An applicator die for creating undivided ribbons of polymeric film and a method of using the die to apply an emulsified polymeric material in ribbons to a fully or partially finished surface of an automobile body. In one application, the ribbon is applied as a peelable film to an automobile body and in another application, a ribbon is applied to a rocker panel as an anti-chip coating. For both applications, the applicator die has an internal gallery and an outlet slot with flared edge surfaces to emit a laminarized ribbon of polymer-based material at a distance from the target surface where the opposite edges of the ribbon have become essentially parallel.
|
1. A system of applying a thin peelable, temporary protective film to the finished surface of a manufactured article comprising:
a source of a polymeric emulsion having a viscosity of about 3,000 to 12,000 centipoise at a predetermined operating temperature;
an extrusion die having a body with an inlet connected to receive said emulsion from said source and having an outlet slot with a length substantially greater than its width to produce thin non-atomized ribbons of said emulsion at a thickness of about 200 microns; and
a robot to which said die body is attached for applying one or more ribbons of said emulsion to said finished surface by controlled movement that maintains said die outlet at a constant distance from said surface during the extrusion of said emulsion, which distance is substantially greater than the width of the slot and resulting thickness of said ribbons.
2. The system as defined in
3. The system as defined in
5. The system as defined in
6. The system as defined in
|
This application is a divisional of U.S. patent application Ser. No. 14/311,533, filed Jun. 23, 2014, now U.S. Pat. No. 10,000,049, and a divisional of U.S. patent application Ser. No. 15/349,349, filed Nov. 11, 2016 now U.S. Pat. No. 10,315,405; the entire contents of both are incorporated herein.
Disclosed herein is an apparatus for producing and applying ribbons of polymeric film to the surfaces of an article of manufacture, such as but not limited to an automobile body or a portion thereof, wherein the apparatus includes an extrusion die configured to hydraulically deliver a laminarized ribbon of polymer-based film with controlled width, thickness and edge characteristics.
It is known to protect the painted exterior surfaces of glass and automobile parts with pre-formed, laminated sheets or sprayed-on polymeric films for various purposes; e.g., to reduce the likelihood of damage during shipment, storage and use or to act as spacers for stacking. There have been numerous problems associated with the application of such films. Spraying invokes the need to deal with environmental issues as well as overspray, both in the air and on parts of the article which are not to be coated. For non-permanent applications, it is often necessary to use solvents to remove the film. Lamination involves, first, the extrusion of a thin sheet of plastic film and, second, the step of joining the plastic film to a paper backing so it can be rolled up for shipment or storage. When the time comes to apply the film to, for example, an automobile body, several laborers are required to unroll the paper-backed film, lay the film over the automobile, remove the paper backing, and smooth the film. The result is a peelable film requiring no solvents or detergents for removal, but the manufacturing and application processes are labor intensive and, therefore, creates substantial expense.
It is also known to apply a film or coating of resilient protective polymeric material such as PVC to the rocker panels and other locations on automobile bodies to serve as an anti-chip coating. The coating is typically sprayed onto the vehicle rocker panel during the painting phase and dried or cured using, for example, standard paint oven convection heating. This sprayed-on method of application requires carefully masking of the body of the vehicle for overspray protection, which is labor-intensive. The masking must also be removed and disposed of, adding further cost to the process.
In general, this document discloses a device and a system in which large and small areas of fully or partially finished surfaces of manufactured products can be temporarily or permanently coated with polymer-based protective films, which films can be applied by the controlled hydraulic “extrusion” of a laminarized ribbon of polymer-based material without atomization and with controlled width, thickness and edge characteristics. This apparatus can create, for example, ribbons of polymeric film that have a desired thickness profile from edge to edge that promotes peelability and that can be applied extremely close to a part edge or a seam between adjacent assembled parts without crossing or bridging the seam. This virtually eliminates the problems associated with prior art spray methods as well as the labor-intensive steps of applying protectant from a paper backed roll of pre-extruded film. The device can also be used to apply ribbons of polymeric film for other purposes.
An aspect of the subject matter described herein is an applicator die for producing a ribbon or film of fluidized polymeric material directly onto a surface to be protected without atomization or other division of the film leaving the die. The applicator die can be robotically guided and controlled as to spacing from the target surface to dynamically and consistently lay down a polymeric film of the desired width, length, thickness and edge characteristics in a precise fashion, i.e., coming very close to seams and part edges, and at low labor cost. Although the examples described herein involve fairly flat surfaces, the applicator can be configured to conform to curved or complex surfaces. The applicator described herein may be said to “hydraulically extrude” a film of laminarized, emulsified polymeric material in a ribbon with such well controlled edge-to-edge consistency and thickness as to be suitable for masking as well as protection. A preferred emulsion thickness for protecting painted auto body surfaces is 200 microns (wet) with slight beads on the edges to promote peelability. This is readily distinguished from sound-deadening material which is generally 2000 or more microns thick and is not peelable. When used to produce a protective layer for an automobile body, the prior art steps of pre-extruding and backing a film are eliminated because the robotic arm guiding the applicator can be indexed to produce multiple overlapping ribbons that together cover large uninterrupted areas right up to edges or seams. Moreover, the applicator hereinafter described in detail can be “ambidextrous” in that it is capable of producing adjacent parallel ribbons of plastic film without indexed rotation for reversal; i.e., the applicator can be reversed in its direction of travel. In addition, the applicator can be used to apply different materials for different purposes to horizontal, vertical and inverted surfaces, whether flat, concave or convex.
Another aspect of the subject matter described herein is the use of the applicator die described above to apply a protective film of a polymeric material, such as an aqueous solution of polyvinyl acetate (PVA), to the fully or partially finished surfaces of an automobile body or component part therefor. As stated above, this may be for masking or protection purposes, in which case the film is temporary and must be peelable. The film is, after curing, readily and easily peelable without the use of solvents of detergents in large part because it is of its thickness profile across its width. For the reasons described above, this process is highly efficient due in part to the fact that the application of overlapping polymeric ribbons, applied in a back and forth fashion to cover large areas, can be carried out simply by indexing the applicator between parallel rows and without the need to rotate the applicator 180° for the next run. The applicator can essentially be moved relative to the application surface at about the velocity at which the applied material is emitted from the applicator die. Velocities of about 1500 to 2000 mm/second have been achieved. However, translation speed will vary from application to application.
As further described herein, the preferred applicator die comprises a two-part body with an inlet, an internal gallery, a bottom edge in which a long, narrow, outlet groove is created by a spacer or shim placed between the two mirror-image body parts, and the shim thickness controls the thickness of the film or ribbon to be extruded. The preferred gallery includes internal grooves in the two body parts that face each other and run parallel to and adjacent the bottom edge, although a one-sided groove arrangement is also feasible. The gallery groove or grooves create an internal volume for material received from the inlet and emit or “extrude” that material through the slot between the facing surfaces of the two body parts. The shim geometry relative to the gallery groove has been found to be important in controlling film edge qualities; i.e., the gallery grooves are radiussed, i.e., 180° rounded at their ends and the shim is designed with a top edge that lies along the top edge of a gallery groove and with side edges that flare out at an angle of about 5° to 50° but preferably 17° to create a slightly broadening film. Importantly, the length of the extrusion slot surfaces over which the film material passes between the gallery slot and the die exit edge is constant from one edge of the slot to the other and we have found that this ensures a substantially uniform film flow velocity across the entire width of the extrusion slot.
For peelable protective film or for masking, a film with a uniform thickness of 200 microns from edge to edge is preferred. This results from the shim geometry shown in
Another aspect of the subject matter disclosed herein is the use of the aforementioned applicator die in applying an anti-chip coating to, for example, the rocker panels of an automobile body. In this case, the material being applied can be an undirected; i.e., non-atomized, laminar-flowing ribbon of emulsified polyvinyl chloride (PVC). In the preferred embodiment, the PVC ribbon is applied over electro-coat primer previously applied on the rocker panel but before the application of the paint primer, base color and clear coat. It has been determined that it is not necessary to wait for the PVC ribbon to completely dry before the paint primer is applied; i.e., the subsequent coatings can be applied “wet-on-wet,” greatly reducing production time and totally eliminating the need for masking and spraying as are required in the prior art techniques.
Other advantages, features and characteristics of the subject matter disclosed herein, as well as methods of operation and functions of the related elements of the structure, and the combination of parts and economies of manufacture, will become more apparent upon consideration of the following detailed description and the appended claims with reference to the accompanying drawings, the latter being briefly described hereinafter.
The description herein makes reference to the accompanying drawings wherein like reference numerals refer to like parts throughout the several views and wherein:
Referring to
The material being applied is an aqueous solution of polyvinyl acetate (PVA) at a temperature between about 70° and 120° F. and with a viscosity of about 3000 to 12,000 centipoise. Material is supplied to applicator die 10 under close temperature and flow rate control conditions via supply conduit 20; temperature-controlled liquid is supplied via conduit 21. The velocity of the material ribbon from the applicator can, for example, be as much as about 2000 mm/second and the robot 14 moves the applicator die 10 relative to the surface of the hood 18 at about that same speed. The spacing between the material outlet, i.e., the bottom edge of the applicator die 10 and the surface of the hood 18 is about 5 to 15 mm. The ratio of polymer to water in the applied material in an illustrative case is approximately 50/50 but will vary with the application. These figures are given by way of example. Robot speed, extrusion rate, spacing and emulsion ratios can all vary.
Referring now to
As shown in
Looking now to
Block 23 is thicker than block 28 and includes a threaded material entry port 22 which extends downwardly to approximately the center of the block where it communicates with a forwardly directed passage 32 which, in turn, feeds material into a gallery of machined grooves comprising diverging legs 34, 36 and a horizontal cross-groove 38, all of which are of the same depth. A horizontal groove 50 is formed in the inside surface 31 of block 28 in full face-to-face registry with groove 38 in block 23 to create a gallery volume parallel to and adjacent the bottom edge surface of the die. The spacer 26 fits flush against the inside surface 41 of the block 23 to cover most of the grooves 34 and 36 of the gallery; the shim has a lower cutout or “relief” 44 with 15° flared side edges 46, which terminate at points 47 on the radiused corner arc of the die block which is 36-degrees from the vertical centerline. The shim provides a gap between the inside surfaces 41, 31 of blocks 28 and 23, respectively, of uniform thickness for material to flow downwardly from the horizontal grooves 38 and 50 and out through the bottom outlet 58 of the die, as shown in
Block 28 has locator holes 52 which receive the guide pins 40 and locate the block relative to the face 42 of the opposing block 23, as well as the hidden face of the spacer 26. Block 28 has a single horizontal gallery groove 50 which is opposite but co-extensive with the groove 38 within the relief 44 of the spacer 26 to allow the horizontal fluid chamber created by the two grooves 38, 50 to fill with the PVA material while preventing lateral outflow as well as upflow between the spacer and the inside surface 41 of the block 23. An aperture 56 cooperates with the valve 30 to pull the pin 61 out of the flow chamber when cutoff is desired. This rapidly increases chamber volume and correspondingly reduces chamber pressure, resulting in a slight negative pressure with material pull-back. This feature is optional.
When applied to a fully finished painted surface for temporary protective purposes, the material applied is polyvinyl acetate in an emulsion containing, for example, about 50% water and 50% polymer. When dispensed, the material is extruded from the applicator die 10 with a width of about 85 mm. Thereafter, it has been found that the material begins to converge due to surface tension. Accordingly, the spacing between the outlet 58 of the applicator die 10 and the surface upon which the ribbons are being applied is preferably held such that the material is applied at or near the point of maximum width where the opposite edges are parallel. See
As indicated above, the applicator die 10 can be moved at the selected rate over the target surfaces while material is dispersed or extruded therefrom. When placed in an infrared oven, drying time of about 15 minutes has been shown to be possible at a temperature of 180°. Convective and/or microwave drying can also be used.
It will be noted that the applicator die 10 is operated in a position which is orthogonal to the target surface rather than angled or tipped in the direction of flow as is the case with typical spray-type, deflective applicators. It will also be noted that the extruded ribbon of material being applied is not particled or atomized; rather, it is a full, continuous film of material moving outwardly and downwardly in laminar form and at a desired rate. Because the applicator is ambidextrous, it does not have to be turned around by rotation between parallel passes in opposite directions and this too, increases the rate at which an automobile body part, for example, a hood, can be covered. After coating, the component goes to an oven for faster curing.
The bottom ribbon A-7 shows the ribbon profile produced by the invention die of
An alternative or additional method of using the applicator die 10 is shown in
There are numerous advantages to the use of this process for the anti-chip coating relative to the prior art process of spraying the coating on the car. Spraying requires the entire vehicle to be masked to protect it against overspray which is highly detrimental to paint finishes. Therefore, this method eliminates the need to mask the vehicle and to remove and dispose of the masking materials. In addition, the laminarized ribbon offers a smooth, glossy appearance as compared to the rough appearance caused by spraying.
The zone of the emerging ribbon where the right and left ribbon edges are substantially parallel to the ribbon centerline at A-2, is designated the “zone of controlled film width and thickness” A-3, which is where the process of this disclosure is carried out. This sector of the ribbon extrusion, which is generally 5 to 15 mm from the face of the die block, has a substantially uniform edge-to-edge width (about 85 mm wide in this embodiment) and a constant film thickness of about 0.2 mm or 200 microns edge to edge. This ribbon zone of 5 to 15 mm from the slot face of the applicator, therefore defines the ideal range of distance (same 5-15 mm) for the applicator to dispense an optimum ribbon shape onto a surface. For this reason, robotic motion for dispensing ribbons is programmed such that the slot face of the applicator is taught a nominal 10 mm distance from the substrate surface. This will produce a wet ribbon extrusion on the substrate surface which will be of uniform width (85 mm, plus or minus 1 mm) and of uniform wet film thickness (0.2 mm). The only variance in wet film thickness across the width of the ribbon, are found at the edges, for no more than 1 mm inside the ribbon edge, where the wet material thickness is measured to be about 0.25 mm. (A-7 in
The ribbon edge exit angle which is controlled by the shim edge 46 and endpoint 47 were optimized at 36-degrees in the present embodiment to create the optimum “zone of controlled film width and thickness” for transit coating material application, and this was determined from observation and experimentation. However, other polymer emulsion formulas for other types of application, which may have a lower or higher viscosity, and/or a greater or lesser ribbon thickness requirement, may require a greater or lesser ribbon edge exit angle to optimize the zone of controlled width and thickness for that material and application. For this reason the active range of this invention for the possible exit angles of the ribbon edge which will produce the optimized zone of controlled width and thickness will lie between 5 degrees and 50 degrees relative to the applicator centerline. Likewise, although the width of the ribbon of the present embodiment is 85 mm, the straight segment of the applicator gallery and slot can be elongated considerably while preserving the radiused slot endpoint geometry to produce ribbon widths of 200 mm or even wider, or narrower ribbon widths could be produced by shortening the straight slot segment down to a ribbon width of about 25 mm. The scalability of ribbon width (25 mm or greater), and the range of viable ribbon edge exit angles (5 to 50 degrees) are inherent to the invention.
Summarizing, the applicator die 10 uniquely dispenses a ribbon of material of uniform thickness at a controlled speed and with improved edge control. PVA in a water emulsion is used in the protective film application process of
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
DeFillipi, Michael, Patel, Vipin
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4753819, | Dec 27 1985 | NORDSON CORPORATION, A CORP OF OH | Method for applying a moistureproof insulator coating on packaged circuit boards |
5010131, | Oct 20 1989 | TEXO ACQUISITION COMPANY | Barrier coating |
5143949, | Jan 23 1989 | Groco Specialty Coatings Company | Aqueous based, strippable coating composition and method |
5169900, | Aug 05 1988 | DU PONT CANADA INC - A CORP OF CANADA | Polyolefin coatings and films having release characteristics |
5186978, | Nov 16 1990 | CAL-WEST EQUIPMENT COMPANY, INC | Protective coating and method of using such coating |
5212215, | Oct 29 1985 | NIHON TOKUSHU TORYO CO , LTD | Light anti-chipping coating |
5224967, | Jan 09 1991 | Lec Tec Corporation | Protective wrap for preventing damage to girdled trees and other plants and method |
5244957, | Aug 17 1989 | Exxon Chemical Patents Inc. | Metal protecting compositions |
5275340, | Jun 14 1991 | Spraying Systems Co. | Spray nozzle with recessed deflector surface |
5281436, | Jun 09 1992 | CAL-WEST AUTOMOTIVE PRODUCTS A CORP OF CALIFORNIA | Protective coating composition and method of using such composition |
5300558, | Apr 05 1991 | Mitsui Chemicals, Inc | Curable resin coating composition |
5330795, | Feb 01 1991 | SPECIALTY CONSTRUCTION BRANDS, INC | Emulsion based coatings and a method using an emulsion based coating to seal asbestos containing soils |
5336349, | Jul 17 1991 | Saint Gobain Vitrage International | Process and device for the production of an article equipped with a profiled bead |
5358397, | May 10 1993 | Zephyros, Inc | Apparatus for extruding flowable materials |
5382395, | May 14 1993 | Admiral Equipment Co. | Profile extrusion apparatus and method for extruding a profile |
5418006, | Jan 23 1992 | Wacker-Chemie GmbH | Coating of substrate surfaces |
5421940, | Sep 29 1992 | Saint Gobain Vitrage International | Process for the production of an automobile pane equipped with an elastomer frame of a predetermined shape |
5509969, | Jul 17 1992 | Abatement process for contaminants | |
5548017, | Apr 04 1995 | Air Products and Chemicals, Inc. | Release coating for pressure sensitive adhesives |
5554325, | May 10 1993 | Saint Gobain Vitrage International | Process and device for extruding a calibrated profile of a thermoplastic polymer onto articles |
5736470, | Jun 25 1996 | OMEGA RESEARCH, INC | Pressure sensitive adhesive article and method of making |
5824734, | Jul 10 1996 | Ashland Licensing and Intellectual Property LLC | Waterborne coating compositions |
6124044, | Oct 27 1995 | CAL-WEST EQUIPMENT COMPANY, INC | Polymeric peel-off coating compositions and methods of use thereof |
6187377, | May 29 1996 | Honda Giken Kogyo Kabushiki Kaisha | Process for forming protective film on coated surface of automobile |
6773804, | Jun 07 1996 | Avery Dennison Corporation | Extruded polymeric high transparency films |
6861100, | Nov 23 1999 | SCA SCHUCKER GMBH & CO | Method and arrangement for producing body components being provided with a silencing material layer |
7043815, | Jan 25 2002 | Zephyros, Inc | Method for applying flowable materials |
7169841, | Jun 27 2000 | BASF Aktiengesellschaft | Curable aqueous polyurethane dispersions |
8263231, | Nov 10 2006 | CAL-WEST SPECIALTY COATINGS, INC | Peel-off coating compositions |
20020127334, | |||
20030155451, | |||
20040180136, | |||
20040261701, | |||
20050155549, | |||
20090104355, | |||
20100167038, | |||
20120027942, | |||
20150273496, | |||
20150367620, | |||
CA2289923, | |||
EP1008632, | |||
GB2145640, | |||
JP8276152, | |||
WO67915, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 01 2018 | DEFILLIPI, MICHAEL | EXEL INDUSTRIES | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045241 | /0056 | |
Mar 01 2018 | PATEL, VIPIN | EXEL INDUSTRIES | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 045241 | /0056 | |
Mar 02 2018 | EXEL INDUSTRIES | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 02 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Feb 19 2024 | REM: Maintenance Fee Reminder Mailed. |
Aug 05 2024 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 30 2023 | 4 years fee payment window open |
Dec 30 2023 | 6 months grace period start (w surcharge) |
Jun 30 2024 | patent expiry (for year 4) |
Jun 30 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 30 2027 | 8 years fee payment window open |
Dec 30 2027 | 6 months grace period start (w surcharge) |
Jun 30 2028 | patent expiry (for year 8) |
Jun 30 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 30 2031 | 12 years fee payment window open |
Dec 30 2031 | 6 months grace period start (w surcharge) |
Jun 30 2032 | patent expiry (for year 12) |
Jun 30 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |