A method for manufacturing a refilled cartridge for performing refilling of printing material after use of a cartridge is provided. The cartridge includes a first case including a recess having a bottom surface and an opening, a flexible portion attached to the opening, a second case covering the open surface of the first case, a pressure receiving portion contacting the flexible portion, a chamber of variable capacity and a biasing member that generates negative pressure inside the chamber The printing material is refilled into the chamber so that two or more points across the biasing member on the pressure receiving portion do not contact the second case after refilling of the printing material is completed.
|
8. A refilled cartridge for which printing material is refilled after the cartridge is used, comprising:
a first case comprising a recess having a bottom surface and an opening, for which the surface facing opposite the bottom surface of the recess is open,
a flexible portion attached to the opening of the recess,
a second case that covers the open surface of the first case from the side facing opposite the bottom surface of the recess,
a pressure receiving portion that contacts the flexible portion facing opposite the second case,
a chamber of variable capacity in which printing material is filled, constituted by the recess, the flexible portion, and the pressure receiving portion,
a biasing member that generates negative pressure inside the chamber by applying force that expands the capacity of the chamber on the pressure receiving portion, and
a detection portion including a prism and covering the opening to detect the printing material optically, wherein
as the printing material inside the chamber is consumed, the capacity of the chamber becomes smaller and the pressure receiving portion moves toward the bottom surface of the recess,
two or more points across the biasing member on the pressure receiving portion does not contact the second case, and
a prescribed volume of air exists inside the chamber before the refilled cartridge is used, the prescribed volume of air being a volume for which the prism is in contact with the air when the cartridge is oriented such that the prism is on an upper side in a gravity direction.
1. A method for manufacturing a refilled cartridge for performing refilling of printing material after use of a cartridge including
a first case comprising a recess having a bottom surface and an opening, an open surface opposite to the bottom surface of the recess being open,
a flexible portion attached to the opening of the recess,
a second case that covers the open surface of the first case from the side opposite to the bottom surface of the recess,
a pressure receiving portion opposite to the second case, the pressure receiving portion contacting the flexible portion,
a chamber of variable capacity in which printing material is filled, the chamber constituted by the recess, the flexible portion, and the pressure receiving portion,
a biasing member that generates negative pressure inside the chamber by applying force that expands the capacity of the chamber on the pressure receiving portion, and
a detection portion including a prism and covering the opening to detect the printing material optically, wherein
as the printing material inside the chamber is consumed, the capacity of the chamber becomes smaller and the pressure receiving portion moves toward the bottom surface of the recess,
the method for manufacturing a refilled cartridge comprising:
refilling the printing material such that two or more points across the biasing member on the pressure receiving portion do not contact the second case after refilling of the printing material is completed, and such that a prescribed volume of air exists inside the chamber after refilling of the printing material is completed, the prescribed volume of air being a volume for which the prism is in contact with the air when the cartridge is oriented such that the prism is on an upper side in a gravity direction.
2. The method for manufacturing a refilled cartridge according to
refilling of the printing material is stopped before the part for which two or more points across the biasing member on the pressure receiving portion when the printing material is refilled in the chamber.
3. The method for manufacturing a refilled cartridge according to
exhausting the printing material from the chamber until two or more points across the biasing member on the pressure receiving portion no longer contact the second case after refilling the printing material in the chamber.
4. The method for manufacturing a refilled cartridge according to
the absolute value of the negative pressure after refilling of the printing material is complete is 100 Pa or greater and 4000 Pa or less.
5. The method for manufacturing a refilled cartridge according to
refilling 1.0 g or greater and 100.0 g or less, or 1.0 ml or greater and 100.0 ml or less of printing material is performed.
6. The method for manufacturing a refilled cartridge according to
refilling of the printing material is performed such that, an entire surface of an outermost porous member of members comprising the supply port is in a state wetted by the printing material after refilling of the printing material is completed.
7. The method for manufacturing a refilled cartridge according to
the prescribed volume of air is a volume that is 10% or greater or 32% or less than a maximum capacity of the chamber.
9. The refilled cartridge according to
refilling of the printing material is stopped before two or more points across the biasing member on the pressure receiving portion contact the second case when the printing material is refilled in the chamber.
10. The refilled cartridge according to
the printing material is exhausted from the chamber until two or more points across the biasing member on the pressure receiving portion no longer contact the second case after the printing material is refilled in the chamber.
11. The refilled cartridge according to
the absolute value of the negative pressure after refilling of the printing material is complete is 100 Pa or greater and 4000 Pa or less.
12. The refilled cartridge according to
the refilled printing material is 1.0 g or greater and 100.0 g or less, or 1.0 ml or greater and 100.0 ml or less.
13. The refilled cartridge according to
an entire surface of an outermost porous member of members comprising the supply port is in a state wetted by the printing material after refilling of the printing material is completed.
14. The refilled cartridge according to
the prescribed volume of air is a volume that is 10% or greater or 32% or less than a maximum capacity of the chamber.
|
This application claims priority to Japanese Patent Application Nos. 2013-136950 and 2013-136954, filed on Jun. 28, 2013, Nos. 2013-009917 and 2013-009918, filed on Jan. 23, 2013, Nos. 2012-191386 and 2012-190744, filed on Aug. 31, 2012, and Nos. 2012-162701, 2012-162705, and 2012-162233, filed on Jul. 23, 2012. The entire disclosure of Japanese Patent Application Nos. 2013-136950, 2013-136954, 2013-009917, 2013-009918, 2012-191386, 2012-190744, 2012-162701, 2012-162705, and 2012-162233 are expressly incorporated by reference herein.
The present invention relates to a method for manufacturing a refilled cartridge, and to a refilled cartridge.
A cartridge for supplying printing material is mounted in a printer. Disclosed in patent document 1 is a cartridge equipped with a chamber in which printing material is filled, for which the capacity can vary using a flexible film, a pressure receiving plate that contacts the flexible film, and a spring for biasing the pressure receiving plate to make the chamber interior a negative pressure. For example, see Unexamined Patent Publication No. 2011-140189.
Typically, for cartridges, there is a desire to have printing material refilled after use. However, there are cases when proper pressure (negative pressure) cannot be kept inside the chamber. When the pressure within the chamber is not appropriate, there is the risk of printing material leaking out from the cartridge during shipping or when it is sold. In recent years, even with refilled cartridges, there is a desire for high quality, and this kind of printing material leak is a problem that cannot be overlooked. Also, with this kind of cartridge, there is a desire for more compact size, saving of resources, easier manufacturing, improved ease of use and the like.
The present invention was created to address at least a portion of the problems described above, and can be realized as the following modes.
(1) With one mode of the present invention, a method for manufacturing a refilled cartridge for performing refilling of printing material after use of a cartridge including, a first case comprising a recess having a bottom surface and an opening, an opposite surface facing to the bottom surface of the recess being open; a flexible portion attached to the opening of the recess; a second case that covers the open surface of the first case from the side opposite to the bottom surface of the recess; a pressure receiving portion opposite to the second case, the pressure receiving portion contacting the flexible portion; a chamber of variable capacity in which printing material is filled, the chamber constituted by the recess, the flexible portion, and the pressure receiving portion; and a biasing member that generates negative pressure inside the chamber by applying force that expands the capacity of the chamber on the pressure receiving portion, constituted such that as the printing material inside the chamber is consumed, the capacity of the chamber becomes smaller and the pressure receiving portion moves toward the bottom surface of the recess. This manufacturing method of a refilled cartridge is characterized in that the printing material is refilled such that two or more points across the biasing member on the pressure receiving portion do not contact the second case after refilling of the printing material is completed. With this kind of manufacturing method of a refilled cartridge, printing material is refilled such that two or more points across the biasing member on the pressure receiving portion do not contact the second case after refilling of the printing material is completed, so it is possible to properly maintain negative pressure inside the chamber after refilling of the printing material. Thus, it is possible to manufacture a high quality refilled cartridge for which it is not easy for printing material to leak from the refilled cartridge. As a result, it is possible to reduce the possibility of printing material leaking out during shipping or selling of the refilled cartridge and soiling the interior of the package. Also, it is possible to reduce the possibility of printing material leaking out from the refilled cartridge at the moment the customer unseals the package, soiling the customer's hands or clothes, or a desk, floor, or the like.
(2) With the method for manufacturing a refilled cartridge according to the mode noted above, refilling of the printing material may be stopped before two or more points across the biasing member on the pressure receiving portion contact the second case when the printing material is refilled in the chamber. With this kind of method for manufacturing a refilled cartridge, it is not necessary to adjust the volume of the printing material inside the chamber after refilling of the printing material, so printing material is not wasted.
(3) With the method for manufacturing a refilled cartridge according to the mode noted above, it is possible to have the printing material be exhausted from the chamber until two or more points across the biasing member on the pressure receiving portion no longer contact the second case after the printing material is refilled in the chamber. With this kind of method for manufacturing a refilled cartridge, it is not necessary to observe the position of the flexible portion during refilling of the printing material. Also, it is not necessary to set the refilled printing material volume in advance. Thus, it is possible to easily manufacture the refilled cartridge.
(4) With the method for manufacturing a refilled cartridge according to the mode noted above, it is possible to have the absolute value of the negative pressure after refilling of the printing material is complete be 100 Pa or greater and 4000 Pa or less. With this kind of method for manufacturing a refilled cartridge, it is possible to manufacture a refilled cartridge for which it is possible to normally supply printing material to the printer.
(5) With the method for manufacturing a refilled cartridge according to the mode noted above, the printing material may be refilled at 1.0 g or greater and 100.0 g or less, or 1.0 ml or greater and 100.0 ml or less. With this kind of method for manufacturing a refilled cartridge, there is no burden on the printer carriage, and it is possible to manufacture a refilled cartridge that is of practical use.
(6) With the method for manufacturing a refilled cartridge according to the mode noted above, refilling of the printing material may be performed such that the entire surface of the outermost porous member of members comprising the supply port is in a state wetted by the printing material after refilling of the printing material is completed. With this kind of method for manufacturing a refilled cartridge, it is possible to inhibit air from passing through the porous member and flowing into the inside of the chamber, so it is possible to maintain the negative pressure inside the chamber in a proper range. Because of that, it is possible to inhibit becoming unable to supply printing material to the printer.
The plurality of structural elements that each of the modes of the present invention described above have are not all essential, and in order to address a portion or all of the problems described above, or to achieve a portion or all of the effects noted in the specification, it is possible to modify, eliminate, replace with a new other structural element, or do a partial elimination of the limiting content as appropriate for a portion of the structural elements among the plurality of structural elements. Also, to address a portion or all of the problems described above, or to achieve a portion or all of the effects noted in the specification, it is possible to combine a portion or all of the technical features included in one mode of the present invention described above with a portion or all of the technical features included in another mode of the present invention described above, and use that as one independent mode of the present invention.
For example, one mode of the present invention can be realized as an item comprising one or more element among the first case, the flexible portion, the second case, the pressure receiving portion, the chamber, and the biasing member. Specifically, this item is acceptable if it has the first case, and is acceptable if it does not have it. Also, this item is acceptable if it has the flexible portion, and acceptable if it does not have it. Also, this item is acceptable if it has the second case, and acceptable if it does not have it. Also, this item is acceptable if it has the pressure receiving portion, and acceptable if it does not have it. Also, this item is acceptable if it has the chamber, and acceptable if it does not have it. Also, this item is acceptable if it has the biasing member, and acceptable if it does not have it. The first case can be constituted as a first case comprising a recess having a bottom surface and an opening, for example, with the surface facing opposite the bottom surface of the recess open. The flexible portion can be constituted as a flexible portion attached to the recess opening. The second case can be constituted as a second case covering the open surface of the first case from the side facing opposite the bottom surface of the recess. The pressure receiving portion can be constituted as a pressure receiving portion in contact with the flexible portion facing opposite the second case. The chamber can be constituted as a variable capacity chamber in which printing material is filled, constituted by the recess, the flexible portion, and the pressure receiving portion. The biasing member can be constituted as a biasing member that generates negative pressure inside the chamber by applying force that expands the capacity of the chamber to the pressure receiving portion. This item can also be constituted so that, as the printing material inside the chamber is consumed, the capacity of the chamber becomes smaller and the pressure receiving portion moves toward the bottom surface of the recess. This kind of item can be realized as a refilled cartridge, for example, but can also be realized as an item other than a refilled cartridge. With this kind of mode, it is possible to address at least one of the various problems such as making the item more compact, lowering the cost, saving resources, making manufacturing easier, improving ease of use or the like. It is possible to apply a portion or all of the technical features of the manufacturing method of a refilled cartridge described previously to any of these items.
The present invention can be realized in various modes other than the manufacturing method of a refilled cartridge. For example, it can also be realized as a mode of a refilled cartridge, a printer in which that refilled cartridge is mounted, or a printing system or the like comprising a refilled cartridge and printer.
We will describe this embodiment with a printing system as an example while referring to the drawings. In each drawing, to make each respective constitution a visually recognizable size, there are cases when the constitution and member scale differ.
As shown in
The printer 5 has a sub scan feed mechanism, a main scan feed mechanism, and a head drive mechanism. The sub scan feed mechanism conveys printing paper P in the sub scan direction using a paper feed roller 11 which uses a paper feed motor (not illustrated) for power. The main scan feed mechanism moves a carriage 17 connected to a drive belt 15 back and forth in the main scan direction using the force of a carriage motor 13. The printer 5 main scan direction is the Y axis direction, and the sub scan direction is the X axis direction. The head drive mechanism drives a print head 19 equipped on the carriage 17 and executes ink discharge and dot formation. The printer 5 is further equipped with a control unit 21 for controlling each mechanism described above. The print head 19 is connected to the control unit 21 via the flexible cable 23.
The carriage 17 is equipped with a holder 25 and the print head 19. The holder 25 is constituted to be able to mount a plurality of cartridges 7, and is arranged on the top side of the print head 19. With this embodiment, six types of cartridge 7 including black, yellow, magenta, cyan, light magenta, and light cyan are mounted one at a time in the holder 25. The six cartridges 7 are respectively adapted to be attached and detached with the holder 25. The types of cartridge 7 are not limited to the six types noted above, and any other type can also be used. Also, the number of cartridges 7 that can be mounted in the holder 25 is not limited to six, and any number of one or more can be used. The print head 19 sprays ink by discharging ink.
As shown in
Inside the recess 31, six introduction portions 33 are provided on a bottom part 25A of the holder 25. The six introduction portions 33 are respectively provided at each mounting position. In other words, the six introduction portions 33 are respectively provided corresponding respectively to the six cartridges 7 mounted inside the recess 31. Because of this, the six introduction portions 33 are aligned in the Y axis direction inside the recess 31. Then, the six cartridges 6 mounted in the holder 25 are aligned along the Y axis direction inside the recess 31. In
Also, six levers 35 and six engagement holes 37 are provided in the holder 25. With this embodiment, for each cartridge 7 mounting position, one lever 35 and one engagement hole 37 is provided. The six levers 35 are aligned in the Y axis direction. The six engagement holes 37 are also aligned in the Y axis direction.
The levers 35 are provided at the −X axis direction side of the introduction portion 33. With the holder 25, a side wall 41 is provided at the side opposite the lever 35 (+X axis direction side) sandwiching the introduction portion 33. Also, a side wall 43 and a side wall 45 are provided at the respective positions confronting in the Y axis direction sandwiching the introduction portions 33. The side wall 43 is positioned at the +Y axis direction side of the bottom part 25A. The side wall 45 is positioned at the −Y axis direction side of the bottom part 25A. Also, a side wall 47 is provided at the position confronting the side wall 41 sandwiching the lever 35 in the X axis direction. The side wall 41, the side wall 43, the side wall 45, and the side wall 47 respectively project in the +Z axis direction from the bottom part 25A. The bottom part 25A is enclosed by the side wall 41, the side wall 43, the side wall 45, and the side wall 47. By doing this, the recess 31 is demarcated.
As shown in
The introduction portion 33 is provided on the bottom part 25A between the lever 35 and the side wall 41. The introduction portion 33 includes a flow path 51, a projecting part 53, a filter 55, and packing 57. The flow path 51 is a path for ink supplied from the cartridge 7, and is provided as an opening piercing through the bottom part 25A. The projecting part 53 is provided on the bottom part 25A, and projects facing the direction that is convex facing the +Z axis direction from the bottom part 25A. The projecting part 53 encloses the flow path 51 on the inside of the recess 31. The filter 55 is placed over the projecting part 53, and covers the opening on the inside of the recess 31 of the flow path 51 from the projecting part 53 side. The packing 57 is provided on the bottom part 25A, and encloses the projecting part 53 on the inside of the recess 31. The packing 57 is constituted with a material having elasticity such as rubber, an elastomer or the like, for example.
As shown in
The second wall 72 and the third wall 73 are provided at mutually confronting positions sandwiching the first wall 71 in the Z axis direction. The fourth wall 74 and the fifth wall 75 respectively intersect the third wall 73. Also, the fourth wall 74 intersects the second wall 72 at the side opposite the third wall 73 side.
The sixth wall 76 intersects the fifth wall 75 at the second wall 72 side of the fifth wall 75 in the Z axis direction, specifically, at the side opposite the third wall 73 side of the fifth wall 75. The seventh wall 77 intersects the sixth wall 76 at the side opposite the fifth wall 75 side of the sixth wall 76. Also, the seventh wall 77 intersects the second wall 72 at the side opposite the fourth wall 74 side of the second wall 72. The sixth wall 76 slants respectively in relation to the fifth wall 75 and the second wall 72. The sixth wall 76 slants in the direction approaching the fourth wall 74 as it nears the second wall 72 side from the third wall 73 side.
With the constitution noted above, the first wall 71 is enclosed by the second wall 72 through the seventh wall 77. The second wall 72 through the seventh wall 77 project facing the −Y axis direction from the first wall 71. Because of that, the first case 62 is constituted as a recess shape by the second wall 72 through the seventh wall 77 with the first wall 71 as the bottom part (bottom surface). A recess 65 is constituted by the first wall 71 through the seventh wall 77. The recess 65 is constituted facing with the +Y axis direction as the direction that is recessed. The recess 65 is open facing the −Y axis direction, specifically, facing the second case 63 side. The recess 65 is closed by a sheet member 107 described later. Then, ink is filled inside the recess 65 closed by the sheet member 107. The area enclosed by the recess 65 and the sheet member 107 function as an ink chamber 109. Hereafter, the surface inside of the recess 65 is noted as the inner surface 67.
As shown in
Also, a supply port 85 is provided on the second wall 72. The ink filled inside the chamber 109 is exhausted from the supply port 85 to outside the cartridge 7. As shown in
Also, as shown in
A projecting part 87 is provided on the fourth wall 74. The projecting part 87 projects facing the side opposite the fifth wall 75 side from the fourth wall 74 (+X axis direction side). The projecting part 87 is positioned between the second wall 72 and the third wall 73 in the Z axis direction. The projecting part 87 engages with the engagement hole 37 shown in
Also, as shown in
As described previously, as shown in
As shown in
The coil spring 103 energizes the pressure receiving plate 105 facing the sheet member 107 side (second case 63 side). To say this another way, the coil spring 103 energizes the pressure receiving plate 105 in the Y axis negative direction. Specifically, the coil spring 103 has a function as an energizing member that energizes the pressure receiving plate 105 in the direction that expands the capacity of the chamber 109. The second case 63 is provided on the side opposite to the pressure receiving plate 105 side of the sheet member 107. The second case 63 is attached to the first case 62 so as to cover the sheet member 107. By doing this, the sheet member 107 is protected from the exterior.
The valve unit 101 is provided on the inside of the recess 65. The sheet member 107 covers the recess 65 for each valve unit 101. A ventilation hole 111 is formed at the site at which the sheet member 19 overlaps the valve unit 101. Also, an air communication hole 113 is provided on the second case 63. Then, the space between the sheet member 107 and the second case 63 communicates with outside the cartridge 7 via the air communication hole 113. Because of this, air is interposed in the space between the sheet member 107 and the second case 63.
The space between the sheet member 107 and the second case 63 is called an air chamber 115. The communication hole 113 communicates with the air chamber 115. With this embodiment, the communication hole 91 communicates with the air chamber 115. In other words, with this embodiment, the space enclosed by the peripheral wall 86 is communicates with by the air communication hole 113 via the air chamber 115 from the communication hole 91.
Also, as shown in
The prism 122 functions as a detection portion for detecting ink optically. The prism 122 is a member having optical transparency formed using a synthetic resin such as polypropylene, for example. The member constituting the prism 122 does not have to be transparent as long as it has suitable optical transparency. The ink inside the chamber 109 is detected as follows, for example. An optical sensor equipped with a light emitting element and a light receiving element are provided in the printer 5. Light is emitted toward the prism 122 from the light emitting element. When there is ink in the periphery of the prism 122, almost all the light passes through the prism 122, and goes toward the inside of the chamber 109. Meanwhile, when ink does not exist in the periphery of the prism 122, most of the light radiated from the light emitting element is reflected by two reflective surfaces of the prism 122, and reaches the light receiving element. The printer 5 judges whether there is only a slight amount of ink remaining inside the chamber 109 or whether there is no ink inside the chamber 109 based on whether light reached the light receiving element. This judgment is performed by the control unit 21 of the printer 5.
Also, as shown in
As shown in
As shown in
In a state with the cartridge 7 mounted in the holder 25, the plurality of terminals 143 are in electrical contact with the contact mechanism 27 shown in
As shown in
At this time, the peripheral wall 86 abuts the packing 57 in an area enclosing the flow path 51 from further outside than the projecting part 53. By doing this, the air tightness of the space enclosed by the peripheral wall 86 and the packing 57 increases. Because of this, when ink is supplied to the flow path 51 from the cartridge 7, the ink that spilled to outside of the area enclosed by the projecting part 53 is held back by the packing 57 and the peripheral wall 86.
We will explain the ink flow and the air flow with the cartridge 7 of this embodiment. With the cartridge 7, as shown in
An air introduction port 171 is provided on the cover valve 163. The air introduction port 171 pierces through the cover valve 163. The air introduction port 171 functions as a communication path for communicating between the interior of the first chamber 109A and the air chamber 115 outside the chamber 109 on the inside of the cartridge 7. Specifically, the air introduction port 171 is an inlet port when introducing air to the chamber 109. The lever valve 165 is provided on the side opposite the second case 63 side of the cover valve 163. The lever valve 165 includes a valve section 173 and a lever section 175. The valve section 173 overlaps the air introduction port 171 of the cover valve 163. The lever section 175 is provided extending inside the area between the pressure receiving plate 105 and the internal surface 67 of the first wall 71 from the valve section 173. The spring member 167 is provided on the side opposite the cover valve 163 side of the lever valve 165. The spring member 167 biases the valve section 173 of the lever valve 165 facing the cover valve 163 side. By doing this, the air introduction port 171 of the cover valve 163 is closed by the valve section 173. Hereafter, the state of the air introduction port 171 being closed by the valve section 173 is expressed as the air introduction port 171 being in a closed state.
When the ink 161 inside the chamber 109 is consumed, as shown in
When the air goes through the air introduction port 171 and flows into the first chamber 109A, as shown in
As described above, the cartridge 7 of this embodiment is a semi-sealed type cartridge for which air is introduced into the chamber 109 from the air introduction port 171 midway during use. The cartridge 7 is constituted so that as ink inside the chamber 109 is consumed, the capacity of the chamber 109 becomes smaller and also the negative pressure increases, and when the negative pressure reaches a designated size, the valve section 173 opens the air introduction port 171 and outside air is introduced into the chamber 109, and after that, the valve section 173 is made to close the air introduction port 171.
With this embodiment, the communication hole 91 pierces through the second wall 72 of the first case 62 from inside the area enclosed by the peripheral wall 86, and communicates with the air chamber 115. In other words, the inside of the area enclosed by the peripheral wall 86 and the air chamber 115 communicate via the communication hole 91. The air chamber 115 communicates with the air communication hole 113 via the gap between the second case 63 and the sheet member 107. Because of this, the interior of the area surrounded by the peripheral wall 86 goes through the inside of the case 61 and goes through to outside the case 61. By doing this, when the interior of the area enclosed by the peripheral wall 86 is sealed from the outside of the cartridge 7, it is possible to reduce the difference between the pressure inside the area enclosed by the peripheral wall 86 and the pressure outside the case 61 (atmospheric pressure).
With this embodiment, when the cartridge 7 is mounted in the printer 5, inside the holder 25, the area enclosed by the peripheral wall 86 is in a sealed state. Then, in a state with the area enclosed by the peripheral wall 86 sealed, the filter 135 of the inside of the area enclosed by the peripheral wall 86 abuts the filter 55 of the printer 5 side (
In contrast to this kind of situation, with this embodiment, the interior of the area enclosed by the peripheral wall 86 goes through to the outside of the first case 62 via the communication hole 91, the air chamber 115, and the air communication hole 113. Because of this, when the cartridge 7 is mounted in the printer 5, when the area enclosed by the peripheral wall 86 is sealed, even if the pressure inside the area enclosed by the peripheral wall 86 becomes high, it is possible to allow the air inside the area enclosed by the peripheral wall 86 to escape to outside the first case 62 via the communication hole 91, the air chamber 115, and the air communication hole 113. Also, for example when there is a rise in the pressure of the space enclosed by the peripheral wall 86 due to air expansion or the like due to temperature changes, it is possible to allow the air of the space enclosed by the peripheral wall 86 to escape to outside the cartridge 7. By doing this, it is possible to reduce the difference between the pressure inside the area enclosed by the peripheral wall 86 and the pressure outside the first case 62 (atmospheric pressure). As a result, it is easy to keep the ink discharge performance of the print head 19 high.
We will describe the manufacturing method of the cartridge 7. With this embodiment, we will describe a method of manufacturing the cartridge 7 by filling ink again in a used cartridge for which the ink has been consumed and the ink residual volume has reached a designated value or less. Hereafter, the cartridge 7 manufactured by again filling ink into the used cartridge 7 is called a “refilled cartridge.” Refilled cartridges are also called “recycled cartridges.”
As shown in
At the preparation step S10, an already used cartridge for which the ink has been consumed and the ink residual volume has reached a designated value or less is prepared.
The exhaust step S20 is a step of exhausting the substance inside the chamber 109 of the cartridge 7 prepared at the preparation step S10, such as ink, air or the like, for example. For example, there are many cases with already used cartridges when air or old ink remains in the chamber 109. In such a case, when implementing the exhaust step S20, it is possible to reduce the amount of old ink or air mixed into the newly filled ink IK. The exhaust step S20 can also be omitted.
At the refill step S30, ink is refilled into the chamber 109. The exhaust step S20 and the refill step S30 can be implemented using various methods. We will give a detailed description using working examples later regarding details of the exhaust step S20 and the filling step S30.
The information update step S40 is a step of rewriting the information relating to the ink consumption for the memory provided in the circuit substrate 14 of the cartridge 7 to usable values. When the ink is used and the ink residual volume of the cartridge 7 reaches a designated volume or lower, there are cases when information expressing that the ink residual volume has reached a designated value or less is stored in the memory. In this case, the printer 5 judges that there is no ink in the cartridge 7, and there are cases when it does not shift to a normal printing operation. With this embodiment, at the information update step S40, the information relating to ink consumption volume of the memory is updated to a usable value that shows that there is a designated value or greater of ink. By doing this, when the cartridge 7 is mounted in the printer 5, the printer 5 shifts to the normal printing operation. When it is sufficient merely to refill ink, step S40 is unnecessary. Also, the step S40 can also be implemented using other methods other than rewriting the storage device information, such as replacing the circuit substrate 141 or the like.
With working example 1, as a working example of the refill step S30, we will describe an example of providing a filling port 181 communicating directly with the chamber 109, and refilling ink from this filling port 181. With
Then, as shown in
After refilling the ink IK, as shown in
With working example 2, as a second working example of the refill step S30, we will describe another example of providing the filling port 181 communicating directly with the chamber 109 and refilling ink from this filling port 181. Compared to working example 1, with which the filling port 181 was formed on the first case 62, with working example 2, the filling port 181 is formed on the sheet member 107. Working example 2 differs from working example 1 by the position at which the filling port 181 is formed, but the remainder including the effects and modification examples are the same as working example 1.
With working example 2, as shown in
The opening part 183 can be formed by removing a portion of the second case 63. Also, the position of the filling port 181 on the sheet member 108 is acceptable as long as it is a position that communicates directly with the chamber 109, and is not particularly limited. As the position of the filling port 181 on the sheet member 107, it is possible to be a position overlapping the pressure receiving plate 105, and also possible to be outside the area overlapping the pressure receiving plate 105. The opening part 183 can also be formed on the first case 62 rather than the second case 63. In other words, the opening part 183 can be formed by removing a portion of the case 61.
Any size and shape can be used for the opening part 183, and this is not limited to the relatively small circle shape like that shown in
Also, instead of forming the opening part 183 on the second case 63, it is also possible to remove all of the second case 63.
Here, the state with the second case 63 removed or the case with the second case 63 not joined are called a “state without the second case 63.” The “state without the second case 63” is also included in removal of a portion of the case 61.
If put in a state without the second case 63, the chamber 109 is exposed, and it becomes easier to visually recognize the interior of the chamber 109. Thus, it is possible to implement the cartridge manufacturing work, especially refilling the ink, with good efficiency. With working example 1, in a state without the second case 63, it is not essential to implement the refill step S30 (
Also, with working example 2, it is possible to use the following kind of method other than the kind of method described with working example 1 in regards to forming and sealing the filling port 181. First, after removing a portion of the case 61, before forming the filling port 181, the sealing member 185 having a self sealing function is attached by adhesion or the like to a portion of the sheet member 107. Next, by pricking the filling needle so as to pierce through the sheet member 107 from above the sealing member 185, the filling port 181 is formed. Finally, after refilling the ink IK via the filling needle, it is possible to seal the filling port 181 automatically using the self sealing function of the sealing member 185. In this way, if the sealing member 185 having the self sealing function is used, it is easier to prevent inflow of air from the filling port 181 into the chamber 109 when removing the filling needle 229.
With working example 3, in addition to the filling port 181, an exhaust port 187 is formed on the first case 62, and we will explain an example of the exhaust step S20 and the refill step S30 using the exhaust port 187. With working example 3, as shown in
With working example 3, when the ink IK is refilled from the filling port 181, it is possible to allow air inside the chamber 109 to escape to outside the chamber 109 from the exhaust port 187. In other words, it is possible to refill the ink IK into the chamber 109 while allowing air from the chamber 109 to escape to outside the chamber 109 from the exhaust port 187. By doing this, it is easier to introduce the ink IK inside the chamber 109, so it is possible to shorten the time it takes for refilling.
Also, with working example 3, it is also possible to implement the exhaust step S20 before refilling the ink IK. For example, it is possible to clean the interior of the chamber 109 by filling a cleaning solution from the filling port 181 and exhausting the cleaning solution from the exhaust port 187. Alternatively, it is also possible to fill the cleaning solution from the exhaust port 187 and exhaust it from the filling port 181. By refilling the ink IK after exhausting the substance inside the chamber 109, for example ink, air or the like by cleaning, it is possible to obtain a higher quality cartridge.
With working example 3, after ink refilling has ended, the filling port 181 and the exhaust port 187 are sealed. For the exhaust port 187 sealing method, it is possible to use the same method as the filling port 181 sealing method. The sealing of the filling port 181 and the sealing of the exhaust port 187 can be implemented with either one implemented first, or with both implemented at the same timing.
The location for forming the exhaust port 187 is acceptable as long as it is a position that can directly communicate with the chamber 109, and the same as with the filling port 181 described previously, it is possible to form it at various positions on the first case 62.
Also, other than the cleaning described previously, the exhaust step S20 can be implemented using the following kind of method. In a state with the chamber 109 essentially sealed tight (a state with the chamber 109 open to the outside at only the exhaust port 187), the interior of the chamber 109 is suctioned from the exhaust port 187. Alternatively, in a state with a portion of the case 61 removed, and the chamber 109 in an essentially sealed tight state (a state with the chamber 109 open to the outside at only the exhaust port 187), the sheet member 107 is pressed in the direction that would reduce the capacity of the chamber 109. In either case, it is possible to exhaust the substance inside the chamber 109, for example ink, air or the like, from the exhaust port 187. Also, at the exhaust step S20, air is sent inside the chamber 109 from the filling port 181, and it is also possible to make it such that the ink, debris or the like inside the chamber 109 as is exhausted from the exhaust port 187 by that pressure.
With working example 4, in addition to the filling port 181, the exhaust port 187 is formed on the sheet member 107, and we will explain an example of using the exhaust port 187 with the exhaust step S20 and the refill step S30. With working Example 3, as shown in
With working example 4, after refilling of the ink has ended, the filling port 181 and the exhaust port 187 are sealed. The exhaust port 187 can be sealed using the same method as the sealing method of the filling port 181 of working example 2 described previously. Sealing of the filling port 181 and sealing of the exhaust port 187 can be implemented with either before the other, or both can be implemented at the same timing.
The position at which the exhaust port 187 is formed is acceptable as long as it is a position that can directly communicate with the chamber 109, and the same as with the filling port 181 of working example 2 described previously, it is possible to form it at various positions on the sheet member 107. Also, as shown in
In other words, for the filling port 181 and the exhaust port 187 of working example 4, either of these can be formed by removing a portion of the case 61, and the removed part can be at a common position at the filling port 181 and the exhaust port 187, or can be at different positions.
With working example 5, the filling port 181 is formed on the first case 62, and the exhaust port 187 is formed on the sheet member 107, and we will describe an example of using the exhaust port 187 with the exhaust step S20 and the refill step S30. With working example 5, as shown in
With working example 5, after refilling of the ink ends, the filling port 181 and the exhaust port 187 are sealed. The exhaust port 187 can be sealed using the same method as the sealing method of the filling port 181 of working example 2 described previously. Also, sealing of the filling port 181 and sealing of the exhaust port 187 can be implemented one before the other, or can be implemented with both at the same timing.
With working example 6, the filling port 181 is formed on the sheet member 107, the exhaust port 187 is formed on the first case 62, and we will describe an example of using the exhaust port 187 with the exhaust step S20 and the refill step S30. With working example 6, as shown in
With working example 6, after refilling of the ink ends, the filling port 181 and the exhaust port 187 are sealed. The exhaust port 187 can be sealed using the same method as the filling port 181 of working example 1 described previously. Also, sealing of the filling port 181 and sealing of the exhaust port 187 can be implemented one before the other, or both can be implemented at the same timing.
Instead of providing the exhaust port 187 of working example 3 through working example 6, it is possible to have the air introduction port 171 in an open state, and use this as the exhaust port. By using the air introduction port 171 as the exhaust port, it is possible to obtain the same effects as of working example 3 to working example 6. With this method, it is possible to omit the exhaust port 187. With exhaust step S20 and refill step S30, for a specific method using an exhaust port, since this is as was described with working example 3, a detailed explanation will be omitted. To put the air introduction port 171 in an open state, as shown in
The position at which the opening part 191 is formed is acceptable as long as it is a position for which it is possible to expose the air introduction port 171, and is not limited to the positions in
In other words, it is possible to have the air introduction port 171 exposed by removing a portion of the case 61.
With working examples 3 through 6, after ink refilling has ended, the exhaust port 187 was sealed. With working example 7, by having the air introduction port 171 in a closed state, it is possible to seal the air introduction port 171 as the exhaust port 187. In specific terms, by removing the external force that was acting on the valve section 173 (force in the arrow direction in
With working example 7, it is possible to omit the exhaust port 187, so it is possible to manufacture the cartridge more easily than with working examples 3 through 6.
Instead of providing the exhaust port 187 of working example 3 through working example 6, it is possible to use the supply port 85 as the exhaust port. By using the supply port 85 as the exhaust port, it is possible to obtain the same effects as working example 3 through working example 6. With the exhaust step S20 and the refill step S30, for the specific method using the exhaust port, this is as described with working example 3, so a detailed description is omitted. With this method, it is possible to omit the exhaust port 187.
With working example 8, it is possible to omit the exhaust port 187, so it is possible to manufacture the cartridge more easily than with working examples 3 through 6. Also, because it is not necessary to expose and forcibly open the air introduction port 171, it is possible to manufacture the cartridge more easily than with working example 7.
With working example 1 and working example 2 noted above, the filling port 181 is formed on the cartridge 7, and ink IK was refilled inside the chamber 109 from this filling port 181. However, it is also possible to refill the ink IK inside the chamber 109 from the supply port 85 without forming the filling port 181. Working example 9 is an example of refilling the ink IK inside the chamber 109 from the supply port 85 without forming the filling port 181. With working example 9, as shown in
For the working example 9 noted above, the same as with working example 3 through working example 6, the exhaust port 187 is formed, and it is possible to use the exhaust port 187 with the exhaust step S20 and the refill step S30.
With the example shown in
Furthermore,
These exhaust ports 187 bring the same effects as those explained with working example 3 through working example 6 by using in the same way as with the exhaust port 187 of working example 3 through working example 6. The position and shape of the exhaust port 187, the method of forming the exhaust port 187, and the method of sealing the exhaust port 187 are as described with working example 3 through working example 6 previously, so a detailed description is omitted.
For working example 9 noted above, instead of providing the exhaust port 187 of working example 10, by having the air introduction port 171 in an open state and using this as the exhaust port, it is possible to obtain the same effects as working example 10. Also, with this method, it is possible to omit the exhaust port 187, so it is possible to obtain the same effect as working example 7. The method of putting the air introduction port 171 in an open state, and the method of sealing the air introduction port 171 as the exhaust port after ink refilling ends are as with working example 7 described previously, so a detailed description will be omitted.
With working example 11, it is possible to omit the exhaust port 187, so it is possible to manufacture the cartridge more easily than with working example 10.
By applying force that compresses the chamber 109 for working example 9 noted above, it is possible to implement the exhaust step S20. Also, by applying force that expands the capacity of the chamber 109, it is possible to implement the refill step S30. This kind of force can be applied by pressurizing or reducing pressure of the space outside the chamber 109.
Also,
With the example shown in
Meanwhile, with the example shown in
With working example 12, by exhausting the substance inside the chamber 109, such as ink, air or the like, for example before refilling the ink IK, it is possible to manufacture a higher quality cartridge. Also, when refilling the ink IK, by giving a force so as to draw the ink IK into the chamber 109 by reducing the pressure outside the chamber 109, it is possible to shorten the time it takes for refilling. Also, with this embodiment, it is possible to implement the exhaust step and the refill step without opening a hole or scratching the cartridge, so it is possible to manufacture the cartridge more easily than with working example 10 or working example 11. Furthermore, with the example shown in
With working example 12, to give force that compresses or expands the chamber 109, the air communication hole 113 or the communication hole 91 was used to reduce the pressure of the air chamber 115. Instead of that, in a state without the second case 63, it is also possible to pressurize or reduce pressure of the space outside the chamber 109.
With working example 13, first, the second case 63 is removed. Also, in a state without the second case, the communication hole 91 is closed by a plug 93 or the like so as not to have ink or air flow in from the communication hole 91. Then, the supply port 85 is immersed in the ink tank 95. After that, as shown in
With working example 13, by exhausting the substance inside the chamber 109, such as ink, air or the like, for example, before refilling the ink IK, it is possible to manufacture a higher quality cartridge. Also, when refilling the ink IK, by applying force that draws the ink IK inside the chamber 109 by reducing the pressure outside the chamber 109, it is possible to shorten the time taken for refilling. Also, with this working example, it is possible to continuously implement the exhaust step and the refill step using the same space 197, so it is possible to manufacture the cartridge with good efficiency.
With working example 12 and working example 13, the force for compressing or the force for expanding the chamber 109 was applied from outside the chamber. Instead of that, it is also possible to apply this kind of force by reducing the pressure of the chamber 109 from the supply port 85.
Next, using the pressure reduction filling device 100, ink is sent from the supply port 85 to the chamber 109. In specific terms, as shown by the arrow in
With working example 14, by exhausting the substance inside the chamber 109 such as ink, air or the like before refilling the ink IK, it is possible to manufacture a higher quality cartridge. Also, when refilling the ink IK, by applying force that will draw the ink IK inside the chamber by reducing the pressure of the chamber 109, it is possible to shorten the time taken for refilling. Also, with working example 14, it is possible to manufacture the cartridge more easily than with working example 10 or working example 11 because it is possible to implement the exhaust step and the refill step without opening a hole or scratching the cartridge. Furthermore, with working example 14, it is possible to continuously implement the exhaust step and the refill step using the same ink supply port 85, so it is possible to manufacture the cartridge with good efficiency.
When refilling the ink IK into the chamber 109 from the supply port 85, it is possible to use the negative pressure within the chamber 109. With the cartridge 7 of this embodiment, the sheet member 107 is biased by the coil spring 103 which is the biasing member in the direction for which the capacity of the chamber 109 expands. Thus, if in a state for which the chamber 109 is compressed to a certain degree, negative pressure will be generated inside the chamber 109. For example, if it is a cartridge directly after use ends, by the ink having been consumed, the chamber 109 is compressed. Specifically, the chamber 109 is in a state with the pressure reduced. At this time, the air communication hole 113 is in a closed state, so air does not flow into the chamber 109 from the air communication hole 113. Also, as long as the filter 135 of the supply port 85 is wet by the ink, there is also no inflow of air to the chamber 109 from the supply port 85. Also, even if the filter 135 is dry and air flows into the chamber 109, by removing a portion of the case 61 or the like and pressing the chamber 109 from outside the sheet member 107, it is possible to compress the chamber 109, specifically, to reduce the pressure of the chamber 109.
In this way, with the cartridge 7 of this embodiment, it is possible to easily create a state for which negative pressure is generated inside the chamber 109. If in a state for which negative pressure is generated inside the chamber 109, as shown in
Specifically, as shown in
To give a force that compresses and expands the chamber 109, it is also possible to use a reduced pressure atmosphere. With working example 16, we will describe an example of applying force that compresses and expands the chamber by using a reduced pressure atmosphere in this way.
First, as shown in
Finally, as shown in
With working example 16, by exhausting the substance inside the chamber 109 such as ink, air or the like, for example, before refilling the ink IK, it is possible to manufacture a higher quality cartridge. Also, when refilling the ink IK, by having the pressure reduced for the chamber 109, a force that draws the ink IK inside the chamber 109 is generated, so it is possible to shorten the time it takes for refilling. Also, with working example 16, it is possible to implement the exhaust step and the refill step without opening a hole or scratching the cartridge, so it is possible to manufacture the cartridge more easily than with working example 10 or working example 11. Furthermore, with working example 16, it is possible to continuously implement the exhaust step and the refill step using the same ink supply port 85, so it is possible to manufacture the cartridge with good efficiency.
Next, we will describe an example of a manufacturing apparatus for the cartridge 7. As shown in
The drill device 213 is a device for forming the filling port 181 on the first case 62 and the sheet member 107, and has a hole opening member 227. The drill device 213 forms the filling port 181 on the first case 62 and the sheet member 107 by rotationally driving the hole opening member 227. The drill drive circuit 219 controls driving of the drill device 213 based on instructions from the control unit 225.
The filling device 215 is a device for filling the ink IK from the filling port 181, and has a filling needle 229 as a filling member. The filling device 215 fills the ink IK inside the chamber 109 from the filling needle 229 inserted in the filling port 181. The filling drive circuit 221 controls driving of the filling device 215 based on instructions from the control unit 225.
The sealing member forming device 217 is a device for sealing the filling port 181, and coats a sealing material 231 for forming the sealing member 185 (
With the manufacturing apparatus 211, it is also possible to omit the drill device 213 and form the filling port 181 by directly pricking the filling needle 229 of the filling device 215 into the case 61. Specifically, it is possible to use the filling needle 229 as a hole opening member. Also, in this case, as described with working example 1 and working example 2 previously, by forming the sealing member 185 (
Also, a rubber plug or the like is also possible as the sealing member 185 having a self sealing function. In this case, instead of coating the sealing material 231, it is possible to seal the filling port 181 using the rubber plug.
When this manufacturing apparatus 211 is applied to the cartridge manufacturing method described with working examples 3 through 6, means for forming the exhaust port 187, exhaust means for exhausting the substance inside the chamber 109 such as ink, air or the like for example, and means for sealing the exhaust port 187 are necessary. With working example 3 through working example 6, as shown by the dotted line in
At this time, it is also possible to omit the drill device 213, to constitute the exhaust path 239 with an item such as a needle, and to form the exhaust port 187 by directly pricking this in the case 61. Specifically, it is possible to use the exhaust path 239 as the hole opening member. Also, in this case, the same as with the filling port 181 described above, if the sealing member having the self sealing function is used, it is easy to prevent inflow of air from the exhaust port 187 into the chamber 109.
Furthermore, when applying this manufacturing apparatus 211 to the refilled cartridge manufacturing method described with working example 7, means that puts the air introduction port 171 (
Furthermore, when applying this manufacturing apparatus 211 to the refilled cartridge manufacturing method described with working example 8, it is possible to use the exhaust path 239 to connect the pump 237 and the supply port 85 as the exhaust port.
To summarize the explanations above, the manufacturing apparatus 211 for realizing the refilled cartridge manufacturing method described with working example 1 and working example 2 is acceptable as long as it is equipped with a mechanism for forming the filling port 181, a mechanism for filling the ink IK, and a mechanism for sealing the filling port 181. Then, it is also possible to realize the mechanism for forming the filling port 181 and the mechanism for filling the ink IK using one means.
Also, the manufacturing method for realizing the refilled cartridge manufacturing method described with working example 3 through working example 6 is acceptable as long as it is equipped with, in addition to the manufacturing apparatus 211 noted above, a mechanism for forming the exhaust port 187, a mechanism for exhausting the substance inside the chamber 109, such as ink, air or the like, for example, and a mechanism for sealing the exhaust port 187. Also, the mechanism for forming the exhaust port 187 and the mechanism for exhausting the substance inside the chamber 109, such as ink, air or the like, for example, can be realized using one means.
Furthermore, the manufacturing apparatus for realizing the refilled cartridge manufacturing method described with working example 7, in addition to the manufacturing apparatus 211 noted above, is acceptable as long as it is equipped with a mechanism for putting the air introduction port 171 to an open state, and a mechanism for exhausting the substance inside the chamber 109 such as ink, air, or the like, for example. These mechanisms can be realized using a single means.
Furthermore, the manufacturing apparatus for realizing the refilled cartridge manufacturing method described with working example 8, in addition to the manufacturing apparatus 211 noted above, is acceptable as long as it is equipped with a mechanism for exhausting the substance inside the chamber 109 from the supply port 85, such as ink, air or the like, for example.
Forming of the filling port 181 or the exhaust port 187, filling of the ink IK, forming of the sealing member 185 and the like can also be performed by hand. For example, using a manufacturing kit with a hole opening member, a filling member, a sealing member and the like as a set, it is possible to manually perform formation of the filling port 181 or the exhaust port 187, filling of the ink IK, and formation of the sealing member 185. It is also possible to give the filling member the function of the hole opening member. Specifically, the refilled cartridge manufacturing method described with working example 1 through working example 8 can be realized using a manufacturing kit which offers the tools corresponding to each of the mechanisms noted above as a set. This kind of manufacturing kit is also included in the manufacturing apparatus of the present invention.
We will describe a second example of the manufacturing apparatus for the cartridge 7. The second manufacturing apparatus 241 has a filling device 243, a filling drive circuit 245, and a control unit 247 as shown in
The ink IK discharged from the injector 249 is filled into the inside of the cap 251 via the tube 253. In other words, the injector 249 fills the ink IK to the supply port 85 with the cap 251 in between. The filling drive circuit 245 controls the driving of the injector 249 based on instructions from the control unit 247. The communication hole 91 is closed by the plug 255, so even when the ink IK is filled swiftly and overflows to outside the filter 135, it is possible to prevent infiltration to outside the chamber 109 from the communication hole 91. Also, because the space inside the supply port 85 is the closed space CS, even when the ink IK is filled swiftly and overflows to outside the filter 135, it is possible to prevent overflowing to outside the supply port 85.
When this manufacturing apparatus 241 is applied to the refilled cartridge manufacturing method described with working example 10, means for forming the exhaust port 187 (
At this time, it is possible to omit the drill device 213, to constitute the exhaust path 239 with an item such as a needle, and by directly pricking this into the case 61, to form the exhaust port 187. Specifically, it is possible to use the exhaust path 239 as the hole opening member. Also, in this case, as described in relation to the first manufacturing apparatus, if the sealing member having the self sealing function is used, it is possible to prevent the inflow of air from the exhaust port 187 into the chamber 109.
Furthermore, when this manufacturing apparatus 241 is applied to the refilled cartridge manufacturing method described with working example 11, means for making the air introduction port 171 (
To summarize the explanation above, the manufacturing apparatus 241 for realizing the refilled cartridge manufacturing method described with working example 9 is acceptable as long as it is equipped with a mechanism for supplying ink to the supply port 85. Also, this manufacturing apparatus 241 is preferably equipped with a mechanism for making the space inside the supply port 85 the closed space CS to prevent ink from overflowing and flowing to outside from the supply port 85. Also, this manufacturing apparatus 241 is preferably equipped with a mechanism for blocking the communication hole 91 in order to prevent ink from infiltrating from the communication hole 91 to outside the chamber 109.
Also, the manufacturing apparatus 241 for realizing the refilled cartridge manufacturing method described with working example 10 is acceptable as long as, in addition to the manufacturing apparatus 241 noted above, there are equipped a mechanism for forming the exhaust port 187, a mechanism for exhausting the substance inside the chamber 109 such as ink, air or the like, for example, and a mechanism for sealing the exhaust port 187. Also, the mechanism for forming the exhaust port 187 and the mechanism for exhausting the substance inside the chamber 109 such as ink, air or the like, for example, can be realized with one means.
Furthermore, the manufacturing apparatus for realizing the refilled cartridge manufacturing method described with working example 11 is acceptable as long as, in addition to the manufacturing apparatus 241 noted above, equipped are a mechanism for putting the air introduction port 171 in an open state, and a mechanism for exhausting the substance inside the chamber 109 such as ink, air or the like, for example. Also, these mechanisms can be realized with one means.
The refilled cartridge manufacturing method described with working example 9 through working example 11 can be implemented by hand. For example, as shown in
In this way, the refilled cartridge manufacturing method described with working example 9 through working example 11 can be realized using the manufacturing kit for which the tools corresponding to each of the mechanisms noted above are offered as a set. This kind of manufacturing kit is also included in the manufacturing apparatus of the present invention.
We will describe a third example of the manufacturing apparatus of the refilled cartridge. As shown in
The control unit 277 first drives the suction pump 278 and suctions the closed space CS of the interior of the supply port 85. The communication hole 91 is closed by the plug 255, so the suction force of the suction pump 278 acts on the chamber 109, and the pressure is reduced inside the chamber 109. At this time, the substance inside the chamber 109 such as ink, air or the like, for example, can have at least a portion exhausted to outside the cartridge 7 from the supply port 85. After that, the control unit 277 drives the injector 249, and the ink IK is filled from the supply port 85 into the chamber 109. At this time, the communication hole 91 is closed by the plug 255, so even when the ink IK is filled swiftly and overflows to outside the filter 135, it is possible to prevent it from infiltrating outside the chamber 109 from the communication hole 91. Also, it is possible to prevent the ink IK that overflowed in this way from leaking out to the outside of the supply port 85.
The manufacturing apparatus 271 for realizing the refilled cartridge manufacturing method described with working example 14 is acceptable as long as it is equipped with a mechanism for exhausting the substance inside the chamber 109 such as ink, air or the like, for example, from the supply port, a mechanism for making the interior of the supply port 85 into the closed space CS, and a mechanism for supplying ink to the supply port 85.
Furthermore, the manufacturing method of the cartridge 7 described with working example 14 can be realized using a manufacturing kit for which tools corresponding to each of the mechanisms noted above are offered as a set. For example, as shown in
The suction instrument 295 is a tool that suctions the substance inside the chamber 109 such as ink, air or the like, for example, from the supply port 85. With
The use method for this manufacturing kit 291 is as follows. First, the manufacturing kit 291 is attached to the cartridge 7 in a state such as that shown in
Next by closing the valve 299, the flow path between the suction instrument 295 and the cap 251 is closed. Also, by opening the valve 293, the flow path between the injector 263 and the cap 251 is opened. Then, using the injector 263, the ink IK is filled from the supply port 85 to inside the chamber 109.
In this way, the refilled cartridge manufacturing method described with working example 14 can be realized using the manufacturing kit for which the tools corresponding to each of the mechanisms noted above are offered as a set. This kind of manufacturing kit is also included in the manufacturing apparatus of the present invention.
Above, we described manufacturing apparatuses 1 through 3 for realizing the manufacturing methods of working example 1 through working example 8, working example 9 through working example 11, and working example 14, but it goes without saying that it is possible to realize this as manufacturing apparatuses and manufacturing kits equipped with functions that can implement each step included in these methods for other working example methods as well.
With the manufacturing method of the refilled cartridge noted in each of the working examples described previously, it is preferable that ink be refilled inside the chamber 109 so that a designated volume of air exists inside the chamber 109 after refilling of the ink is completed. For example, even if damage occurs to the valve section 173 during refilling of the ink, and it is not possible to introduce air inside the chamber 109 through the valve section 173 when using the cartridge 7, if a designated volume of air is made to exist inside the chamber 109 after refilling of the ink, after the ink is consumed, it is possible to perform detection of the ink normally by air that exists inside the chamber 109 ahead of time contacting the prism 122. Because of that, if the designated volume of air exists inside the chamber 109 after refilling of the ink is completed, even when a problem occurs of not being able to normally introduce air into the refilled cartridge due to damage of the valve section 173 or the like, it is possible to normally use the refilled cartridge.
Also, if the designated volume of air exists inside the chamber 109 after refilling of the ink, the air inside the chamber 109 becomes a cushion, and the flexible sheet member 107 is not easily damaged.
Also, if the designated volume of air exists inside the chamber 109 after refilling of the ink, depending on the type of ink that is refilled, the ink inside the chamber 109 does not solidify easily. For example, with radical polymerization type UV ink (photo curing type ink), if air exists, the progression of polymerization is hindered by oxygen, and it does not solidify easily.
The volume of air made to exist inside the chamber 109 after refilling of the ink is preferably a volume for which the prism 122 (preferably the entire surface of the prism 122) is in contact with air when the refilled cartridge is oriented such that the prism 122 (prism unit 121) is on the upper side in the gravity direction. If this kind of air volume exists inside the chamber 109, when the ink is consumed, it is possible to reliably optically detect the residual state of the ink. The orientation for which the prism 122 is on the upper side in the gravity direction is the orientation shown in
The volume of air (designated volume) made to exist inside the chamber 109 after refilling of the ink, more specifically, is preferably a volume that is 10% or greater or 32% or less than the maximum capacity of the chamber 109. In other words, for example if the maximum capacity of the chamber 109 is 14.0 ml, the air volume is 1.5 to 4.5 ml. If the air volume is less than 10% of the capacity of the chamber 109, it is difficult to detect the ink using the prism 122. Also, if the volume exceeds 32%, the volume of ink that is refilled becomes a small volume, and it is not possible to obtain a refilled cartridge that is of practical use.
Next, we will describe a method of refilling ink so that a designated volume of air exists inside the chamber 109 after refilling of the ink is completed. As this kind of method, for example, there are the following three methods.
To inject air into the chamber 109 through the filling port 181 or the exhaust port 187, a needle like the filling needle 229 (
With the third method described above, before refilling ink in the chamber 109, air is injected into the chamber 109. In other words with the third method, refilling of ink starts in a state with air made to exist in the chamber 109. To start refilling of ink in a state with air made to exist in the chamber 109, it is possible to use the following method, for example.
With the kind of method described above, when starting refilling of the ink, if a designated volume of air is made to exist inside the chamber 109 in advance, by performing refilling of the ink in an orientation for which the prism 122 on the upper side in the gravity direction, it is possible to refill the ink while performing optical detection of the ink volume. This is because if air exists inside the chamber 109 in advance, as refilling of the ink progresses, that air gradually moves to the upper side in the gravity direction and contacts the prism 122. Thus, it is possible to inhibit excessive filling of ink.
Also, when starting refilling of the ink, if a designated volume of air exists inside the chamber 109 in advance, by filling ink toward the part in which the air exists inside the chamber 109, it is possible to smoothly fill ink inside the chamber 109. In other words, it is easier to ensure a flow path for refilling the ink inside the chamber 109.
The methods shown in
With the manufacturing method of a refilled cartridge with each of the working examples described previously, it is preferable that two or more points across the coil spring 103 on the pressure receiving plate 105 are not in contact with the second case 63 after the ink is refilled.
For example, as shown in
The method for refilling the ink so that two or more points across the coil spring 103 on the pressure receiving plate 105 do not contact the second case 63 after refilling of the ink is completed includes the following two methods, for example.
With the method shown in
With the method shown in
With each working example described above, regardless of whether or not air is made to exist inside the chamber 109, the absolute value of the negative pressure inside the chamber 109 after the ink is refilled is preferably 100 Pa or greater and 4000 Pa or less. If the absolute value of the negative pressure inside the chamber 109 is within this range, it is possible to supply ink normally to the printer 5. Thus, the printer 5 is able to discharge ink normally using the refilled cartridge.
With each working example described above, the volume of ink refilled in the chamber 109 is preferably 1.0 g or greater and 100.0 g or less, or 1.0 ml or greater and 100.0 ml or less, regardless of whether air is made to exist inside the chamber 109. When the volume of ink that is refilled exceeds 100.0 g, or when it exceeds 100.0 ml, when the refilled cartridge is mounted in an on-carriage type printer 5, there is a burden on the carriage 17, and it is possible that it will not be possible to perform printing normally. Also, when the volume of ink that is refilled is less than 1.0 g or less than 1.0 ml, there is too little usable ink, and it is not possible to obtain a refilled cartridge that is of practical use.
With each working example described above, after ink is refilled in the chamber 109, of the foam 133 and the filter 135 provided in a layered state on the supply port 85, the entire surface of the filter 135 positioned outermost is preferably in a state wetted by ink. If ink is refilled in this way, a meniscus is formed on the entire surface of the filter 135, so it is possible to inhibit air of a designated volume or greater from flowing into the chamber 109. When air of a designated volume or greater flows into the chamber 109, it becomes impossible to maintain the negative pressure inside the chamber 109 within a suitable range, and it is possible that it will not be possible to supply ink to the printer 5, but as noted above, if in a state for which the entire surface of the filter 135 is wetted by ink, this kind of problem is eliminated. Also, to maintain a state for which the entire surface of the filter 135 is wetted by ink after refilling, a cap (not illustrated) can be attached to the supply port 85. This kind of cap is disclosed in Unexamined Patent Publication No. 2012-35489, for example.
With a number of working examples such as working example 2 and working example 4, we described a method of manufacturing the refilled cartridge in a state without the second case 63, but it is also possible to implement the state without the second case 63 with the manufacturing method of working examples other than these (except for working example 12). If the exhaust step S20 and the refill step S30 are implemented in a state without the second case 63, it is easier to understand the situation of the chamber 109 at each step, such as the exhaust state of the substance inside the chamber 109 such as ink, air or the like, for example, the status of pressure reduction of the chamber 109, the filling status of the ink IK into the chamber 109 or the like. Also, if the exhaust step S20 and the refill step S30 are implemented in a state without the second case 63, it is easier to implement the various work for these steps. After implementing the exhaust step S20 and the refill step S30 in a state without the second case 63, joining the second case 63 and the first case 62 is not essential. Even in a state left without the second case 63, the function as the cartridge is not lost, so it is also acceptable to leave that status as is. Of course it is also possible to again join the removed second case 63 to the first case 62, and it is also possible to cover the opening of the first case 62 that was exposed by removing the second case 63 using a different part.
Also, with working example 3 through working example 6, these respectively had the filling port 181 and the exhaust port 187 formed separately, but it is also possible to give a function as the filling port 181 and the exhaust port 187 such as with using the supply port 85 with the working example 14 for both functions of the filling port and the exhaust port. In this case, the same as with working example 14, after the pressure is reduced for the chamber 109 via the filling port 181, ink is refilled via the filling port 181.
The same as with modification example 2, with working example 7, it is possible to use the air introduction port 171 for both functions of the filling port and the exhaust port. In this case, the same as with working example 14, after the pressure is reduced for the chamber 109 via the air introduction port 171, ink is filled via the air introduction port 171.
With working examples 1 through 6 and working example 8, instead of forming the filling port 181, it is possible to use the air introduction port 171 as the filling port. In this case, instead of forming the filling port 181, the air introduction port 171 is opened with the method like that described with working example 7, and ink is filled from there.
With each of the working examples noted above, we described a method of manufacturing a semi-sealed type refilled cartridge for which air is introduced from the air introduction port 171 into the chamber 109 during use. In contrast to this, each of the working examples except for working examples 7 and 11 can also be applied to a method of manufacturing a sealed type refilled cartridge for which the air introduction port 171 and the valve section 173 are not equipped, and air is not introduced into the chamber 109 during use
With the cartridge 7 noted above, the coil spring 103 is provided between the pressure receiving plate 105 and the first case 62, but the coil spring 103 can also be provided between the pressure receiving plate 105 (sheet member 107) and the second case 63. In this case, the chamber 109 interior can be made to be a negative pressure by the coil spring 103 pulling the pressure receiving plate 105 to the second case 63 side.
The present invention is not limited to an inkjet printer and its ink cartridge, and can also be applied to any printing device that sprays other printing material other than ink as well as the cartridge thereof. For example, it can be applied to the following types of printing devices and their cartridges.
(1) Image recording devices such as facsimile devices or the like. (2) Printing devices that spray coloring material used for manufacturing color filters for image display devices such as liquid crystal displays or the like. (3) Printing devices for spraying electrode material used for forming electrodes such as of organic EL (Electro Luminescence) displays, field emission displays (FED) or the like. (4) Printing devices for spraying printing material containing bioorganic material used for biochip manufacturing. (5) A sample printing device as a precision pipette. (6) A lubricating oil printing device. (7) A resin liquid printing device. (8) A printing device for spraying lubricating oil in a pinpoint on precision machines such as watches, cameras or the like. (9) A printing device for spraying on a substrate a transparent resin liquid such as an ultraviolet curing resin or the like for forming a miniature hemispheric lens (optical lens) used for optical communication elements or the like. (10) A printing device for spraying an acid or alkaline etching fluid for etching a substrate or the like. (11) Any other printing device equipped with a head for discharging tiny volume droplets.
The “droplets” means the state of a printing material discharged from the printing device and includes granular shapes, tear shapes, and threadlike shapes with a tail. Also, a “printing material” is acceptable as long as it is a material that can be sprayed by the printing device. For example, liquid state materials such as liquid state materials of high or low viscosity, as well as sol, gel water, other inorganic solvents, organic solvents, solutions, liquid resin, liquid metal (metal melt), and the like are included in “printing material.” Also, this is not limited to liquids as one physical property state, but items for which particles of functional materials consisting of a solid such as a pigment, metal particles or the like are dissolved, dispersed, or blended in a solvent and the like are also included in “printing material.” The “printing material” such as those noted above can also be expressed as “liquid” or “liquid body.” Representative examples of liquid or liquid body printing materials include the kind of ink like that described with the embodiments noted above, liquid crystal and the like. Here, ink includes various types of liquid body compositions such as typical water based inks and oil based inks as well as gel inks, hot melt inks and the like.
While this invention has been described in conjunction with the specific embodiments thereof, it is evident that many alternatives, modifications, and variations will be apparent to those skilled in the art. Accordingly, preferred embodiments of the invention as set forth herein are intended to be illustrative, not limiting. There are changes that may be made without departing from the spirit and scope of the invention.
Kobayashi, Atsushi, Nakamura, Hiroyuki, Kodama, Hidetoshi, Mizutani, Tadahiro, Nozawa, Izumi
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5574490, | Aug 12 1992 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Ink jet hard copy apparatus ink cartridge |
5825388, | Dec 27 1994 | Brother Kogyo Kabushiki Kaisha | Ink jetting apparatus |
5946014, | May 23 1994 | Canon Kabushiki Kaisha | Ink tank cartridge and ink-filling device therefor |
5980032, | Oct 31 1994 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Compliant ink interconnect between print cartridge and carriage |
5984462, | Apr 29 1998 | Hewlett-Packard Company | One shot air purge for replaceable ink supply |
6007191, | Aug 19 1993 | FUJI XEROX CO , LTD | Ink supply unit |
6058984, | Jul 30 1997 | Canon Kabushiki Kaisha | Method for filling liquid into liquid container with liquid chamber, and liquid filling apparatus |
6086193, | Aug 02 1996 | Seiko Epson Corporation | Ink cartridge and a printing device using the ink cartridge |
6145974, | Oct 13 1983 | Seiko Epson Corporation | Ink-supplied printer head and ink container |
6152555, | Aug 30 1996 | Canon Kabushiki Kaisha | Ink container, ink container holder for removably holding ink container, and ink container cap |
6155678, | Oct 06 1999 | FUNAI ELECTRIC CO , LTD | Replaceable ink cartridge for ink jet pen |
6158852, | Nov 29 1993 | Canon Kabushiki Kaisha | Ink refilling method and apparatus for ink cartridge |
6196671, | Dec 20 1999 | Xerox Corporation | Ink-jet cartridge for an ink jet printer having air ingestion control |
6203148, | Jul 31 1996 | Canon Kabushiki Kaisha | Liquid container for an ink jet recording apparatus |
6220701, | Oct 06 1998 | Seiko Epson Corporation | Ink cartridge and method of disassembling the same |
6250750, | Jul 05 1996 | Seiko Epson Corporation | Ink cartridge and loading mechanism for ink cartridge |
6254226, | Jul 14 2000 | Xerox Corporation | Liquid ink cartridge with recessed fill hole and ink tank vent |
6290348, | Jan 05 2000 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Techniques for providing ink-jet cartridges with a universal body structure |
6328437, | Sep 11 1996 | Canon Kabushiki Kaisha | Liquid injection method |
6332481, | Mar 29 1999 | Seiko Epson Corporation | Method of filling an ink cartridge with ink and an apparatus thereof |
6347863, | Aug 23 1996 | Ink cap | |
6364473, | Apr 06 2001 | Refilling needle for refilling an ink cartridge | |
6390613, | Feb 16 2001 | Ink-refilling device for ink cartridge of a jet printer | |
6474796, | Dec 05 1996 | Canon Kabushiki Kaisha | Method for filling a liquid into a liquid container, a filling unit for executing the filling method, a liquid container manufactured according to the filling method and a liquid ejection apparatus |
6520630, | Dec 28 1999 | Fuji Xerox Co., Ltd. | Ink jet recording apparatus |
6585007, | Feb 07 2001 | Canon Kabushiki Kaisha | Method for filling liquid into liquid container and apparatus adapted to use such method |
6623104, | Oct 04 1999 | Canon Kabushiki Kaisha | Liquid container, cap used with the liquid container, and cap-equipped liquid container |
6634742, | Feb 28 2000 | Seiko Epson Corporation | Recording head unit |
6773099, | Oct 05 2001 | Canon Kabushiki Kaisha | Liquid container, liquid supplying apparatus, and recording apparatus |
6776479, | Oct 31 2002 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Fluid interconnect port venting for capillary reservoir fluid containers, and methods |
6824258, | Feb 09 2001 | Canon Kabushiki Kaisha | Liquid container, liquid supply system and ink jet recording apparatus utilizing the same, and method of mounting liquid container on recording apparatus |
6830324, | Dec 27 2001 | Canon Kabushiki Kaisha | Liquid storing container, ink jet cartridge, and ink jet printing apparatus |
6840608, | Nov 05 2001 | S-PRINTING SOLUTION CO , LTD | Ink cartridge used with an ink jet printer |
6848776, | Feb 14 2002 | Seiko Epson Corporation | Ink tank and ink jet printer |
6854835, | Sep 16 1994 | Seiko Epson Corporation | Ink cartridge for ink jet printer and method of charging ink into said cartridge |
6976753, | Dec 10 1905 | Canon Kabushiki Kaisha | Liquid container and ink jet printing apparatus |
7104640, | Apr 04 2003 | Canon Kabushiki Kaisha | Liquid container, liquid using device, printing apparatus, and method of manufacturing liquid container |
7165835, | May 17 2001 | Seiko Epson Corporation | Ink cartridge and method of ink injection thereinto |
7237881, | Dec 26 2003 | Canon Kabushiki Kaisha | Liquid container, liquid supplying system, manufacturing method therefor, circuit board therefor and liquid containing cartridge |
7293866, | Oct 20 2000 | Seiko Epson Corporation | Ink cartridge for ink jet recording device |
7325909, | Apr 28 2005 | Automatic ink refill system and methods | |
7393088, | Jun 14 2004 | Brother Kogyo Kabushiki Kaisha | Method of filling ink cartridge, cartridge filler, jig, and ink supply system |
7445323, | Dec 21 2005 | SLINGSHOT PRINTING LLC | Ink cartridge venting |
7470008, | Jul 29 2005 | Ti-Tsung Yan | Simplified refilling assembly of DURABrite ink cartridge |
7735983, | Feb 28 2007 | Eastman Kodak Company | Ink jet ink cartridge with vented wick |
7918547, | Oct 20 2004 | Canon Kabushiki Kaisha | Liquid storage container and ink jet recording apparatus |
7938523, | Jun 13 2007 | SLINGSHOT PRINTING LLC | Fluid supply tank ventilation for a micro-fluid ejection head |
7954662, | Dec 28 2005 | Canon Kabushiki Kaisha | Liquid storage container |
8142000, | Jun 27 2008 | Seiko Epson Corporation | Liquid container and remanufacturing method of liquid container |
8177342, | Jun 27 2008 | Seiko Epson Corporation | Liquid container and remanufacturing method of liquid container |
8366250, | Jun 27 2008 | Seiko Epson Corporation | Liquid container, method of filling liquid into liquid container, and remanufacturing method of liquid container |
8366251, | Jun 27 2008 | Seiko Epson Corporation | Liquid container, method of filling liquid into liquid container, and remanufacturing method of liquid container |
8382263, | Mar 23 2009 | MIMAKI ENGINEERING CO , LTD | Ink filling method |
8684505, | Mar 19 2012 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Vent path for a liquid container |
9050813, | Dec 22 2010 | ZHUHAI NINESTAR MANAGEMENT CO , LTD | Ink cartridge refilling device, ink cartridge refilling system and corresponding ink cartridge refilling method |
9308753, | Sep 16 2014 | FUJIFILM Corporation | Inkjet recording method, and printed material |
20010009431, | |||
20010050113, | |||
20010052370, | |||
20020104578, | |||
20020139441, | |||
20020175977, | |||
20030035036, | |||
20030067520, | |||
20030090553, | |||
20030184622, | |||
20030184623, | |||
20040100540, | |||
20040135854, | |||
20040150697, | |||
20050041076, | |||
20050068386, | |||
20050099474, | |||
20050116997, | |||
20050140760, | |||
20050179750, | |||
20050185034, | |||
20050219303, | |||
20050264624, | |||
20050275699, | |||
20060132555, | |||
20060203045, | |||
20060203051, | |||
20060227190, | |||
20070024683, | |||
20070070138, | |||
20070139492, | |||
20070195141, | |||
20070195144, | |||
20070229612, | |||
20070236549, | |||
20080034712, | |||
20080204526, | |||
20080204529, | |||
20080230141, | |||
20080231672, | |||
20080239037, | |||
20080284833, | |||
20080309740, | |||
20090128609, | |||
20090167826, | |||
20090244221, | |||
20090322832, | |||
20090322838, | |||
20090322839, | |||
20100073438, | |||
20100208015, | |||
20100277555, | |||
20100302291, | |||
20100309265, | |||
20100309266, | |||
20110037815, | |||
20110169899, | |||
20110241231, | |||
20120056955, | |||
20120127247, | |||
20120133713, | |||
20130208044, | |||
EP418828, | |||
EP655336, | |||
EP712727, | |||
EP739740, | |||
EP847861, | |||
EP947328, | |||
EP1053876, | |||
EP1053881, | |||
EP1080918, | |||
EP1090767, | |||
EP1095777, | |||
EP1170135, | |||
EP1258361, | |||
EP1707380, | |||
EP2103435, | |||
EP2127886, | |||
EP2380744, | |||
EP2425981, | |||
EP2837499, | |||
GB2288148, | |||
JP10044454, | |||
JP10095129, | |||
JP10175311, | |||
JP10217500, | |||
JP10250091, | |||
JP11048490, | |||
JP2000203053, | |||
JP2001063085, | |||
JP2001130022, | |||
JP2001162819, | |||
JP2002036590, | |||
JP2002120376, | |||
JP2002225306, | |||
JP2002370370, | |||
JP2002505212, | |||
JP2002510253, | |||
JP2003053988, | |||
JP2003053989, | |||
JP2003053991, | |||
JP2003237108, | |||
JP2004066490, | |||
JP2004230705, | |||
JP2005103855, | |||
JP2005170027, | |||
JP2005205893, | |||
JP2005349786, | |||
JP2006082318, | |||
JP2006248053, | |||
JP2006281539, | |||
JP2006306035, | |||
JP2007055126, | |||
JP2007112150, | |||
JP2007230188, | |||
JP2007283753, | |||
JP2007301962, | |||
JP2008246896, | |||
JP2008307881, | |||
JP2009061785, | |||
JP2009241608, | |||
JP2010005957, | |||
JP2010221477, | |||
JP2010260202, | |||
JP2011110712, | |||
JP2011140189, | |||
JP2011207066, | |||
JP2011207067, | |||
JP2012035489, | |||
JP2012126100, | |||
JP2012136039, | |||
JP3166084, | |||
JP6106729, | |||
JP8112915, | |||
JP8267775, | |||
WO58100, | |||
WO2006028082, | |||
WO2008056736, | |||
WO9855322, | |||
WO9855325, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 12 2013 | Seiko Epson Corporation | (assignment on the face of the patent) | / | |||
Nov 13 2013 | MIZUTANI, TADAHIRO | Seiko Epson Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031789 | /0380 | |
Nov 13 2013 | NAKAMURA, HIROYUKI | Seiko Epson Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031789 | /0380 | |
Nov 14 2013 | KOBAYASHI, ATSUSHI | Seiko Epson Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031789 | /0380 | |
Nov 26 2013 | NOZAWA, IZUMI | Seiko Epson Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031789 | /0380 | |
Dec 13 2013 | KODAMA, HIDETOSHI | Seiko Epson Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 031789 | /0380 |
Date | Maintenance Fee Events |
Oct 25 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
May 12 2023 | 4 years fee payment window open |
Nov 12 2023 | 6 months grace period start (w surcharge) |
May 12 2024 | patent expiry (for year 4) |
May 12 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 12 2027 | 8 years fee payment window open |
Nov 12 2027 | 6 months grace period start (w surcharge) |
May 12 2028 | patent expiry (for year 8) |
May 12 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 12 2031 | 12 years fee payment window open |
Nov 12 2031 | 6 months grace period start (w surcharge) |
May 12 2032 | patent expiry (for year 12) |
May 12 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |