A quantum cryptography apparatus and system includes a photon emitter, a photon receiver, a first photodetector, a second photodetector, a first polarization optic, and a second polarization optic. The photon emitter is configured to emit a photon at a wavelength, wherein the photon emitter is coupled to the photon receiver by at least one quantum channel. The photon receiver includes the first polarization optic configured to output a polarization state of the emitted photon. The first photodetector is configured to detect the photon emitted from the output of the first polarization optic. The second photodetector is configured to detect a backflash from the first photodetector. The second polarization optic is between the first photodetector and the second photodetector. The quantum cryptography apparatus may be a quantum key distribution system for characterizing backflashes.
|
14. A method for characterizing backflashes in a quantum key distribution system, comprising:
emitting a photon from a photon emitter at a wavelength;
transferring the emitted photon by at least one quantum channel to a photon receiver;
receiving the emitted photon through a first polarization optic with a first photodetector;
detecting a backflash from the first photodetector with a second photodetector;
characterizing a polarization dependence of the backflash through a second polarization optic; and
calibrating the quantum key distribution system based on the polarization dependence of the backflash.
1. A quantum cryptography apparatus, comprising:
a photon emitter configured to emit a photon at a wavelength;
a photon receiver coupled to the photon emitter by at least one quantum channel and comprising a first polarization optic configured to output the emitted photon in a polarization state;
a first photodetector configured to detect the emitted photon from the output of the first polarization optic;
a second photodetector configured to detect a backflash from the first photodetector; and
a second polarization optic between the first photodetector and the second photodetector, wherein the second polarization optic is configured to detect a polarization dependence of the backflash from the first photodetector,
wherein the second photodetector is a four channel single photon counting avalanche photodiode (APD) array configured to simultaneously detect the polarization dependence of the backflash from the first photodetector, and
wherein the second photodetector and the second polarization optic are configured to internally calibrate the photon receiver.
7. A quantum key distribution system for characterizing backflashes, comprising:
a photon emitter configured to emit a photon at a wavelength;
a photon receiver coupled to the photon emitter by at least one quantum channel and comprising a first polarization optic configured to output the emitted photon in a polarization state;
a first photodetector configured to detect the photon emitted from the output of the first polarization optic;
a second photodetector configured to detect a backflash from the first photodetector;
a second polarization optic between the first photodetector and the second photodetector, wherein the second polarization optic is configured to detect a polarization dependence of the backflash from the first photodetector; and
a data acquisition subsystem coupled to the second photodetector, wherein the data acquisition subsystem characterizes the polarization dependence of the backflash and deduces the polarization state of the emitted photon,
wherein the photon receiver comprises a backflash receiver comprising an optical circulator, the second photodetector, and the second polarization optic, and
wherein the backflash receiver and the data acquisition subsystem are configured to internally calibrate the photon receiver.
2. The apparatus of
the photon receiver comprises two arms, each arm associated with a BB84 basis; and
a non-polarizing 50:50 beamsplitter that couples the two arms.
3. The apparatus of
the at least one quantum channel is a free space channel; and
the wavelength of the emitted photon is 400 nm to 1100 nm.
4. The apparatus of
the at least one quantum channel is a fiber optic channel; and
the wavelength of the emitted photon is 1100 nm to 1600 nm.
5. The apparatus of
6. The apparatus of
8. The system of
the photon receiver comprises two arms, each arm associated with a BB84 basis; and
a non-polarizing 50:50 beamsplitter that couples the two arms.
9. The system of
the at least one quantum channel is a free space channel; and
the wavelength of the emitted photon is 400 nm to 1100 nm.
10. The system of
the at least one quantum channel is a fiber optic channel; and
the wavelength of the emitted photon is 1100 nm to 1600 nm.
11. The system of
the second photodetector is a four channel single photon counting avalanche photodiode (APD) array, the second photodetector being configured to simultaneously detect the polarization dependence of the backflash from the first photodetector.
12. The system of
13. The system of
15. The method of
16. The method of
17. The method of
18. The method of
the at least one quantum channel is a free space channel; and
the wavelength of the emitted photon is 400 nm to 1100 nm.
|
The present disclosure relates to quantum cryptography apparatuses and systems. More specifically, embodiments of the present disclosure relate to quantum cryptography apparatuses and systems to detect and characterize information leakage due to backflashes in single photon photodetectors.
Quantum key distribution (QKD) promises a theoretically unbreakable cryptosystem by employing the probabilistic nature of quantum measurement over mutually unbiased bases. Nevertheless, QKD systems possess security vulnerabilities due to engineering, technical, and technological imperfections in practical implementations. For example, single photon photodetectors used in QKD systems could be a source of information leakage due to the emission of unaccounted photons or secondary emissions, deemed backflashes, that occur after the incident or main information-carrying photons impinge and are detected by a photodetector, in particular, an avalanche photodiode (APD).
In some embodiments, a quantum cryptography apparatus includes a photon emitter configured to emit a photon at a wavelength, a photon receiver coupled to the photon emitter by at least one quantum channel and including a first polarization optic configured to output a polarization state of the emitted photon, a first photodetector configured to detect the emitted photon from the output of the first polarization optic, a second photodetector configured to detect a backflash from the first photodetector, and a second polarization optic between the first photodetector and the second photodetector. In some embodiments, the second polarization optic is configured to detect a polarization dependence of the backflash from the first photodetector.
In some embodiments, the photon receiver includes two arms, each arm associated with a BB84 basis. In some embodiments, the photon receiver includes a non-polarizing 50:50 beamsplitter that couples the two arms. In some embodiments, the photon receiver comprises two arms, each arm associated with a BB84 basis, and a non-polarizing 50:50 beamsplitter that couples the two arms.
In some embodiments, the at least one quantum channel is a free space channel. In some embodiments, the wavelength of the emitted photon is 400 nm to 1100 nm. In some embodiments, the at least one quantum channel is a free space channel and the wavelength of the emitted photon is 400 nm to 1100 nm.
In some embodiments, the at least one quantum channel is a fiber optic channel. In some embodiments, the wavelength of the emitted photon is 1100 nm to 1600 nm. In some embodiments, the at least one quantum channel is a fiber optic channel and the wavelength of the emitted photon is 1100 nm to 1600 nm.
In some embodiments, the second photodetector is a four channel single photon counting avalanche photodiode (APD) array. In some embodiments, the second photodetector is configured to simultaneously detect the polarization dependence of the backflash from the first photodetector. In some embodiments, the second photodetector is a four channel single photon counting avalanche photodiode (APD) array and configured to simultaneously detect the polarization dependence of the backflash from the first photodetector.
In some embodiments, the first photodetector is a four channel single photon counting avalanche photodiode (APD) array. In some embodiments, the first photodetector is configured to simultaneously detect the polarization state of the emitted photon from the photon emitter. In some embodiments, the first photodetector is a four channel single photon counting avalanche photodiode (APD) array and configured to simultaneously detect the polarization state of the emitted photon from the photon emitter.
In some embodiments, the second polarization optic comprises an adjustable linear polarizer. In some embodiments, the second polarization optic can include a plurality of second polarization optics. In some embodiments, the first polarization optic can include a plurality of first polarization optics. In some embodiments, the emitted photon from the photon emitter is circularly polarized. In some embodiments, the emitted photon from the photon emitter is linearly polarized. In some embodiments, the emitted photon from the photon emitter is elliptically polarized. In some embodiments, the emitted photon from the photon emitter is randomly polarized.
In some embodiments, the apparatus includes a calibration of the quantum key distribution system based on the polarization dependence of the backflash. In some embodiments, the apparatus includes a trigger for an alarm subsystem based on the polarization dependence of the backflash. In some embodiments, the apparatus includes a deterrent for subsequent measurement of the backflash based on the polarization dependence of the backflash.
In some embodiments, a quantum key distribution system for characterizing backflashes includes a photon emitter configured to emit a photon at a wavelength, a photon receiver coupled to the photon emitter by at least one quantum channel and including a first polarization optic configured to output a polarization state of the emitted photon, a first photodetector configured to detect the photon emitted from the output of the first polarization optic, a second photodetector configured to detect a backflash from the first photodetector, a second polarization optic between the first photodetector and the second photodetector. In some embodiments, the second polarization optic is configured to detect a polarization dependence of the backflash from the first photodetector.
In some embodiments, a data acquisition subsystem is coupled to the second photodetector. In some embodiments, the data acquisition subsystem characterizes the polarization dependence of the backflash. In some embodiments, the data acquisition subsystem includes an alarm subsystem based on the polarization dependence of the backflash. In some embodiments, the data acquisition subsystem is configured to decrypt a quantum key distribution between the photon emitter and the photon receiver.
In some embodiments, the system includes a calibration of the quantum key distribution system based on the polarization dependence of the backflash. In some embodiments, the system includes a trigger for an alarm subsystem based on the polarization dependence of the backflash. In some embodiments, the system includes a deterrent for subsequent measurement of the backflash based on the polarization dependence of the backflash.
In some embodiments, a method for characterizing backflashes in a quantum key distribution system includes emitting a photon from a photon emitter at a wavelength, transferring the emitted photon by at least one quantum channel to a photon receiver, receiving the emitted photon through a first polarization optic with a first photodetector, detecting a backflash from the first photodetector with a second photodetector, and characterizing a polarization dependence of the backflash through a second polarization optic.
In some embodiments, the method includes calibrating the quantum key distribution system based on the polarization dependence of the backflash. In some embodiments, the method includes triggering an alarm subsystem based on the polarization dependence of the backflash. In some embodiments, the method includes deterring subsequent measurement of the backflash based on the polarization dependence of the backflash.
In some embodiments, deterring subsequent measurement of the backflash includes implementing an optical isolator, an optical circulator, an optical modulator, and an optical filter, or some combination thereof.
The accompanying drawings are incorporated herein and form a part of the specification.
In the drawings, like reference numbers generally indicate identical or similar elements. Additionally, generally, the left-most digit(s) of a reference number identifies the drawing in which the reference number first appears.
Embodiments of the present disclosure are described in detail with reference to embodiments thereof as illustrated in the accompanying drawings. References to “one embodiment,” “an embodiment,” “some embodiments,” etc., indicate that the embodiment(s) described may include a particular feature, structure, or characteristic, but every embodiment may not necessarily include the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
The following examples are illustrative, but not limiting, of the embodiments of this disclosure. Other suitable modifications and adaptations of the variety of conditions and parameters normally encountered in the field, and which would be apparent to those skilled in the relevant art(s), are within the spirit and scope of the disclosure.
Quantum key distribution (QKD) is a method for sharing of secret cryptographic keys between two parties with an unprecedented level of security. A sender (sometimes referred to herein as “Alice”) encodes a secret key in the form of quantum states and transmits them to a receiver (sometimes referred to herein as “Bob”), who performs quantum measurements to obtain the key. Alice and Bob then use the shared secret key to send encrypted messages to each other. Ideal secrecy is achieved when the probability distribution of all possible unencrypted messages is equal to the probability distribution of all possible encrypted messages. This level of security is assured by the laws of quantum mechanics and does not depend on technological resources available to an eavesdropper (sometimes referred to herein as “Eve”), provided that the QKD implementation does not deviate from its theoretical model. However, the security of practical systems depends on their device implementations. Deviations of QKD devices from their theoretical model can be exploited by an eavesdropper though side-channel or back-door attacks.
Practical QKD implementations utilize protocols, for example, BB84, with photons as the quantum state carriers that can utilize existing long-distance fiber communication networks. Recently, free-space QKD systems have been explored for their potential global scale applications, eliminating fibers and utilizing optical communication from ground to low-orbital satellites. Such implementations typically use single photon avalanche photodiodes (SPADs) to measure quantum basis states. Systems that use a free-space quantum channel, generally 400 nm to 1100 nm wavelengths, typically employ silicon (Si) SPADs, whereas systems that use a fiber optic quantum channel, generally 1100 nm to 1600 nm wavelengths, in telecommunications networks use indium gallium arsenide (InGaAs) SPADs. Avalanches of charge carriers in both Si and InGaAs SPADs are known to be accompanied by photon back reflections or secondary emissions, known generally as backflashes, due to electron-hole recombination in the SPADs. Such backlash photons could carry information regarding the qubits sent by Alice to Bob. Since it is impossible to directly measure a quantum state without collapsing it, Eve cannot intercept states mid-transmission to acquire the keys without destroying the quantum state. However, Eve may be able to utilize backflashes to tap into the quantum channel shared between Alice and Bob and go undetected, since the quantum bit error rate (QBER) is independent of backflash photons.
Backflashes are secondary photons or secondary emissions caused by electron-hole recombination and carrier relaxation (e.g., direct, phonon-assisted, or Bremsstrahlung) in a photodiode that occur when photons impinge a semiconductor material. Avalanche photodiodes (APDs) utilize a semiconductor p-n junction and when the reverse bias voltage of the p-n junction is raised to a breakdown voltage, absorption by a single photon generates carriers in the conduction band which triggers an avalanche process. The avalanche process generates a measureable current which can be used to register the detection time of a single photon. Backflashes may be either absorbed in a quiescent region of the semiconductor, triggering new avalanches, or may be coupled back into the quantum channel and tapped by Eve who can potentially deduce the states of the original information-carrying photons. Since the creation of backflashes is a random process, Alice and Bob have no knowledge of or control over backflashes that escape Bob's receiver. As backflashes exit Bob's receiver, for example, a BB84 receiver, they acquire distinct polarization states by transmitting through optical elements in Bob's receiver. Thus, a backflash can obtain a unique polarization state based on the polarization optics and scheme in the photon receiver.
Photon receiver 104 may include first polarization optic 108, first photodetector 112, and receiver input port 132. Emitted photon 116 with polarization state 122 transmits through receiver input port 132 and first polarization optic 108. First polarization optic 108 is configured to output polarization state 122 of emitted photon 116. For example, as shown in
In some embodiments, quantum cryptography apparatus 100 can further include Eve with eavesdropping receiver 106. Eavesdropping receiver 106 can include second polarization optic 110, second photodetector 114, and optical circulator 134. As shown in
As will be appreciated by persons skilled in the relevant art(s), BB84 is a QKD scheme developed by Bennett and Brassard in 1984, and was the first quantum cryptography protocol. In some embodiments, BB84 can be implemented using photon polarization, photon phase, or photon frequency encoding. When modeled as a two-state quantum system, photon polarization includes two quantum states that form a complete orthogonal basis spanning the two-dimensional Hilbert space. A common pair of basis states is horizontal |H=|0and vertical |V=|1, which are orthogonal to each other and form polarization basis HV. Through superposition, two additional orthogonal states can be created and deemed antidiagonal |A=|− and diagonal |D=|+, which are orthogonal to each other and form polarization basis AD, but are non-orthogonal to polarization basis HV. Thus, together bases HV and AD give the following four qubit states:
Upon measurement, |H and |A correspond to bit 0, and |Vand |D correspond to bit 1. In order to send randomly polarized photons, Alice randomly chooses a polarization basis, either HV or AD, and records this basis information. Alice then creates a photon with a random polarization in that selected basis, and records the polarization state of the emitted photon and the associated bit value before sending to Bob over the quantum channel. Thus, each photon Alice creates has a random polarization state with a 25% probability of being either |H, |V, |A, or |D. Likewise, Bob randomly chooses a polarization basis, either HV or AD, records this basis information, and measures the random polarization state in the form of a corresponding bit, either 0 or 1, for each received photon.
In some embodiments, Alice creates a photon with random polarization by using four photon sources, for example, diode lasers, each associated with one of the four polarization states 122 used in the BB84 protocol. In some embodiments, Alice creates a photon with random polarization by using a single photon source and polarization optics, similar to first polarization optic 108, to create four polarization paths, each associated with one of the four polarization states 122 used in the BB84 protocol. In some embodiments, the polarized emitted photon 116 is then transmitted to Bob along a fiber optic channel 138. In some embodiments, the polarized emitted photon 116 is then transmitted to Bob along free-space channel 136.
First and second polarizing beamsplitters 224, 226 split emitted photon 116 according to whether emitted photon 116 is p-polarized (parallel to beamsplitter) or s-polarized (orthogonal to beamsplitter). If emitted photon 116 transmits through non-polarizing 50:50 beamsplitter 202, it enters first arm 204 and is detected by either first APD 214 or second APD 216 in HV basis 208. For example, emitted photon 116 that has polarization state 122 of |H transmits through first polarizing beamsplitter 224 and impinges first APD 214 and registers as bit 0 in first photodetector output 228. Similarly, in HV basis 208, emitted photon 116 that has polarization state 122 of |V is split and reflected by first polarizing beamsplitter 224 and impinges second APD 216 and registers as bit 1 in first photodetector output 228.
Alternatively, if emitted photon 116 is reflected by non-polarizing 50:50 beamsplitter 202, it enters second arm 206 and is detected by either third APD 218 or fourth APD 220 in AD basis 210. As emitted photon 116 enters second arm 206, it transmits through half-wave plate (π/8) 222, which when rotated π/8 (i.e., 22.5°) with respect to the horizontal, has the effect of rotating the linear polarization of emitted photon 116 by π/4 (i.e., 45°). For example, after being rotated by half-wave plate (π/8) 222, emitted photon 116 that has polarization state 122 of |D transmits through second polarizing beamsplitter 226 and impinges fourth APD 220 and registers as bit 1 in first photodetector output 228. Similarly, in AD basis 210, after being rotated by half-wave plate (π/8) 222, emitted photon 116 that has polarization state 122 of |A is split and reflected by first polarizing beamsplitter 224 and impinges third APD 218 and registers as bit 0 in first photodetector output 228.
Due to the design of BB84 receiver 200, any backflash 118 created by four-channel APD array 212 acquires specific polarization information as backflash 118 transmits back through first polarization optic 108 and exits receiver input port 132. There is no direct coherence, classical or quantum, between emitted photon 116 from Alice and backflash 118 from Bob, since emitted photon 116 is destroyed (e.g., absorbed, annihilated, recombined, etc.) in the measurement process with first photodetector 112, and backflash 118 created is an ordinary unpolarized photon. For example, when backflash 118 generates in and exits first APD 214, only backflash 118 with polarization state 122 of |H transmits back through first polarizing beamsplitter 224, and any other backflash 118 with a different polarization state 122 is reflected and lost. When backflash 118 with polarization state 122 of |H from first APD 214 reaches non-polarizing 50:50 beamsplitter 202, backflash 118 is either transmitted and exits receiver input port 132 or is reflected and lost with equal probability. A similar procedure occurs for backflash 118 when generated by the other respective APDs 216, 218, 220. Since each of Bob's APDs 214, 216, 218, 220 will produce backflash 118 with one of four unique polarization states 122, Eve is able to accurately reconstruct the results of Bob's measurements.
In some embodiments, quantum channel 120 is fiber optic channel 138. Polarization state 122 of emitted photon 116 can be transformed as emitted photon 116 travels along fiber optic channel 138. In some embodiments, third polarization optic 230 is utilized, for example, a set of waveplates, to transform polarization state 122 of emitted photon 116 back to the original state sent by Alice. In some embodiments, BB84 receiver 200 can include receiver fiber optic port 142.
In 302, as shown in the example of
Alternatively, as shown in the example of
In 304, as shown in the example of
Alternatively, as shown in the example of
In 306, as shown in the example of
Alternatively, as shown in the example of
In 308, as shown in the example of
Alternatively, as shown in the example of
Emitted laser pulse 438 transmits along free-space channel 444 through optical filter 418 to BB84 receiver 200. As described above, BB84 receiver 200 detects emitted laser pulse 438, similar to emitted photon 116, and sends BB84 receiver output 432 to TCSPC system 404. Backflash 440 created by BB84 receiver 200 travels in the opposite direction of emitted laser pulse 438 and is reflected off optical filter 418 and routed to second polarizer 426 and backflash APD 428. In some embodiments, due to the rotated optical filter 418, 99.9% of backflash 440 is reflected off optical filter 418, while the other 0.01% of backflash 440 is transmitted through optical filter 418 and lost. Second polarizer 426 can determine correlations between the polarization of emitted laser pulse 438 and backflash 440. Second polarizer 426 is mounted between optical filter 418 and backflash APD 428. Similar to eavesdropping receiver 106 with second photodetector 114, backflash APD 428 can be a SPAD or multi-channel APD array. For example, similar to second photodetector 114, backflash APD 428 can be a SPAD (e.g., Perkin-Elmer® SPCM-AQR-15-FC™, etc.). For example, similar to second photodetector 114, backflash APD 428 can be four channel single photon APD array 212 (e.g., Perkin-Elmer® SPCM-AQ4C™, etc.). Backflash APD 428 detects backflash 440 and polarization dependence 124 of backflash 440, similar to backflash 118, and sends backflash APD output 434 to TCSPC system 404 which characterizes polarization dependence 124 of backflash 440.
In some embodiments, second polarizer 426 can be adjustable linear polarizer 446. In some embodiments, second polarizer 426 can include an actuator or a transducer for incrementally rotating second polarizer 426 about its axis in increments of fractions of a degree. For example, adjustable linear polarizer 446 can be mounted within a rotator (e.g., ThorLabs® Model PRM1Z8 Motorized Precision Rotation Mount™, etc.) for computerized control of the angle of adjustable linear polarizer 446 with respect to the horizontal. In some embodiments, as shown in
In some embodiments, data acquisition is handled by TCSPC system 404. TCSPC system 404 is coupled to pulse generator 402, BB84 receiver 200, and backflash APD 428. Pulse generator 402 provides time reference signal 436 to synchronize (SYNC) the internal clock of TCSPC system 404. Pulse generator 402 also sends duplicate laser trigger 442 with an advance of, for example, 1 microsecond, relative to laser trigger 430 to provide a signal to SYNC Channel. SYNC Channel synchronizes and initiates data collection by TCSPC system 404, and operates as an electrical timing reference channel to compare with laser trigger 430, emitted laser pulse 438, BB84 receiver output 432, backflash 440, and backflash APD 434 signals. For example, SYNC Channel can permit real-time scanning of an ordered stream of recorded timing events. BB84 receiver output 432 is sent to TCSPC system 404, which corresponds to the output of four channel APD array 212. For example, first APD 214 corresponds to Channel 1, second APD 216 corresponds to Channel 2, third APD 218 corresponds to Channel 3, and fourth APD 220 corresponds to Channel 4. TCSPC system 404 records the start of each laser pulse cycle and the global time of every event in every channel. For example, when APD 214, 216, 218, 220 detects emitted laser pulse 438 or backflash APD 428 detects backflash 440, respective BB84 receiver output 432 or backflash APD output 434 is sent to TCSPC system 404, which time tags the signal as an event in that corresponding channel. In some embodiments, TCSPC system 404 can be a commercial unit (e.g., PicoQuant® HydraHarp 400™, etc.) operated with 1 picosecond resolution, for example.
In some embodiments, backflash calibration setup 400 can include variable attenuator 408. For example, as shown in
In some embodiments, backflash calibration setup 400 can include first polarizer 414 and quarter-wave plate 416. For example, as shown in
I=I0 cos2(θ),
where I is the measured light intensity, I0 is the incident intensity, and θ is the angle between the direction of polarization of the incident light and the linear polarizer. Individual slices of backflash data can be fit with the following generic function:
A cos2(Bx+C)+D,
where A is the amplitude, 2π/B is the period, C/B is the phase shift, and D is the vertical shift. One can assume B=1, since only data associated with linear polarizer angles of 0° to 180° provide correlations between backflash events and polarization due to the symmetry of adjustable linear polarizer 446.
As shown in the example of
Photon receiver 604 may include BB84 receiver 200, backflash receiver 606, data acquisition (DAQ) subsystem 634, and first input port 654. As described above, BB84 receiver 200 may include first polarization optic 108, first photodetector 112, and receiver input port 132. Emitted photon 616 with polarization state 622 transmits through receiver input port 132 and first polarization optic 108. First polarization optic 108 is configured to output polarization state 622 of emitted photon 616. For example, first polarization optic 108 can be non-polarizing 50:50 beamsplitter 202. In some embodiments, first polarization optic 108 can be a plurality of first polarization optics including, for example, non-polarizing 50:50 beamsplitter 202, half-wave plate (π/8) 222, first polarizing beamsplitter 224, and/or second polarizing beamsplitter 226, or any combination thereof. First photodetector 112 is configured to detect emitted photon 616 from the output of first polarization optic 108. In some embodiments, first photodetector 112 is four channel single photon APD array 212. For example, four channel single photon APD array 212 is configured to simultaneously detect polarization state 622 of emitted photon 616 from photon emitter 602. As shown in
Backflash receiver 606 can include second polarization optic 610, second photodetector 614, and backflash optical circulator 632. As shown in
DAQ subsystem 634 may be coupled to BB84 receiver 200 and backflash receiver 606, and may characterize polarization dependence 624 of backflash 618. DAQ subsystem 634 measures first photodetector output 628 from first photodetector 112 of BB84 receiver 200 and second photodetector output 630 from second photodetector 614 of backflash receiver 606. DAQ subsystem 634 detects and measures signals received by BB84 receiver 200 and backflash receiver 606. For example, DAQ subsystem 634 can detect and measure emitted photon 616 received by BB84 receiver 200, and determine polarization state 622 and basis (either HV basis 208 or AD basis 210) of emitted photon 616 by measuring which APD 214, 216, 218, 220 a signal or time stamp of emitted photon 616 during a finite time window is detected. Similarly, for example, DAQ subsystem 634 can detect and measure backflash 618 generated by BB84 receiver 200 and collected by second photodetector 614, and determine polarization dependence 624 of backflash 618 by configuring second polarization optic 610. For example, second polarization optic 610 can be configured to mimic that of first polarization optic 108 of BB84 receiver 200 and second photodetector 614, similar to four channel single photon APD array 212, can measure which APD 214, 216, 218, 220 a signal or time stamp of backflash 618 during a finite time window is detected.
In some embodiments, DAQ subsystem 634 can include pulse generator 402, TCSPC system 404, signal conditioning circuitry 656, analog-to-digital converters (ADC) 658, processor 660, memory 662, and/or central processing unit (CPU) 664, or some combination thereof. In some embodiments, DAQ subsystem 634 is configured to decrypt the QKD or secret key transmitted between photon emitter 602 and photon receiver 604 by Alice to Bob. For example, backflash receiver 606 can determine polarization state 622 and basis (either HV basis 208 or AD basis 210) of emitted photon 616 by measuring backflash 618 generated by BB84 receiver 200 and collected by second photodetector 614, and determine polarization dependence 624 of backflash 618 by configuring second polarization optic 610 to mimic that of first polarization optic 108 of BB84 receiver 200.
In some embodiments, DAQ subsystem 634 is configured to calibrate QKD system 600 based on polarization dependence 624 of backflash 618. For example, DAQ subsystem 634 can calibrate an information leakage percentage of QKD system 600 based on detected correlations between measured polarization state 122 of emitted photon 616 by BB84 receiver 200 and corresponding backflash 618 by backflash receiver 606. In some embodiments, DAQ subsystem 634 or QKD system 600 is configured to calibrate an external QKD system or quantum cryptography system. For example, the external QKD system can be calibrated by measuring polarization dependence 624 of backflash 618 and determining an information leakage percentage of the external QKD system based on detected correlations, for example, number of corresponding registered bits (either 0 or 1) between measured polarization state 122 of emitted photon 616 by BB84 receiver 200 and corresponding backflash 618 by backflash receiver 606. For example, an external QKD system or quantum cryptography system can be a commercial system (e.g., ID Quantique (SwissQuantum), MagiQ Technologies, Inc. (Navajo), QuintessenceLabs (qCrypt), SeQureNet (Cygnus), etc.) or a QKD network (e.g., DARPA, SECOQC, Tokyo QKD, Los Alamos, etc.).
In some embodiments, QKD system 600 can include alarm subsystem 636. In some embodiments, as shown in
In some embodiments, QKD system 600 can include deterring subsequent measurement mechanism 638. For example, as shown in
In some embodiments, backflash receiver 606 can be omitted from QKD system 600. In some embodiments, backflash optical circulator 632 can be omitted from QKD system 600. In some embodiments, backflash optical circulator 632 can be dynamically controlled by DAQ subsystem 634 or alarm subsystem 636. For example, alarm signal 666 can be coupled to backflash optical circulator 632 and trigger activation of backflash optical circulator 632 to siphon off backflash 618.
The present disclosure has been described above with the aid of functional building blocks illustrating the implementation of specified functions and relationships thereof. The boundaries of these functional building blocks have been arbitrarily defined herein for the convenience of the description. Alternate boundaries can be defined so long as the specified functions and relationships thereof are appropriately performed.
The foregoing description of the specific embodiments will so fully reveal the general nature of the disclosure that others can, by applying knowledge within the skill of the art, readily modify and/or adapt for various applications such specific embodiments, without undue experimentation, without departing from the general concept of the present disclosure. Therefore, such adaptations and modifications are intended to be within the meaning and range of equivalents of the disclosed embodiments, based on the teaching and guidance presented herein. It is to be understood that the phraseology or terminology herein is for the purpose of description and not of limitation, such that the terminology or phraseology of the present specification is to be interpreted by the skilled artisan in light of the teachings and guidance.
The breadth and scope of the present disclosure should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
Stack, Daniel, Pappas, Stephen, Rodenburg, Brandon, Lualdi, Colin
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
8213616, | Sep 18 2006 | Georgia Tech Research Corporation | Systems and methods for providing opportunistic security for physical communication channels |
9294271, | Jul 31 2013 | Oki Electric Industry Co., Ltd. | Quantum-key-distribution receiving device and method for using single-photon detector |
9634835, | Oct 08 2010 | ID QUANTIQUE SA | Apparatus and method for the detection of attacks taking control of the single photon detectors of a quantum cryptography apparatus by randomly changing their efficiency |
20120177201, | |||
20140119537, | |||
20140205301, | |||
20150236791, | |||
20170222731, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 01 2017 | STACK, DANIEL T | The MITRE Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043660 | /0256 | |
Sep 01 2017 | PAPPAS, STEPHEN P | The MITRE Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043660 | /0256 | |
Sep 01 2017 | RODENBURG, BRANDON V | The MITRE Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043660 | /0256 | |
Sep 01 2017 | LUALDI, COLIN P | The MITRE Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043660 | /0256 | |
Sep 12 2017 | The MITRE Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 12 2017 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Oct 05 2017 | SMAL: Entity status set to Small. |
Jun 02 2023 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Date | Maintenance Schedule |
May 26 2023 | 4 years fee payment window open |
Nov 26 2023 | 6 months grace period start (w surcharge) |
May 26 2024 | patent expiry (for year 4) |
May 26 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 26 2027 | 8 years fee payment window open |
Nov 26 2027 | 6 months grace period start (w surcharge) |
May 26 2028 | patent expiry (for year 8) |
May 26 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 26 2031 | 12 years fee payment window open |
Nov 26 2031 | 6 months grace period start (w surcharge) |
May 26 2032 | patent expiry (for year 12) |
May 26 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |