image may be transparent, allowing the operator to “see” the catheter(s) positions relative to the heart structures. This may be particularly useful in procedures where catheters are used to precisely position electrodes on the heart wall based upon real-time images provided by an intracardiac ultrasound imaging catheter since the positions of all catheters relative to the heart are displayed for the physician.
According to another embodiment of the present invention, the localizer information can be used in conjunction with images obtained from catheter 200. By way of example, one such process is described in copending application entitled “Method and Apparatus for Time Gating of Medical Images”, filed currently with the present application and incorporated by reference herein in its entirety. Another such process is shown in the flowchart of
As shown in
In step 740, the at least one generated image of step 710 is displayed based on the calculated positional information from step 720. By way of example, step 740 may include displaying a 3D model of the structure of interest, and then highlighting a section of the 3D model of the structure of interest which corresponds to the coregistered section of step 730. Preferably, the 3D model is generally depicted in a first color or colors, and the highlighted section is depicted in a second color different from the first color(s). Other configurations are also contemplated.
The foregoing description of various embodiments of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and modifications and variations are possible in light of the above teachings or may be acquired from practice of the invention. The embodiments were chosen and described in order to explain the principles of the invention and its practical application to enable one skilled in the art to utilize the invention in various embodiments and with various modifications as are suited to the particular use contemplated.
Dala-Krishna, Praveen, Byrd, Charles Bryan, Jenkins, David A.
Patent | Priority | Assignee | Title |
11896317, | Aug 04 2020 | MAZOR ROBOTICS LTD. | Triangulation of item in patient body |
Patent | Priority | Assignee | Title |
3917979, | |||
4161121, | Apr 05 1976 | DIASONICS DELAWARE, INC , A CORP OF DE | Ultrasonic imaging system |
4241610, | Feb 05 1979 | DIASONICS DELAWARE, INC , A CORP OF DE | Ultrasonic imaging system utilizing dynamic and pseudo-dynamic focusing |
4442713, | Mar 09 1982 | SRI International | Frequency varied ultrasonic imaging array |
4462408, | May 17 1982 | ADVANCED TECHNOLOGY LABORATORIES, INC , 13208 NORTHUP WAY, BELLEVUE, WA 98005, A CORP OF WA | Ultrasonic endoscope having elongated array mounted in manner allowing it to remain flexible |
4519260, | Feb 18 1982 | The Board of Trustees of the Leland Stanford Junior University | Ultrasonic transducers and applications thereof |
4522194, | Feb 18 1983 | Baylor College of Medicine | Method and an apparatus for intra-aortic balloon monitoring and leak detection |
4534221, | Sep 27 1982 | Technicare Corporation | Ultrasonic diagnostic imaging systems for varying depths of field |
4576177, | Feb 18 1983 | Catheter for removing arteriosclerotic plaque | |
4605009, | Apr 06 1983 | Vermon | Ultrasonic sweep echography and display endoscopic probe |
4841977, | May 26 1987 | Boston Scientific Scimed, Inc | Ultra-thin acoustic transducer and balloon catheter using same in imaging array subassembly |
4890268, | Dec 27 1988 | General Electric Company | Two-dimensional phased array of ultrasonic transducers |
4917097, | Oct 27 1987 | Volcano Corporation | Apparatus and method for imaging small cavities |
4951677, | Mar 21 1988 | Prutech Research and Development Partnership II; PRUTECH RESEARCH AND DEVELOPMENT PARTNERSHIP II, A CALIFORNIA LIMITED PARTNERSHIP | Acoustic imaging catheter and the like |
5002059, | Jul 26 1989 | Boston Scientific Scimed, Inc | Tip filled ultrasound catheter |
5090956, | Oct 31 1983 | BRIAN GLASGOW MEMORIAL FOUNDATION, THE, A CHARITABLE TRUST; CATHETER RESEARCH, INC , AN IN CORP | Catheter with memory element-controlled steering |
5105819, | Sep 01 1988 | TomTec Imaging Systems GmbH | Ultrasound endoscope device |
5139020, | Mar 08 1991 | Pacesetter, Inc | Method and apparatus for controlling the hemodynamic state of a patient based on systolic time interval measurements detecting using doppler ultrasound techniques |
5152294, | Dec 14 1989 | Aloka Co., Ltd. | Three-dimensional ultrasonic scanner |
5156154, | Mar 08 1991 | Pacesetter, Inc | Monitoring the hemodynamic state of a patient from measurements of myocardial contractility using doppler ultrasound techniques |
5156157, | Mar 08 1991 | Pacesetter, Inc | Catheter-mounted doppler ultrasound transducer and signal processor |
5158087, | Jan 31 1992 | Hewlett-Packard Company | Differential temperature measurement for ultrasound transducer thermal control |
5170793, | Feb 07 1990 | Kabushiki Kaisha Toshiba | Ultrasonic probe |
5183040, | Mar 08 1991 | Pacesetter, Inc | Apparatus and method for detecting abnormal cardiac rhythms using an ultrasound sensor in an arrhythmia control system |
5188106, | Mar 08 1991 | Pacesetter, Inc | Method and apparatus for chronically monitoring the hemodynamic state of a patient using doppler ultrasound |
5195968, | Feb 02 1990 | Catheter steering mechanism | |
5199299, | Mar 11 1991 | Iowa State University Research Foundation, Inc. | Ultrasonic unipolar pulse/echo instrument |
5254088, | Feb 02 1990 | EP Technologies, Inc. | Catheter steering mechanism |
5279559, | Mar 06 1992 | FIRST UNION COMMERCIAL CORPORATION | Remote steering system for medical catheter |
5304214, | Jan 21 1992 | Cook Medical Technologies LLC | Transurethral ablation catheter |
5307816, | Aug 21 1991 | Kabushiki Kaisha Toshiba | Thrombus resolving treatment apparatus |
5309914, | Apr 17 1991 | Kabushiki Kaisha Toshiba | Ultrasonic imaging apparatus |
5325860, | Nov 08 1991 | MAYO FOUNDATION FOR MEDICAL EDUCATION AND RESEARCH, A CORP OF MN | Ultrasonic and interventional catheter and method |
5336182, | Feb 02 1990 | EP Technologies, Inc. | Catheter steering mechanism |
5345936, | Feb 15 1991 | Cardiac Pathways Corporation | Apparatus with basket assembly for endocardial mapping |
5345940, | Nov 08 1991 | Mayo Foundation for Medical Education and Research | Transvascular ultrasound hemodynamic and interventional catheter and method |
5357550, | Sep 09 1991 | Kabushiki Kaisha Toshiba | Apparatus for diagnosing vascular systems in organism |
5358478, | Feb 02 1990 | Boston Scientific Scimed, Inc | Catheter steering assembly providing asymmetric left and right curve configurations |
5361767, | Jan 25 1993 | Tissue characterization method and apparatus | |
5364351, | Nov 13 1992 | EP Technologies, Inc | Catheter steering mechanism |
5372138, | Aug 21 1990 | Boston Scientific Scimed, Inc | Acousting imaging catheters and the like |
5385148, | Jul 30 1993 | Regents of the University of California, The | Cardiac imaging and ablation catheter |
5395327, | Feb 02 1990 | EP Technologies, Inc. | Catheter steering mechanism |
5438997, | Mar 13 1991 | Intravascular imaging apparatus and methods for use and manufacture | |
5456258, | Dec 20 1993 | Kabushiki Kaisha Toshiba | Catheter type ultrasound probe |
5456664, | Nov 13 1992 | EP Technologies, Inc. | Catheter steering mechanism |
5469852, | Mar 12 1993 | Kabushiki Kaisha Toshiba | Ultrasound diagnosis apparatus and probe therefor |
5470330, | Dec 07 1984 | Spectranetics; THE SPECTRANETICS CORPORATION | Guidance and delivery system for high-energy pulsed laser light |
5470350, | Apr 02 1993 | Siemens Aktiengesellschaft | System for the treatment of pathological tissue having a catheter with a pressure sensor |
5471988, | Dec 24 1993 | Olympus Optical Co., Ltd. | Ultrasonic diagnosis and therapy system in which focusing point of therapeutic ultrasonic wave is locked at predetermined position within observation ultrasonic scanning range |
5499630, | Nov 22 1993 | Kabushiki Kaisha Toshiba | Catheter type ultrasound probe |
5515853, | Mar 28 1995 | Sonometrics Corporation | Three-dimensional digital ultrasound tracking system |
5515856, | Jan 27 1996 | Vingmed Sound A/S | Method for generating anatomical M-mode displays |
5531686, | Feb 02 1990 | EP Technologies, Inc. | Catheter steering mechanism |
5560362, | Jun 13 1994 | Siemens Medical Solutions USA, Inc | Active thermal control of ultrasound transducers |
5568815, | Nov 21 1994 | ARGON MEDICAL DEVICES, INC | Self-powered interface circuit for use with a transducer sensor |
5588432, | Mar 21 1988 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials, and ablating tissue |
5615680, | Jul 22 1994 | Kabushiki Kaisha Toshiba | Method of imaging in ultrasound diagnosis and diagnostic ultrasound system |
5622174, | Oct 02 1992 | Kabushiki Kaisha Toshiba | Ultrasonic diagnosis apparatus and image displaying system |
5630837, | Jul 01 1993 | Boston Scientific Scimed, Inc | Acoustic ablation |
5662116, | Sep 12 1995 | Toshiba Medical Systems Corporation | Multi-plane electronic scan ultrasound probe |
5697965, | Apr 01 1996 | DOT MEDICAL PRODUCTS LTD | Method of making an atrial defibrillation catheter |
5699805, | Jun 20 1996 | Mayo Foundation for Medical Education and Research | Longitudinal multiplane ultrasound transducer underfluid catheter system |
5701897, | Oct 02 1992 | Kabushiki Kaisha Toshiba | Ultrasonic diagnosis apparatus and image displaying system |
5704361, | Nov 08 1991 | Mayo Foundation for Medical Education and Research | Volumetric image ultrasound transducer underfluid catheter system |
5706823, | Aug 12 1996 | QUINTON INC | Electrophysiology filtering system |
5713363, | Nov 08 1991 | Mayo Foundation for Medical Education and Research | Ultrasound catheter and method for imaging and hemodynamic monitoring |
5715817, | Jun 29 1993 | Boston Scientific Scimed, Inc | Bidirectional steering catheter |
5722403, | Oct 28 1996 | EP Technologies, Inc. | Systems and methods using a porous electrode for ablating and visualizing interior tissue regions |
5749364, | Jun 21 1996 | Siemens Medical Solutions USA, Inc | Method and apparatus for mapping pressure and tissue properties |
5749833, | Aug 15 1995 | Combined echo-electrocardiographic probe | |
5788636, | Feb 25 1997 | Siemens Medical Solutions USA, Inc | Method and system for forming an ultrasound image of a tissue while simultaneously ablating the tissue |
5795299, | Jan 31 1997 | Siemens Medical Solutions USA, Inc | Ultrasonic transducer assembly with extended flexible circuits |
5797848, | Jan 31 1997 | Siemens Medical Solutions USA, Inc | Ultrasonic transducer assembly with improved electrical interface |
5800356, | May 29 1997 | Advanced Technology Laboratories, Inc. | Ultrasonic diagnostic imaging system with doppler assisted tracking of tissue motion |
5803083, | Sep 30 1996 | CARDINAL HEALTH SWITZERLAND 515 GMBH | Guiding catheter with ultrasound imaging capability |
5807324, | Apr 01 1996 | ProCath Corporation | Steerable catheter |
5810007, | Jul 26 1995 | HARVARD MEDICAL SCHOOL | Ultrasound localization and image fusion for the treatment of prostate cancer |
5840030, | Dec 22 1993 | Sulzer Osypka GmbH | Ultrasonic marked cardiac ablation catheter |
5842994, | Jul 02 1997 | Boston Scientific Technology, Inc. | Multifunction intraluminal ultrasound catheter having a removable core with maximized transducer aperture |
5846204, | Jul 02 1997 | Koninklijke Philips Electronics N V | Rotatable ultrasound imaging catheter |
5846205, | Jan 31 1997 | Siemens Medical Solutions USA, Inc | Catheter-mounted, phased-array ultrasound transducer with improved imaging |
5853368, | Dec 23 1996 | Koninklijke Philips Electronics N V | Ultrasound imaging catheter having an independently-controllable treatment structure |
5888577, | Jun 30 1997 | ProCath Corporation | Method for forming an electrophysiology catheter |
5891088, | Feb 02 1990 | Boston Scientific Scimed, Inc | Catheter steering assembly providing asymmetric left and right curve configurations |
5906579, | Aug 16 1996 | MASSACHUSETTS, UNIVERSITY OF | Through-wall catheter steering and positioning |
5916168, | May 29 1997 | Advanced Technology Laboratories, Inc. | Three dimensional M-mode ultrasonic diagnostic imaging system |
5921978, | Jun 20 1997 | EP Technologies, Inc.; E P TECHNOLOGIES, INC | Catheter tip steering plane marker |
5928276, | Jun 11 1998 | ProCath Corporation | Combined cable and electrophysiology catheters |
5931863, | Dec 22 1997 | ProCath Corporation | Electrophysiology catheter |
5935102, | May 14 1993 | Boston Scientific Scimed, Inc | Steerable electrode catheter |
5938616, | Jan 31 1997 | Siemens Medical Solutions USA, Inc | Steering mechanism and steering line for a catheter-mounted ultrasonic transducer |
5954654, | Jan 31 1997 | Siemens Medical Solutions USA, Inc | Steering mechanism and steering line for a catheter-mounted ultrasonic transducer |
5983123, | Oct 29 1993 | United States Surgical Corporation | Methods and apparatus for performing ultrasound and enhanced X-ray imaging |
6013072, | Jul 09 1997 | THE SPECTRANETICS CORPORATION | Systems and methods for steering a catheter through body tissue |
6033378, | Feb 02 1990 | EP Technologies, Inc. | Catheter steering mechanism |
6039693, | Nov 08 1991 | Mayo Foundation for Medical Education and Research | Volumetric image ultrasound transducer underfluid catheter system |
6085117, | Dec 22 1997 | DOT MEDICAL PRODUCTS LTD | Method of defibrillating employing coronary sinus and external patch electrodes |
6120453, | Nov 17 1997 | Three-dimensional ultrasound system based on the coordination of multiple ultrasonic transducers | |
6144870, | Oct 21 1996 | ProCath Corporation | Catheter with improved electrodes and method of fabrication |
6149599, | Jan 31 1997 | Acuson Corporation | Method for manufacturing an end portion surrounding a catheter-mounted phased-array ultrasound transducer |
6171248, | Feb 27 1997 | Acuson Corporation | Ultrasonic probe, system and method for two-dimensional imaging or three-dimensional reconstruction |
6173205, | Dec 22 1997 | ProCath Corporation | Electrophysiology catheter |
6190353, | Oct 13 1995 | Medtronic Vascular, Inc | Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures |
6192266, | Mar 26 1998 | Boston Scientific Corporation | Systems and methods for controlling the use of diagnostic or therapeutic instruments in interior body regions using real and idealized images |
6210333, | Oct 12 1999 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasound system and method for automated triggered intervals |
6224555, | Jun 12 1998 | Asahi Kogaku Kogyo Kabushiki Kaisha | Ultrasonic detector insertable into body cavity |
6226028, | Sep 11 1998 | Futaba Denshi Kogyo Kabushiki Kaisha | Optical printer head which prevents dust from being generated therein or entering thereinto when in operation or disassembled |
6228032, | Jan 31 1997 | Acuson Corporation | Steering mechanism and steering line for a catheter-mounted ultrasonic transducer |
6261246, | Sep 29 1997 | Boston Scientific Scimed, Inc | Intravascular imaging guidewire |
6293943, | Jun 07 1995 | EP Technologies, Inc. | Tissue heating and ablation systems and methods which predict maximum tissue temperature |
6306096, | Nov 08 1991 | Mayo Foundation for Medical Education and Research | Volumetric image ultrasound transducer underfluid catheter system |
6306097, | Jun 17 1999 | Siemens Medical Solutions USA, Inc | Ultrasound imaging catheter guiding assembly with catheter working port |
6310828, | Jul 18 1997 | TomTec Imaging Systems GmbH | Method and device for sensing ultrasound images |
6346074, | Feb 22 1993 | Heartport, Inc. | Devices for less invasive intracardiac interventions |
6352509, | Nov 16 1998 | Toshiba Medical Systems Corporation | Three-dimensional ultrasonic diagnosis apparatus |
6358208, | Nov 21 1998 | Assessment of cardiovascular performance using ultrasound methods and devices that interrogate interstitial fluid | |
6360027, | Feb 29 1996 | Acuson Corporation | Multiple ultrasound image registration system, method and transducer |
6368275, | Oct 07 1999 | Siemens Medical Solutions USA, Inc | Method and apparatus for diagnostic medical information gathering, hyperthermia treatment, or directed gene therapy |
6385489, | Sep 25 1998 | DOT MEDICAL PRODUCTS LTD | Triple array defibrillation catheter and method of using the same |
6398731, | Jul 25 1997 | TomTec Imaging Systems GmbH | Method for recording ultrasound images of moving objects |
6423002, | Jun 24 1999 | Siemens Medical Solutions USA, Inc | Intra-operative diagnostic ultrasound multiple-array transducer probe and optional surgical tool |
6440488, | Dec 03 1999 | EP MEDSYSTEMS, INC | Flexible electrode catheter and process for manufacturing the same |
6443894, | Sep 29 1999 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasound system and method for mapping surface data for three dimensional imaging |
6475148, | Oct 25 2000 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasound-aided drug delivery system and method |
6475149, | Sep 21 2001 | Siemens Medical Solutions USA, Inc | Border detection method and system |
6482161, | Jun 29 2000 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasound system and method for vessel structure analysis |
6484727, | Oct 22 1996 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Apparatus and method for diagnosis and therapy of electrophysiological disease |
6485455, | Feb 02 1990 | Boston Scientific Scimed, Inc | Catheter steering assembly providing asymmetric left and right curve configurations |
6490474, | Aug 01 1997 | Boston Scientific Scimed, Inc | System and method for electrode localization using ultrasound |
6491633, | Mar 10 2000 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasound system and method for contrast agent image beamformation |
6503202, | Jun 29 2000 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasound system and method for flow analysis |
6517488, | Jun 29 2000 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasound system and method for identifying constrictions |
6527717, | Mar 10 2000 | Siemens Medical Solutions USA, Inc | Tissue motion analysis medical diagnostic ultrasound system and method |
6532378, | Jan 14 2000 | EP MEDSYSTEMS, INC | Pulmonary artery catheter for left and right atrial recording |
6544187, | Mar 31 1999 | Mayo Foundation for Medical Education and Research | Parametric imaging ultrasound catheter |
6544230, | Mar 31 1998 | Medtronic Vascular, Inc | Catheters, systems and methods for percutaneous in situ arterio-venous bypass |
6554770, | Nov 20 1998 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasound imaging methods for extended field of view |
6567700, | Oct 19 2000 | Pacesetter, Inc | Implantable cardiac stimulation device and method which optimizes pacing effectiveness |
6589182, | Feb 12 2001 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasound catheter with first and second tip portions |
6592520, | Jul 31 2001 | Koninklijke Philips Electronics N V | Intravascular ultrasound imaging apparatus and method |
6605043, | Nov 19 1998 | Siemens Medical Solutions USA, Inc | Diagnostic medical ultrasound systems and transducers utilizing micro-mechanical components |
6607488, | Mar 02 2000 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasound system and method for scanning plane orientation |
6612992, | Mar 02 2000 | Siemens Medical Solutions USA, Inc | Medical diagnostic ultrasound catheter and method for position determination |
6645147, | Nov 25 1998 | Siemens Medical Solutions USA, Inc | Diagnostic medical ultrasound image and system for contrast agent imaging |
6648875, | May 04 2001 | Cardiac Pacemakers, Inc. | Means for maintaining tension on a steering tendon in a steerable catheter |
6650927, | Aug 18 2000 | Biosense, Inc | Rendering of diagnostic imaging data on a three-dimensional map |
6654638, | Apr 06 2000 | Cardiac Pacemakers, Inc | Ultrasonically activated electrodes |
6658279, | Oct 28 1996 | EP Technologies, Inc. | Ablation and imaging catheter |
6690958, | May 07 2002 | Nostix LLC | Ultrasound-guided near infrared spectrophotometer |
6690963, | Jan 24 1995 | Biosense, Inc | System for determining the location and orientation of an invasive medical instrument |
6709396, | Jul 17 2002 | Vermon | Ultrasound array transducer for catheter use |
6716166, | Aug 18 2000 | Biosense, Inc | Three-dimensional reconstruction using ultrasound |
6773402, | Jul 10 2001 | Biosense, Inc | Location sensing with real-time ultrasound imaging |
6788967, | May 14 1997 | Biosense, Inc. | Medical diagnosis, treatment and imaging systems |
6908434, | Jan 16 2002 | EP MedSystems, Inc. | Ultrasound imaging catheter isolation system with temperature sensor |
6923768, | Mar 11 2002 | Siemens Healthcare GmbH | Method and apparatus for acquiring and displaying a medical instrument introduced into a cavity organ of a patient to be examined or treated |
6950689, | Aug 03 1998 | Boston Scientific Scimed, Inc | Dynamically alterable three-dimensional graphical model of a body region |
7029467, | Jul 16 2002 | Edwards Lifesciences Corporation | Multiple lumen catheter having a soft tip |
7090639, | May 29 2003 | Biosense, Inc | Ultrasound catheter calibration system |
7171257, | Jun 11 2003 | MIDCAP FUNDING IV TRUST, AS SUCCESSOR TO EXISTING ADMINISTRATIVE AGENT | Apparatus and method for radiosurgery |
7211045, | Jul 22 2002 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Method and system for using ultrasound in cardiac diagnosis and therapy |
7236821, | Feb 19 2002 | Cardiac Pacemakers, Inc | Chronically-implanted device for sensing and therapy |
7697972, | Nov 19 2002 | Medtronic Navigation, Inc | Navigation system for cardiac therapies |
7713210, | Nov 23 2004 | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | Method and apparatus for localizing an ultrasound catheter |
20010047165, | |||
20020045810, | |||
20020115931, | |||
20030045796, | |||
20030060700, | |||
20030158483, | |||
20040097805, | |||
20040138559, | |||
20050036655, | |||
20060159318, | |||
RE38209, | Jun 24 1994 | Kabushiki Kaisha Toshiba | Diagnostic ultrasound system |
WO2004051571, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 11 2013 | BYRD, CHARLES BRYAN | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036898 | /0898 | |
Mar 20 2013 | JENKINS, DAVID A | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036898 | /0898 | |
Apr 06 2013 | DALA-KRISHNA, PRAVEEN | ST JUDE MEDICAL, ATRIAL FIBRILLATION DIVISION, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036898 | /0898 | |
Jun 18 2014 | St. Jude Medical, Atrial Fibrillation Division, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Oct 12 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
May 05 2023 | 4 years fee payment window open |
Nov 05 2023 | 6 months grace period start (w surcharge) |
May 05 2024 | patent expiry (for year 4) |
May 05 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 05 2027 | 8 years fee payment window open |
Nov 05 2027 | 6 months grace period start (w surcharge) |
May 05 2028 | patent expiry (for year 8) |
May 05 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 05 2031 | 12 years fee payment window open |
Nov 05 2031 | 6 months grace period start (w surcharge) |
May 05 2032 | patent expiry (for year 12) |
May 05 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |