The present invention provides an electrical connector assembly for use in a high-power application, such as with motor vehicle electronics, that exposes the connector assembly to elevated temperatures and thermal cycling. The connector assembly includes a first electrically conductive connector formed from a first material, an internal spring member formed from a second material residing within the first connector, and a second electrically conductive connector with a receptacle dimensioned to receive both the first connector and the spring member to define a connected position, wherein the connector assembly withstands the elevated temperatures and thermal cycling resulting from the high-power application. To maintain the first and second connectors in the connected position, the spring arm of the spring member exerts an outwardly directed force on the contact beam of the first connector to outwardly displace the contact beam into engagement with an inner surface of the receptacle of the second connector.
|
16. An electrical connector assembly for use in a high-power application, the connector assembly comprising:
a first electrically conductive connector formed from a first material, the first connector having a side wall arrangement defining a receiver that extends from an open first end towards a second end of the first connector, the side wall arrangement having at least one side wall with (i) an aperture and (ii) a contact beam extending from a first portion of the side wall, across an extent of the aperture, and towards a second portion of the side wall and wherein the contact beam includes a free end that terminates inward of an outer surface of the side wall;
an internal spring member formed from a second material, the spring member having a side wall with an elongated spring arm; and
wherein when the spring member is inserted into the receiver of the first connector, the spring arm of the spring member exerts an outwardly directed force on the contact beam of the first connector to outwardly displace the contact beam.
1. An electrical connector assembly for use in a high-power application that exposes the connector assembly to elevated temperatures and thermal cycling, the connector assembly comprising:
a first electrically conductive connector formed from a first material, the first connector having a side wall arrangement defining a receiver that extends from an open first end towards a second end, the side wall arrangement having at least one side wall with (i) an aperture and (ii) a contact beam extending from a first portion of the side wall, across an extent of the aperture, and towards a second portion of the side wall, and wherein the contact beam includes a free end that terminates inward of an outer surface of the side wall;
an internal spring member formed from a second material and dimensioned to reside within the receiver of the first connector, the spring member having a base and at least one spring arm that extends from the base;
a second electrically conductive connector with a receptacle dimensioned to receive both the first connector and the spring member residing within the receiver of the first connector to define a connected position that withstands elevated temperatures and thermal cycling resulting from the high-power application;
wherein in the connected position, the spring arm of the spring member exerts an outwardly directed force on the contact beam of the first connector to outwardly displace the contact beam into engagement with an inner surface of the receptacle of the second connector to maintain the first and second connectors in the connected position.
2. The electrical connector assembly of
3. The electrical connector assembly of
wherein in the connected position, a first spring arm exerts a first outwardly directed force on a first contact beam to displace the first contact beam into engagement with the inner surface of the receptacle, and a second spring arm exerts a second outwardly directed force on a second contact beam to displace the second contact beam into engagement with said inner receptacle surface, the first outwardly directed force being oriented in a different direction than the second outwardly directed force.
4. The electrical connector assembly of
5. The electrical connector assembly of
6. The electrical connector assembly of
7. The electrical connector assembly of
8. The electrical connector assembly of
9. The electrical connector assembly of
wherein the outwardly directed force exerted by the spring arm displaces the bent-termination portion of the contact beam beyond the outer surface of the side wall.
10. The electrical connector assembly of
11. The electrical connector assembly of
12. The electrical connector assembly of
13. The electrical connector assembly of
14. The electrical connector assembly of
wherein in the connected position, a first spring arm exerts a first outwardly directed force on a first contact beam and a second spring arm exerts a second outwardly directed force on a second contact beam, the first outwardly directed force being oriented in a different direction than the second outwardly directed force.
15. The electrical connector assembly of
17. The electrical connector assembly of
wherein in the connected position, the outwardly directed force applied by the spring arm to the contact beam outwardly displaces the contact beam into engagement with an inner surface of the receptacle of the second connector to maintain the first and second connectors in the connected position while withstanding elevated temperatures and thermal cycling resulting from the high-power application.
18. The electrical connector assembly of
19. The electrical connector assembly of
wherein in the connected position, a first spring arm exerts a first outwardly directed force on a first contact beam to displace the first contact beam into engagement with the inner surface of the receptacle, and a second spring arm exerts a second outwardly directed force on a second contact beam to displace the second contact beam into engagement with said inner receptacle surface, the first outwardly directed force being oriented in a different direction than the second outwardly directed force.
20. The electrical connector assembly of
21. The electrical connector assembly of
22. The electrical connector assembly of
23. The electrical connector assembly of
24. The electrical connector assembly of
25. The electrical connector assembly of
wherein the outwardly directed force exerted by the spring arm displaces the bent-termination portion of the contact beam beyond the outer surface of the side wall.
26. The electrical connector assembly of
27. The electrical connector assembly of
28. The electrical connector assembly of
29. The electrical connector assembly of
30. The electrical connector assembly of
wherein a first spring arm exerts a first outwardly directed force on a first contact beam and a second spring arm exerts a second outwardly directed force on a second contact beam, the first outwardly directed force being oriented in a different direction than the second outwardly directed force.
|
The present application claims the benefit of priority from U.S. patent application Ser. No. 15/905,806, filed Feb. 26, 2018, entitled “Spring-Actuated Electrical Connector For High-Power Applications” and U.S. Pat. No. 9,905,953, filed Sep. 30, 2016, entitled “High-Power Spring Actuated Electrical Connector”, the disclosures of which are hereby incorporated by reference in their entirety for all purposes.
This invention relates to the classification of electrical connector assemblies, and to one or more sub-classifications of electrical connector assemblies with a spring actuated or resilient securing part. Specifically, this invention provides a push-in electrical connector assembly for use in a high-power application, such as with motor vehicle electronics, that exposes the connector assembly to elevated temperatures and thermal cycling.
Over the past several decades, the amount of electronics in automobiles, and other on-road and off-road vehicles such as pick-up trucks, commercial trucks, semi-trucks, motorcycles, all-terrain vehicles, and sports utility vehicles (collectively “motor vehicles”). Electronics are used to improve performance, control emissions, and provide creature comforts to the occupants and users of the motor vehicles. Motor vehicles are a challenging electrical environments due to vibration, heat, and longevity. Heat, vibration, and aging can all lead to connector failure. In fact, loose connectors, both in the assembly plant and in the field, are one of the largest failure modes for motor vehicles. Considering that just the aggregate annual accrual for warranty by all of the automotive manufacturers and their direct suppliers is estimated at between $50 billion and $150 billion, worldwide, a large failure mode in automotive is associated with a large dollar amount.
Considerable time, money, and energy has been expended to find connector solutions that meet all of the needs of the motor vehicles market. The current common practice is to use an eyelet and threaded fastener on all high-power connections. The current common practice is expensive, time-consuming, and still prone to failure.
A more appropriate, robust connector solution must be impervious to vibration and heat. In order to create a robust solution, many companies have designed variations of spring-loaded connectors, which have a feature that retains the connector in place. Such spring-actuated connectors typically have some indication to show that they are fully inserted. Sometimes, the spring-actuated feature on the connector is made from plastic. Other times, the spring-actuated feature on the connector is fabricated from spring steel. Unfortunately, although the current state of the art is an improvement over connectors using an eyelet and threaded connector, there are still far too many failures.
Part of the reason that spring-actuated connectors still fail in motor vehicle applications is because the spring element is on the periphery of the connector. By placing the spring tab on the exterior surface of the connector, connector manufacturers tried to make engagement obvious to the person assembling the part. Unfortunately, for both plastic and metal, the increased temperatures of an automotive environment make a peripheral spring prone to failure. The engine compartment of the motor vehicle can often reach temperatures approaching 100° C., with individual components of a motor vehicle engine reaching or exceeding 180° C. At 100° C., most plastics start to plasticize, reducing the retention force of the peripheral spring-actuated feature. At 100° C., the thermal expansion of the spring steel will reduce the retention force of a peripheral spring-actuated connector by a small amount. More important, with respect to spring-actuated features fabricated from spring steel is the effect of residual material memory inherent in the spring steel as the spring steel is thermally cycled. After many temperature cycles, the spring steel will begin to return to its original shape, reducing its retention force and making is susceptible to vibration. The motor vehicle market needs a connector that is low-cost, vibration-resistant, temperature-resistant, and robust.
There is clearly a market demand for a mechanically simple, lightweight, inexpensive, vibration-resistant, temperature-resistant, and robust electrical connector. The problem is that all of these design criteria can be conflicting in current prior art. Some of the prior art has attempted to solve the problem using a peripheral spring-actuated retention feature. For example, U.S. Pat. No. 8,998,655, by named inventors Glick, et. al., entitled, “Electrical terminal” (“Glick '655”) teaches an electrical terminal in which the contact element is a substantially polyhedron structure, with contact beams. A spring structure, external to the contact beams, exerts force on the contact beams. This arrangement is designed to force positive connection of the contact beams with a substantially round or square terminal pin. U.S. Pat. No. 8,992,270, by named inventors Glick, et. al., entitled, “Electrical terminal” (“Glick '270”) teaches a variation on the Glick '655 patent.
U.S. Pat. No. 8,475,220, by named inventors Glick, et. al., entitled, “Electrical terminal” (“Glick '220”) teaches an electrical connector formed to have at least one pairs of opposing contact legs extending from a body portion, in which each leg extends to a contact point at which it touches the inner surface of the opposing leg contact. A spring clip can be positioned over one or more of the opposing legs to increase a compressive force. The spring clip may include an alignment feature to limit the clip from rotating and/or pitching. Glick '220 is designed to retain a largely flat or planar terminal element. U.S. Pat. No. 8,366,497, by named inventors Glick, et. al., entitled, “Electrical terminal” (“Glick '497”) teaches a variation of Glick '220. All of the Glick patents have the same issue: repeated thermal cycling relaxes the spring steel, reducing the overall retention force. The reduction in the spring-actuated retention force makes the connector more susceptible to wiggling loose due to vibration. Intermittent connections are also a common failure mode. A solution is needed that improves upon the concept of the spring-actuated terminal connector.
This summary is intended to disclose the present invention, a high-power, spring-actuated electrical connector device. The embodiments and descriptions are used to illustrate the invention and its utility, and are not intended to limit the invention or its use.
The present invention has a male terminal and a female connector. The female connector fits inside the male terminal, when making an electrical connection. The present invention relates to using a spring-actuator inside the female connector to force contact beams into electrical contact with the male terminal. The present invention's contribution to the art is that the male terminal element is a metallic tubular member inside which fits the female connector. The female connector has a contact element, with a plurality of contact beams. A spring actuator is nested inside the contact element. The spring actuator applies force on the contact beams, creating a positive connection and retention force.
Unlike the prior art, material memory and thermal expansion will increase, not decrease, the retention force and electrical contact of the present invention.
The male terminal has a metallic tubular member which has an inner surface, an outer surface, and a defined cross-sectional profile. The metallic tubular member is fabricated from a sheet of highly conductive copper. The highly conductive copper can be C151 or C110. One side of the sheet of highly conductive copper can be pre-plated with silver, tin, or top tin, such that the inner surface of the metallic tubular member is plated.
The female connector has a contact element and a spring actuator. The contact element has a plurality of contact beams. In the preferred embodiments, at least four contact beams are needed, so that force is exerted on the inner surface of the metallic tubular member is symmetrical. Four beams can be placed at 90° increments, meaning that each beam has one beam directly opposing it within the metallic tubular member; and two beams orthogonal to each member within the metallic tubular member. Each contact beam has a thickness, a bent-termination end, and a planar surface with a length and a width. The contact beam is connected to a contact base at the distal end from the bent-termination. In the illustrated embodiments, the contact element has an even number of beams, which are symmetrical and are evenly spaced. The contact element base cross-section can be round, square, triangular, or polygonal. The illustrated embodiments show contact elements with square and hexagonal cross-sectional profiles. The illustrated embodiments show contact elements with four and six beams.
A spring actuator is nested inside the contact element. The spring actuator has spring arms and a base. The spring arms are connected to the base at one end. The spring arms have a bent-termination end, a thickness, and a planar surface with a length and width. In the illustrated embodiments, the spring actuator has the same number of spring arms as the contact element has contact beams. In the illustrated embodiment, the spring arms can be mapped, one-to-one, with the contact beams. The spring arms are dimensioned so that the bent-termination end of the associated contact beam contacts the planar surface of the spring arm. The spring arms of the illustrated embodiments are even in number, symmetrical, and evenly spaced.
The contact element fits inside the metallic tubular member such that the contact beams contact the inner surface of the metallic tubular member. The spring arms force the contact beams into electrical connection with the metallic tubular member. The bent-termination end of the contact arm meets the planar surface of the spring arm, forcing the contact beam to form a large obtuse angle with respect to the contact element base.
In the illustrated embodiments of the present invention, although not required, the metallic tubular member has a symmetrical cross-section. The most important design criteria is that the compliance (inverse of stiffness) exerted on each beam, forcing each beam into contact with the inner surface of the metallic tubular member, be balance by the compliance of all of the other contact beam and spring-arm pairs such that the female connector is kept centered within the metallic tubular member by the force exerted by the beam/spring arm pairs.
The male terminal and female connector are both surrounded by a non-conductive shroud. For the male terminal, only the inner surface of the metallic tubular member is exposed. For the female connector, only the contact beams are exposed.
The male terminal can be connected to a busbar or other circuit. For example, in an alternator application, the metallic tubular member can be integral with the alternator busbar. The non-conductive plastic shroud would wrap the exterior of the metallic tubular member leaving the inner surface and the busbar exposed. Typically, in such an application, the busbar of the alternator is going to be interior to the alternator housing.
The present invention is illustrated with 44 drawings on 12 sheets.
The following descriptions are not meant to limit the invention, but rather to add to the summary of invention, and illustrate the present invention, by offering and illustrating various embodiments of the present invention, a high-power, spring-actuated electrical connector. While embodiments of the invention are illustrated and described, the embodiments herein do not represent all possible forms of the invention. Rather, the descriptions, illustrations, and embodiments are intended to teach and inform without limiting the scope of the invention.
The contact element 10 is an integral piece. The contact element 10 is made out of conductive metal, such as copper alloys C151 or C110. It is formed, bent, and folded into the correct shape. The contact element 10 has two planar spade elements 16, 17. The planar spade elements 16, 17 have a thickness 16, 17. The planar spade elements 16, 17 have a planar surface 15, 105. The planar spade elements 16 transitions 106 from the hexagonal base 18, 19. The transition 106 has a thickness 107.
The spring actuator 30 fits inside the contact element 10. The spring actuator 30 spring arms 31 contact the inside planar surface 122 of the contact element 10 contact beams 11. The inside planar surface 122 of the contact beams 11 is obverse to the outside planar surface 12 of the contact beams 11. The bent-termination portion 13 of the contact element 10 allows the female connector 20 to be compressed as it is inserted into a connector block. The spring actuator 30 spring arms 31 will provide a consistent retention force against the inside surface 122 of the contact element 10 contact beams 11. In practice, it is advisable to use a minimum of four (4) contact beams 11 in any embodiment.
The contact element 60 is an integral piece. The contact element 60 is made out of conductive metal, such as copper alloys C151 or C110. It is formed, bend, and folded into the correct shape. The contact element 10 has two planar spade elements 66, 67. The planar spade elements 66, 67 have a thickness 616, 617. The planar spade elements 66, 67 have a planar surface 65, 155. The planar spade elements 66 transitions 156 from the hexagonal base 68, 69, 168. The transition 156 has a thickness 171.
The spring actuator 80 fits inside the contact element 60. The spring actuator 80 spring arms 81 contact the inside planar surface 222 of the contact element 60 contact beams 61. The bent-termination portion 63 of the contact element 60 allows the female connector 70 to be compressed as it is inserted into a connector block. The spring actuator 80 spring arms 81 will provide a consistent retention force against the inside surface 222 of the contact element 60 contact beams 61.
The female connector 20, 70 fits inside the male terminal portion 1. At elevated temperatures, the contact element 10, 60, and the spring actuator 30, 80, will tend to expand outwards due to metal memory and thermal expansion. This will increase the outward directed spring force exerted by the spring arms 31, 81 on the contact beams 11, 61. In turn, this will increase the contact force between the contact beams 11, 61 and the inner cylindrical surface 9 of the male terminal portion 1. As a result, the increased temperatures present in a motor vehicle engine compartment will increase, rather than decrease, the contact force of the connector.
The contact element 310 is an integral piece. The contact element 310 is fabricated from an electrically conductive metal, such as copper alloys C151 or C110. It is formed, bent, pressed, and/or folded into the correct shape. The contact element 310 has two planar spade elements 316, 317. The planar spade elements 316, 317 have a planar surface 315. The planar spade elements 316, 317 transition from the base 350 and have a thickness 357. A spring actuator 330, 530, 630 as shown in
The contact element 410 is an integral piece. The contact element 410 is fabricated from a conductive metal, such as copper alloys C151 or C110. It is formed, bend, pressed, and/or folded into the correct shape. The contact element 410 has two planar spade elements 416, 417. The planar spade elements 416, 417 have a thickness 416, 417. The planar spade elements 416, 417 have a planar surface 455. A spring actuator 430, with spring arms 431 is interior to the contact element 410. The female connector 420 has, generally, a length 470 and a width 471. A ratio of length 470 to width 471 is the aspect ratio of the female connector 420.
The alternator terminal assembly 700 mates with the male terminal 703, as shown in
Pavlovic, Slobodan, Zeidan, Mohamad
Patent | Priority | Assignee | Title |
11223150, | Sep 30 2016 | EATON INTELLIGENT POWER LIMITED | Spring-actuated electrical connector for high-power applications |
11239597, | Sep 09 2019 | EATON INTELLIGENT POWER LIMITED | Connector recording system with readable and recordable indicia |
11398696, | Jun 07 2018 | EATON INTELLIGENT POWER LIMITED | Electrical connector assembly with internal spring component |
11411336, | Feb 26 2018 | EATON INTELLIGENT POWER LIMITED | Spring-actuated electrical connector for high-power applications |
11476609, | Jun 07 2018 | EATON INTELLIGENT POWER LIMITED | Electrical connector system with internal spring component and applications thereof |
11715899, | Jun 07 2018 | Royal Precision Products LLC | Electrical connector assembly with internal spring component |
11715900, | Jun 07 2018 | Royal Precision Products LLC | Electrical connector system with internal spring component and applications thereof |
11721924, | Feb 26 2018 | Royal Precision Products LLC | Spring-actuated electrical connector for high-power applications |
11721927, | Sep 09 2019 | Royal Precision Products LLC | Connector recording system with readable and recordable indicia |
11721942, | Sep 09 2019 | EATON INTELLIGENT POWER LIMITED | Connector system for a component in a power management system in a motor vehicle |
11862358, | Sep 09 2019 | EATON INTELLIGENT POWER LIMITED | Electrical busbar and method of fabricating the same |
11870175, | Sep 30 2016 | EATON INTELLIGENT POWER LIMITED | Spring-actuated electrical connector for high-power applications |
11929572, | Jul 29 2020 | EATON INTELLIGENT POWER LIMITED | Connector system including an interlock system |
11990720, | Jan 21 2019 | EATON INTELLIGENT POWER LIMITED | Power distribution assembly with boltless busbar system |
12132286, | Sep 09 2019 | EATON INTELLIGENT POWER LIMITED | Connector system for a component in a power management system in a motor vehicle |
12136500, | Aug 18 2021 | EATON INTELLIGENT POWER LIMITED | Electrical busbar and method of fabricating the same |
ER2956, |
Patent | Priority | Assignee | Title |
10014614, | Sep 22 2014 | IDEAL Industries, Inc. | Terminals for electrical connectors |
4534610, | Mar 04 1983 | Hosiden Electronics Co., Ltd. | Jack |
4540235, | Dec 24 1982 | Grote & Hartmann GmbH & Co. KG | Double flat spring contact provided with an over-spring |
4583812, | Jun 29 1984 | AMP INCORPORATED, | Electrical contact with assist spring |
4593464, | Aug 15 1983 | AMPHENOL CORPORATION, A CORP OF DE | Method of making a triaxial electrical connector |
4632483, | Jan 29 1981 | Microdot Inc. | Electrical terminal |
4713018, | Apr 24 1987 | COOPER POWER SYSTEMS, INC , | Sliding current interchange |
4895531, | Nov 16 1987 | AMP Incorporated | Electrical contact member |
4932877, | Aug 31 1988 | Grote & Hartmann GmbH & Co. KG | Spring arm contact with outer spring |
4938720, | Jul 21 1988 | AMP Incorporated | electrical connector |
4975066, | Jun 27 1989 | AMP Incorporated | Coaxial contact element |
4983127, | Oct 04 1988 | Hirose Electric Co., Ltd. | Electrical connector |
5007865, | Sep 28 1987 | AMP Incorporated | Electrical receptacle terminal |
5035661, | Aug 05 1988 | TRW Daut+Rietz GmbH & Co. | Flat-contact receptacle |
5094636, | Dec 18 1989 | Grote & Hartmann GmbH & Co. KG | Electrical contact element with a cover spring |
5162004, | May 19 1989 | Yazaki Corporation | Multi-terminal electric connector requiring low insertion and removal force |
5188545, | Jun 05 1990 | AMP Incorporated | Electrical socket terminal |
5240439, | Jun 03 1991 | AMP Incorporated | Electrical contact |
5288252, | Nov 09 1990 | TRW Daut + Rietz GmbH & Co. KG | Flat-contact plug socket |
5295873, | Dec 20 1990 | Grote & Hartmann GmbH & Co. KG | Double leaf spring contact with stop device |
5334058, | Dec 01 1992 | The Whitaker Corporation | Electrical socket terminal |
5338229, | Jun 03 1991 | The Whitaker Corporation | Electrical contact |
5362262, | Dec 11 1992 | The Whitaker Corporation | Vibration proof electrical receptacle |
5415571, | Dec 28 1990 | The Whitaker Corporation | Receptacle for a connector |
5419723, | Feb 02 1993 | FCI | Flexible blade female electrical contact |
5437566, | Jul 07 1992 | Grote & Hartmann GmbH & Co. KG | Electrical contact element |
5486123, | Mar 18 1993 | Sumitomo Wiring Systems, Ltd. | Connector terminal |
5536184, | Jul 11 1995 | Osram Sylvania Inc. | Connector assembly |
5551897, | Feb 08 1995 | Osram Sylvania Inc. | Electrical contact |
5562506, | Jun 05 1995 | Osram Sylvania Inc. | Radio connector |
5573434, | Mar 21 1994 | Connecteurs Cinch | Female electrical contact member |
5624283, | Apr 07 1994 | The Whitaker Corporation | Electrical terminal back-up spring with anti-chattering support members |
5664972, | Jul 07 1992 | Grote & Hartmann GmbH & Co. KG | Electrical contact element |
5716245, | Jul 28 1995 | Yazaki Corporation | Female terminal |
5810627, | Jan 11 1996 | Molex Incorporated | Female electrical terminal |
5827094, | May 19 1997 | AIKAWA PRESS INDUSTRY CO , LTD | Connector for heavy current substrate |
5863225, | Sep 29 1995 | Tyco Electronics Logistics AG | Contact with a bottom and a top spring |
5868590, | Jan 26 1996 | Tyco Electronics Logistics AG | Contact spring |
5938485, | Sep 30 1996 | TYCO ELECTRONICS SERVICES GmbH | Electrical terminal |
5941740, | Jul 27 1994 | Lear Automotive Dearborn, Inc | Electrical terminal |
5951338, | Oct 21 1996 | Sumitomo Wiring Systems, Ltd. | Cover of terminal fitting |
5975964, | Jul 25 1996 | Sumitomo Wiring Systems, Ltd | Female terminal fitting |
5980336, | Jun 09 1995 | Lear Automotive Dearborn, Inc | Electrical terminal |
6042433, | May 29 1997 | TYCO ELECTRONICS SERVICES GmbH | Electrical contact |
6062918, | Jul 01 1996 | The Whitaker Corporation | Electrical receptacle contact assembly |
6102752, | Jun 29 1998 | TYCO ELECTRONICS SERVICES GmbH | Two-part electrical socket contact |
6126495, | Oct 28 1997 | Grote & Hartmann GmbH & Co. KG | Miniaturized plug-in contact element |
6186840, | Sep 09 1998 | Framatome Connectors International | Female connector for electrical connectors having a coding rib |
6273766, | Sep 08 2000 | Eagle Comtronics, Inc. | Electronic device including a collet assembly with dual receiving sockets |
6361377, | Aug 18 1999 | Sumitomo Wiring Systems, Ltd | Terminal fitting, a connector housing and a connector comprising the same |
6371813, | Aug 12 1998 | 3M Innovative Properties Company | Connector apparatus |
6394858, | Sep 09 1998 | Framatome Connectors International | Socket contact for electrical connectors |
6402571, | Sep 15 1999 | FCI Automotive Holding | Electrical socket contact with guide rail |
6475040, | May 28 1999 | TYCO ELECTRONICS SERVICES GmbH | Electrical contact receptacle to mate with round and rectangular pins |
6565396, | Jun 09 2000 | Sumitomo Wiring Systems, Ltd. | Female terminal fitting |
6679736, | Apr 04 2001 | Sumitomo Wiring Systems, Ltd. | Terminal fitting and a connector |
6695644, | Apr 30 2002 | Hon Hai Precision Ind. Co., Ltd. | Power connector having improved contact |
6722926, | Aug 08 2001 | FCI | Bus bar |
6872103, | Aug 30 1998 | Tyco Electronics Logistics AG | Bushing contact |
6994600, | Apr 15 2003 | Contacting part for electrical connector | |
7014515, | Jul 30 2003 | YAZAKI EUROPE LTD | Female terminal for a flat male terminal |
7150660, | Sep 21 2002 | Tyco Electronics Corporation | High current automotive electrical connector and terminal |
7175488, | Apr 04 2005 | Lear Corporation | Electrical connector assembly and system |
7278891, | May 03 2005 | Delphi Technologies, Inc. | Electrical connector element |
7300319, | Oct 27 2005 | YAZAKI EUROPE LTD | Electrical contact |
7491100, | Jul 23 2003 | Aptiv Technologies AG | Electrical connector contact |
7494352, | Dec 11 2006 | Tyco Electronics France SAS | Electrical connector plug |
7503776, | Dec 07 2007 | Lear Corporation | Grounding connector for a shielded cable |
7568921, | Aug 22 2006 | Lear Corporation | Fuse cassette |
7595715, | Sep 27 2007 | Lear Corporation | High power case fuse |
7613003, | Dec 07 2007 | Lear Corporation | Electrical connector |
7651344, | Nov 24 2006 | Hon Hai Precision Ind. Co., Ltd. | Power connector carrying larger current |
7713096, | Jan 07 2008 | Lear Corporation | Modular electrical connector |
7766706, | Nov 17 2008 | J. S. T. Corporation | Female terminal assembly with compression clip |
7780489, | Jul 16 2007 | ELRAD INTERNATIONAL D O O | Spring contact for an electrical plug connection and plug connection |
7837519, | Feb 24 2009 | Tyco Electronics Corporation | Electrical bushing with helper spring to apply force to contact spring |
7876193, | Apr 04 2008 | Lear Corporation | Fuse circuit assembly |
7892050, | Jun 17 2009 | Lear Corporation | High power fuse terminal with scalability |
7927127, | Oct 16 2009 | Lear Corporation | Electrical terminal device |
7942682, | Feb 24 2009 | Tyco Electronics Corporation | Electrical connector with slider component for fault condition connection |
7942683, | Feb 24 2009 | Tyco Electronics Corporation | Electrical bushing with radial interposer spring |
7976351, | Aug 30 2007 | TE Connectivity Germany GmbH | Electrical contact |
7988505, | Oct 11 2007 | TE Connectivity Germany GmbH | Vibration-damping contact element |
8128426, | Oct 16 2009 | Lear Corporation | Electrical terminal device |
8202124, | Mar 11 2011 | Lear Corporation | Contact and receptacle assembly for a vehicle charging inlet |
8242874, | Aug 23 2005 | Lear Corporation | Electrical connector housing |
8282429, | Jul 02 2010 | Lear Corporation | Electrical terminal with coil spring |
8366497, | Jun 17 2009 | Lear Corporation | Power terminal |
8388389, | Jul 07 2011 | TE Connectivity Corporation | Electrical connectors having opposing electrical contacts |
8430689, | Jul 22 2011 | TE Connectivity Solutions GmbH | Electrical connector |
8446733, | Nov 24 2010 | Lear Corporation | Printed circuit board connection assembly |
8475220, | Nov 24 2010 | Lear Corporation | Power terminal |
8662935, | Oct 26 2009 | Molex, LLC | Miniature receptacle terminals |
8668506, | Apr 27 2011 | Lear Corporation | Charger receptacle |
8678867, | Oct 31 2011 | Lear Corporation | Electrical terminal and receptacle assembly |
8795007, | Sep 28 2011 | Sumitomo Wiring Systems, Ltd. | Terminal fitting |
8840436, | May 05 2011 | Lear Corporation | Electrically conducting terminal |
8858264, | Nov 28 2012 | Lear Corporation | Electrical terminal retainer and receptacle assembly |
8858274, | Mar 19 2012 | YAZAKI EUROPE LTD | Electric terminal |
8956190, | Aug 02 2012 | Lear Corporation | Submergible fused receptacle assembly for a vehicle charging inlet |
8968021, | Dec 11 2013 | JAE Oregon, Inc.; JAE OREGON, INC | Self-rejecting automotive harness connector |
8992270, | Sep 26 2012 | Lear Corporation | Electrical terminal |
8998655, | Sep 24 2012 | Lear Corporation | Electrical terminal |
9011186, | Jul 24 2012 | Aptiv Technologies AG | Electrical connection element |
9142902, | Aug 01 2013 | Lear Corporation | Electrical terminal assembly |
9166322, | Feb 08 2013 | Lear Corporation | Female electric terminal with gap between terminal beams |
9190756, | Aug 01 2013 | Lear Corporation | Electrical terminal assembly |
9236682, | Feb 15 2013 | Lear Corporation | Cylindrical electric connector with biased contact |
9257804, | Oct 29 2013 | GOOGLE LLC | Pitch agnostic bus-bar with pitch agnostic blind mate connector |
9293852, | Jun 21 2013 | Lear Corporation | Electrical terminal assembly |
9300069, | Feb 13 2014 | Aptiv Technologies Limited | Electrical terminal with enhanced clamping force |
9368904, | Oct 19 2012 | Lear Corporation | Electrical connector assembly |
9379470, | Feb 18 2013 | Lear Corporation | Female electrical connector with terminal arm extension protection |
9431740, | Jun 21 2013 | Lear Corporation | Method of assembling an electrical terminal assembly |
9437974, | Oct 19 2012 | Lear Corporation | Electrical terminal |
9444168, | May 28 2012 | Autonetworks Technologies, Ltd; Sumitomo Wiring Systems, Ltd; SUMITOMO ELECTRIC INDUSTRIES, LTD | Socket terminal |
9444205, | Mar 25 2014 | Lear Corporation | Electric connector with contact protection |
9455516, | Oct 23 2013 | Aptiv Technologies AG | Contact socket for an electrical plug connector |
9502783, | Oct 07 2011 | TE Connectivity Germany GmbH | Two-part crimp contact element |
9525254, | Feb 09 2015 | OUPIIN ELECTRONIC (KUNSHAN) CO., LTD. | Electrical power connector and a terminal assembly |
9537241, | Apr 17 2014 | NIDEC MOTORS & ACTUATORS GMBH | Electrical connector with female terminal and motor with such an electrical connector |
9548553, | Mar 15 2013 | Lear Corporation | Terminal with front end protection |
9620869, | Feb 19 2014 | TE Connectivity Corporation | Contact element comprising a looped spring section |
9705229, | Mar 07 2014 | Japan Aviation Electronics Industry, Ltd | Connector assembly |
9705254, | Feb 03 2014 | TRAXXAS LP | Electrical connector assembly |
9711885, | Jun 24 2011 | Yazaki Corporation | Fixing structure of separate leaf spring |
9847591, | Jul 22 2014 | Lear Corporation | Electric terminal assembly |
9876317, | Mar 15 2013 | Lear Corporation | Replaceable adapter for use with vehicular battery charging system |
9905950, | Jan 30 2015 | TE Connectivity Germany GmbH | Electric contact means and electrical cable assembly for the automotive industry |
20010019924, | |||
20010021602, | |||
20020049005, | |||
20020081888, | |||
20060040555, | |||
20060172618, | |||
20070123093, | |||
20070149050, | |||
20120094551, | |||
20120129407, | |||
20120244756, | |||
20130040505, | |||
20130078874, | |||
20130109224, | |||
20130210292, | |||
20130337702, | |||
20140087601, | |||
20150255912, | |||
20150280381, | |||
20180090900, | |||
EP1291979, | |||
JP10040995, | |||
JP10050376, | |||
JP10050377, | |||
JP2011049107, | |||
JP2012043739, | |||
JP2017010755, | |||
KR1020160138442, | |||
WO2017195092, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 08 2018 | ZEIDAN, MOHAMMAD | INVENTIVE CONSULTING LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 053261 | /0992 | |
Feb 08 2018 | PAVLOVIC, SLOBODAN | INVENTIVE CONSULTING LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 053261 | /0992 | |
Apr 20 2018 | INVENTIVE CONSULTING, LLC | Royal Precision Products, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 053262 | /0126 | |
Nov 19 2018 | Riddell, Inc. | (assignment on the face of the patent) | / | |||
Jan 06 2022 | Royal Precision Products, LLC | EATON INTELLIGENT POWER LIMITED | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 062419 | /0261 |
Date | Maintenance Fee Events |
Nov 19 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Nov 21 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 23 2023 | 4 years fee payment window open |
Dec 23 2023 | 6 months grace period start (w surcharge) |
Jun 23 2024 | patent expiry (for year 4) |
Jun 23 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 23 2027 | 8 years fee payment window open |
Dec 23 2027 | 6 months grace period start (w surcharge) |
Jun 23 2028 | patent expiry (for year 8) |
Jun 23 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 23 2031 | 12 years fee payment window open |
Dec 23 2031 | 6 months grace period start (w surcharge) |
Jun 23 2032 | patent expiry (for year 12) |
Jun 23 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |