multistage thermal trigger devices disclosed herein may include a first stage and a second stage, wherein the first stage activates at a first temperature, and wherein the second stage activates at a second temperature. The first stage activates an arming assembly so that the second stage is armed. The second stage may then activate the output of the multistage thermal trigger device, via the arming assembly, when the second temperature is reached. An autoignition material (AIM) capsule is also disclosed herein. The AIM capsule may be deployed in connection with the disclosed multistage thermal trigger devices.
|
1. A multistage thermal trigger device, comprising:
a first stage which activates at a first temperature;
an arming assembly having a disarmed position and an armed position, wherein the first stage is coupled with the arming assembly in order to reposition the arming assembly from the disarmed position to the armed position when the first stage is activated; and
a second stage which activates at a second temperature, wherein the second temperature is higher than the first temperature;
wherein the second stage is adapted to activate an output assembly via the arming assembly when the second stage activates and the arming assembly is in the armed position, wherein the second stage cannot activate the output assembly when the arming assembly is in the disarmed position.
2. The thermal trigger device of
3. The thermal trigger device of
4. The thermal trigger device of
5. The thermal trigger device of
a hermetically or environmentally sealed capsule;
an autoignition material disposed inside the hermetically or environmentally sealed capsule;
a gas permeable retainer system which retains the autoignition material in position; and
a burst orifice for gas output upon activation of the autoignition material.
6. The thermal trigger device of
7. The thermal trigger device of
8. The thermal trigger device of
9. The thermal trigger device of
10. The thermal trigger device of
in the safe mode, the first stage is decoupled from the arming assembly or disabled so that the first stage does not reposition the arming assembly from the disarmed position to the armed position in response to activation of the first stage; and
in the enable mode, the first stage is coupled with the arming assembly or enabled so that the first stage does reposition the arming assembly from the disarmed position to the armed position in response to activation of the first stage.
11. The thermal trigger device of
13. The thermal trigger device of
14. The thermal trigger device of
15. The thermal trigger device of
16. The thermal trigger device of
17. The thermal trigger device of
whether the arming assembly is or has been in the armed position;
whether the second stage has activated;
whether the booster or detonator in the arming assembly has activated; or
whether any deflagrating or detonating material within the thermal trigger device has activated.
18. The thermal trigger device of
19. The thermal trigger device of
21. The thermal trigger device of
22. The thermal trigger device of
|
This is a nonprovisional claiming priority under 35 U.S.C. § 119 of U.S. Provisional Patent Application No. 62/273,165, entitled “MULTISTAGE THERMAL TRIGGER”, filed on Dec. 30, 2015. The prior application is incorporated by reference herein in its entirety.
This invention was made in part with Government support under Agreement W15QKN-09-9-1001 awarded by the U.S. Department of Defense. The Government has certain rights in this invention.
Unless otherwise indicated herein, the materials described in this section are not prior art to the claims in this application and are not admitted to be prior art by inclusion in this section.
A thermal trigger may be used to activate, or “trigger” any system, such as fire safety systems and the like, responsive to temperature. It will be appreciated that there are a wide variety of current and potential future applications for thermal triggers. For example, thermal triggers may be used in virtually any environment presenting a risk of fire or overheating. Thermal triggers may be useful in building and vehicle safety, nuclear and coal fired power plants, electrical transmission lines and substations, storage of combustible or explosive materials, storage of fragile heat-sensitive materials, protection of supercomputers, protection of servers in datacenters, mining operations, rocket motor or fuel ignition systems, storage, transport, and tactical use of solid rocket motors, shipping containers for rocket motors or heat sensitive materials, explosives or hazardous waste, warheads, munitions, propulsion systems, combustion engines, and/or any number of other environments.
A multistage thermal trigger device is disclosed. In some embodiments, multistage thermal trigger devices may include a first stage and a second stage, wherein the first stage activates at a first temperature, and wherein the second stage activates at a second temperature. The first stage may comprise, e.g., a thermal actuator which activates at the first temperature. The thermal actuator may be coupled with an arming assembly having a disarmed position and an armed position. The first stage may reposition the arming assembly from a disarmed position to an armed position in response to activation of the first stage.
The second stage may comprise, e.g., an autoignition material (AIM) capsule which activates at the second temperature, wherein the second temperature is higher than the first temperature. When the second stage is activated, it may in turn activate an output assembly via the arming assembly. The multistage thermal trigger may be configured such that the second stage may activate the output assembly when the arming assembly is in the armed position, and the output assembly cannot be activated by the second stage when the arming assembly is in the disarmed position.
An AIM capsule such as may be used in multistage thermal trigger devices is also disclosed herein. In some examples, AIM capsules may include a hermetically or environmentally sealed capsule; an autoignition material disposed inside the hermetically or environmentally sealed capsule; a gas permeable retainer system which retains the autoignition material in position; a stabilizer disposed inside the hermetically or environmentally sealed capsule; and a burst disc comprising a burst orifice for gas output upon activation of the autoignition material.
Additional aspects of this disclosure are described in further detail below.
The foregoing and other features of the present disclosure will become more fully apparent from the following description and appended claims, taken in conjunction with the accompanying drawings. Understanding that these drawings depict only several embodiments in accordance with the disclosure and are, therefore, not to be considered limiting of its scope, the disclosure will be described with additional specificity and detail through use of the accompanying drawings, in which:
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here. It will be readily understood that the aspects of the present disclosure, as generally described herein, and illustrated in the Figures, may be arranged, substituted, combined, and designed in a wide variety of different configurations, all of which are explicitly contemplated and made part of this disclosure.
The present disclosure is generally drawn, inter alia, to technologies including multistage thermal trigger devices and methods for manufacturing and operating such devices, as well as AIM capsules which may be deployed in connection with the disclosed multistage thermal trigger devices or other devices. In some embodiments, multistage thermal trigger devices may include a first stage and a second stage, wherein the first stage activates at a first temperature, and wherein the second stage activates at a second temperature. The first stage activates an arming assembly so that the thermal trigger device is armed. The second stage may then activate an output of the multistage thermal trigger device, via the arming assembly, when the second temperature is reached. If the arming assembly is not armed by the first stage, then the second stage is prevented from activating the output. Also, if the multistage thermal trigger device does not reach the second temperature, the second stage need not activate the output, even if the arming assembly is armed by the first stage. The multistage thermal trigger device may further include a mechanism to disarm the arming assembly when the thermal trigger device drops below the first temperature, and/or prior to reaching the second temperature, as well as a variety of other useful features disclosed herein.
This disclosure will generally use storage of combustible or explosive materials as an example scenario in which thermal triggers may be deployed, understanding that multistage thermal trigger devices may be deployed in any number of other scenarios as noted in the background section, and the disclosed multistage thermal trigger devices are not limited to any particular scenario. Energetic materials, such as explosives and propellants, are often found in confined spaces within munitions such as solid rocket motors. When these munitions are exposed to extreme heat (as from a fire) or when impacted by bullets or fragments from other munitions, the energetic materials may be initiated. Initiation of the propellants or explosives in this manner in a confined configuration leads to over pressurization of the munition followed by an explosion or detonation. This poses a significant hazard to military personnel, fire fighters and first responders in these scenarios.
Efforts have been made to develop “Insensitive Munitions,” which are munitions that are generally incapable of detonation except in its intended mission to destroy a target. In other words, if fragments from an explosion strike an IM, if a bullet impacts the IM, or if the insensitive munition is in close proximity to a target that is hit, it is less likely that the insensitive munition will detonate. Similarly, if the insensitive munition is exposed to extreme temperatures, as from a fire, the insensitive munition will likely only burn, rather than explode. The extreme temperatures from a fire may be described as fast cook off (FCO) and slow cook off (SCO). To prove effectiveness, insensitive munitions may be tested in both FCO and SCO conditions. SCO may be described as a heating rate of 6° F./h or slower, and FCO may be described as direct impingement from a fuel fire with a flame temperature of up to 1600° F. or hotter within seconds. Multistage thermal trigger devices may respond in SCO and FCO environments, at faster and slower heating rates, and/or at heating rates in between those produced in SCO and FCO. Multistage thermal trigger devices may respond in any type fire or extreme heat environment.
One way that insensitive munitions may be made more insensitive is through active or passive mitigation approaches that include venting by splitting the case or ejecting the nozzle to increase the vent area and prevent over pressurization in FCO or SCO. Thus in some embodiments, multistage thermal trigger devices as disclosed herein may be configured to trigger thermally initiated venting systems or linear shaped charges (LSCs) installed on munitions and/or solid rocket motors. Multistage thermal trigger devices may be designed to respond to extreme fire conditions and initiate venting systems or LSCs. For example, the disclosed multistage thermal trigger devices may be adapted to initiate an output assembly comprising a detonation transfer line that is attached to an application comprising a linear shaped charge device that cuts or scores a munition casing.
In
In
In some embodiments, application 160 may comprise an electronic thermally initiated venting system, and the output assembly 150 may comprise, for example, a thermal battery and electronic or electromechanical safety and arming system, or a mechanical safety and arming system adapted to mechanically initiate the application 160. As noted herein, the output assembly 150 may optionally be integrated into the thermal trigger device 100.
In
In
Initiation of the detonation transfer line 350 by the multistage thermal trigger device 300 illustrated in
In the uninstalled thermal trigger device 300 illustrated in
In the installed thermal trigger device 300 illustrated in
If the AIM capsule 340 were to fire in an installed thermal trigger device 300 such as illustrated in
In some embodiments, the install interlock pin 331 may be replaced by, or supplemental to, a lock-out mechanism. Example lock-out mechanisms may generally prevent the thermal trigger device 300 from entering certain modes. For example, in some embodiments, a lock-out mechanism may prevent manual engagement of install interlock pin 331. In some embodiments, a lock-out mechanism may prevent rotation or translation of the rotor assembly 320 or equivalent functionality. In some embodiments, a lock-out mechanism may prevent manual switching of thermal trigger device 300 into an enable mode, which is discussed in further detail in connection with
When the thermal trigger device 300 is installed, the selector/indicator 330 may indicate when the arming assembly 320 is in a “safe” mode, an “enabled” mode, or an “armed” mode. In some embodiments, the selector/indicator 330 may be manually set to an “enable” position, which is discussed further in connection with
In some embodiments, the thermal actuator 310 may contain, e.g., any thermal expansion or contraction material which expands or contracts when heated. In some embodiments, the thermal actuator 310 may contain a melt plug, eutectic material, or other thermally responsive material. In some embodiments, the thermal actuator 310 may contain a paraffin blend which may be customized to activate at a desired first temperature 101. The paraffin blend may expand and contract to move thermal actuator 310 and arming slider 312. Paraffin blend thermal actuators can be customized to actuate at desired arming temperatures up to, e.g., approximately 300° F. or higher. If the thermal stimuli is removed before reaching the critical temperature to activate AIM capsule 340, the paraffin in the thermal actuator 310 may retract, returning the booster 322 in the rotor assembly 320 out of line with the AIM capsule 340, and returning the mechanical barrier of a rotor assembly 320 sidewall back in line with the AIM capsule 340, so the thermal trigger device 300 is again disarmed and re-safed.
The illustrated rotor assembly 320 is one embodiment of an arming assembly 120, however it will be appreciated that other arrangements, such as slider assemblies, linear motion assemblies, piston assemblies, electrically activated assemblies, magnet assemblies, pivot assemblies and any number of other arrangements may be employed as an arming assembly 120, with the benefit of this disclosure. When the illustrated rotor assembly 320 is in the disarmed position, the multistage thermal trigger device 300 has a mechanical barrier, in the form of a rotor assembly 320 sidewall, between the AIM capsule 340 and the detonation transfer line 350. Furthermore, there is a mechanical barrier (a rotor assembly 320 sidewall) between the booster 322 and the detonation transfer line 350.
In some embodiments, the AIM capsule 340 and booster 322 may contain “primary” explosives while the detonation transfer line 350 may comprise a “secondary” explosive. The illustrated example multistage thermal trigger device 300 includes a mechanical barrier between the primary and the secondary explosives. Such arrangements are particularly useful for scenarios in which certain primary explosives are not approved for use which is “in-line” with secondary explosives. In
Booster 322 may be employed to boost the output of AIM capsule 340. In some embodiments, the booster 322 may comprise a deflagrating or detonating propellant or explosive, e.g., boron potassium nitrate (BKNO3), lead azide and/or hexanitrostilbene (HNS) or similar type propellants. When the rotor assembly 320 is repositioned into the armed position, the booster 322 is repositioned between the AIM capsule 340 and the detonation transfer line 350. When the AIM capsule 340 fires, it activates the booster 322 which in turn activates the detonation transfer line 350 inserted in the detonation transfer line interface 351.
It will be appreciated that booster 322 need not be included in some embodiments. For example, in an “inert barrier” embodiment, rotor assembly 320 may omit booster 322, and rotor assembly 320 may instead simply remove an inert mechanical barrier between AIM capsule 340 and detonation transfer line 350, so that AIM capsule 340 activates detonation transfer line 350 without the added benefit of booster 322. In a “deflagration output” embodiments, booster 322 may comprise a material designed to burn rather than detonate. In another embodiment, the AIM capsule 340 output may activate a propellant or other type output assembly.
AIM capsule 340 may comprise an autoignition material or propellant that automatically ignites at a specified second temperature 131. The second temperature 131 may comprise any temperature which is higher than the first temperature 101. After the multistage thermal trigger device 300 is armed at the first temperature 101 as described herein, and as the temperature of the multistage thermal trigger device 300 increases past second temperature 131, the autoignition material in the AIM capsule 340 ignites and triggers a pyrotechnic train to initiate the detonation transfer line 350 and ultimately to activate the application 160. The AIM capsule 340 is described in further detail in connection with
While
While
In some embodiments, multistage thermal trigger devices disclosed herein may respond within suitable temperature ranges in slow cook-off (SCO) and fast cook-off (FCO) environments, and may initiate thermally initiated venting systems to prevent catastrophic failure of solid rocket motors. An insensitive munition thermal sensor design, such as illustrated in
Embodiments of this disclosure may implement any desired event sequencing within a multistage thermal trigger device, as a function of temperature. For example, in some embodiments, multistage thermal trigger devices may be designed activate the first stage 110 at a first temperature 101 around 100° C.-120° C., and to activate the second stage 140 at a second temperature 131 around 120° C.-140° C. Other examples may activate the first stage 110 and/or second stage 140 at higher or lower temperatures, with the proper event sequencing for the first and second stages 110, 140, such that the first stage 110 is activated prior to the second stage 140 at all heating rates and in FCO. Multistage thermal trigger devices may arm at a first temperature 101 which is below the second temperature 131 at which the second stage 140 activates, in order to provide a desired margin below the second temperature 131 at which the AIM in the second stage 140 ignites, while also delaying arming as long as possible to maximize time for firefighter response. In FCO conditions, this margin may allow for proper event sequencing and a fast response time, e.g., within less than 1 minute, or within an amount of time otherwise shorter than cook off of a solid rocket motor.
In some embodiments, features of example multistage thermal trigger devices may include, inter alia: (1) thermal trigger device can be tuned to desired second temperature 131 by modifying AIM blend in AIM capsule 340, (2) AIM capsule 340 may contain autoignition material or propellant in a hermetically sealable capsule to ensure stability, shelf life, and performance, and (3) thermal trigger device response temperature may be consistent or variable over SCO heating rates of 6° F./h, 45° F./h, 100° F./h and FCO
In
In the safe mode, the thermal actuator 310 may be decoupled from the rotor assembly 320, or the rotor assembly 320 may be disabled or locked, so that the thermal actuator 310 does not move the rotor assembly 320 from the disarmed position to the armed position, even if the thermal actuator 310 is activated at the first temperature 101. In some embodiments, the selector/indicator 330 may be manually switched from the safe mode to the enable mode. In some embodiments, the selector/indicator 330 may be mechanically switched from the safe mode to the enable mode, e.g., in response to engaging the install interlock pin 331.
In the enable mode, the thermal actuator 310 is coupled with the rotor assembly 320, or the rotor assembly 320 is otherwise enabled, so that the thermal actuator 310 does move the rotor assembly 320 from the disarmed position to the armed position when the thermal actuator 310 is activated at the first temperature 101. However, the rotor assembly 320 remains in the disarmed position in enable mode, until rotor assembly 320 is repositioned into the armed position by thermal actuator 310. Thus in the enable mode, the selector/indicator 330 may point to enable, while the rotor assembly 320 remains in the disarmed orientation shown at the right side of
The selector/indicator 330 may indicate arming assembly status. In the arm mode, the selector/indicator 330 may point to arm as illustrated in
In some embodiments, the multistage thermal trigger device 100 may include a selector for selecting between safe and enable modes, and a separate indicator for indicating whether the thermal trigger device 100 is disarmed or armed. In the illustrated embodiment, the “safe” and “enable” modes may be manually selected, and the multistage thermal trigger device enters indicates “arm” when the thermal actuator 310 arms the thermal trigger device 100. Thus, unlike “safe” and “enable”, “arm” is not human selectable in such embodiments. Instead, “arm” is indicated responsive to activation of the thermal actuator 310. Of course, embodiments are also possible in which the thermal trigger device 100 may be manually armed, e.g., by moving selector/indicator 330 into arm mode.
In
In
In
In embodiments according to
In
While a variety of dimensions, volumes, and materials may be used in different embodiments, a weight of the AIM mixture 703, 903 may be, e.g., between 0.001 milligrams and 100,000 milligrams. A volume ratio of headspace volume to AIM mixture 703, 903 ullage volume may be, e.g., less than 50:1. In some embodiments, the volume ratio of headspace volume to AIM mixture 703, 903 ullage volume may be less than 20:1. The AIM capture assembly 704, 904 may comprise, e.g., a cellulosic fabric, a filter paper, or a metal mesh as noted herein. In some embodiments, the AIM capture assembly 704, 904 may comprise a Teflon or Polytetrafluoroethylene (PTFE) seal, e.g., in combination with the cellulosic fabric, filter paper, or metal mesh. The AIM mixture 703, 903 may comprise an autoignition composition designed to initiate combustion of a main pyrotechnic charge in a gas generator, pyrotechnic device, pyrotechnic train, or explosive train exposed to flame or a high temperature environment. The autoignition composition may include a mixture of an oxidizer and a metal or organic fuel. As an example, the autoignition composition may comprise a metal nitrate salt, metal chlorate, metal perchlorate, ammonium perchlorate, a salt nitrite, organic nitrate, organic nitrite, or a solid organic amine, and the fuel and oxidizer may be present in amounts sufficient to provide a desired autoignition temperature. One example is disclosed in U.S. Pat. No. 5,959,242. Any propellant, autoignition material, co-melt, eutectic material, thermite material, or material that is thermally responsive at a specific temperature range and provides a heat, deflagration or explosive output may be used in AIM mixture 703, 903. The autoignition material may optionally be blended with a propellant booster material such as BKNO3 or other propellant or explosive booster. For example, the autoignition material to propellant booster weight ratio may range from: autoignition material:propellant booster=1:99 (wt:wt) to an autoignition material:propellant booster=99:1 (wt:wt). In some embodiments, the booster may optionally be separated from the AIM mixture 703, 903 within the AIM capsules 700, 900.
In some AIM capsule embodiments, the AIM mixture 703, 903 may be packaged in a configuration that allows for a hermetic seal to provide a minimum shelf life of 5 or more years and is compact to minimize the trigger weight and volume. Both the stability and performance of the AIM mixture 703, 903 may be dependent on the packaging configuration. Relevant AIM capsule parameters which affect AIM performance include but are not limited to: (i) ullage volume ratio, (ii) AIM blend, (iii) gas and moisture traps, and (iv) capsule (packaging) materials. Adjustment of these parameters may allow tuning of the trigger response temperature in small increments over a wide temperature range from about 90° C. to above 170° C.
Finally, all of the components of an AIM capsule such as illustrated in
While certain example techniques have been described and shown herein using various methods, devices and systems, it should be understood by those skilled in the art that various other modifications may be made, and equivalents may be substituted, without departing from claimed subject matter. Additionally, many modifications may be made to adapt a particular situation to the teachings of claimed subject matter without departing from the central concept described herein. Therefore, it is intended that claimed subject matter not be limited to the particular examples disclosed, but that such claimed subject matter also may include all implementations falling within the scope of the appended claims, and equivalents thereof
Krasnowski, Keith, Hansen, Stephanie J, Golden, Peter J
Patent | Priority | Assignee | Title |
11371658, | Mar 12 2019 | Nikola Corporation | Pressurized vessel heat shield and thermal pressure relief system |
11644291, | Dec 30 2015 | Karman Holdings, LLC; SYSTIMA TECHNOLOGIES, INC | Autoignition material capsule |
Patent | Priority | Assignee | Title |
4843965, | Feb 23 1988 | The United States of America as represented by the Secretary of the Navy | Thermally activated triggering device |
5046429, | Apr 27 1990 | TALLEY AUTOMOTIVE PRODUCTS, INC | Ignition material packet assembly |
5445077, | Dec 18 1992 | Giat Industries | Initiation device for a pyrotechnic system |
6408759, | Apr 09 1997 | DETNET SOUTH AFRICA PTY LTD | Initiator with loosely packed ignition charge and method of assembly |
7377690, | May 13 2004 | The United States of America as represented by the Secretary of the Navy; SECRETARY OF THE NAVY AS REPRESENTED BY THE UNITED STATE OF AMERICA | High trigger temperature lithium intermetallic thermal sensors |
8668110, | Mar 07 2007 | Cornerstone Research Group, Inc. | Venting mechanisms for containers |
9696125, | Jul 17 2015 | Raytheon Company | Thermal trigger with an integrated out-of-line lockout device for a thermally-initiated ventilation system or other system |
20070240600, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 27 2016 | Systima Technologies, Inc. | (assignment on the face of the patent) | / | |||
May 01 2017 | KRASNOWSKI, KEITH | SYSTIMA TECHNOLOGIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043636 | /0543 | |
May 01 2017 | GOLDEN, PETER H | SYSTIMA TECHNOLOGIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043636 | /0543 | |
May 02 2017 | HANSEN, STEPHANIE J | SYSTIMA TECHNOLOGIES, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043636 | /0543 | |
Sep 14 2021 | SYSTIMA TECHNOLOGIES, INC | TCW ASSET MANAGEMENT COMPANY LLC, AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 057477 | /0132 | |
Dec 05 2022 | SYSTIMA TECHNOLOGIES, INC | Karman Holdings, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 063126 | /0749 | |
May 16 2024 | SYSTIMA TECHNOLOGIES, INC | TCW ASSET MANAGEMENT COMPANY, LLC, AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 067536 | /0743 | |
May 16 2024 | KARMAN HOLDINGS LLC | TCW ASSET MANAGEMENT COMPANY, LLC, AS ADMINISTRATIVE AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 067536 | /0743 |
Date | Maintenance Fee Events |
Jan 29 2024 | REM: Maintenance Fee Reminder Mailed. |
Jun 06 2024 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Jun 06 2024 | M2554: Surcharge for late Payment, Small Entity. |
Date | Maintenance Schedule |
Jun 09 2023 | 4 years fee payment window open |
Dec 09 2023 | 6 months grace period start (w surcharge) |
Jun 09 2024 | patent expiry (for year 4) |
Jun 09 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 09 2027 | 8 years fee payment window open |
Dec 09 2027 | 6 months grace period start (w surcharge) |
Jun 09 2028 | patent expiry (for year 8) |
Jun 09 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 09 2031 | 12 years fee payment window open |
Dec 09 2031 | 6 months grace period start (w surcharge) |
Jun 09 2032 | patent expiry (for year 12) |
Jun 09 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |