A method for diagnosing a lambda sensor during ongoing operation. It includes energizing the lambda sensor using a pump current pulse additive to a pump current and a pump current counter pulse additive to the pump current and ascertaining a malfunction of the lambda sensor from voltages, which are measured at a pump cell and/or a nernst cell of the lambda sensor during the energization by the pulses.
|
1. A method for diagnosing a lambda sensor during ongoing operation, comprising:
energizing the lambda sensor using a pump current pulse additive to a pump current that is applied to a pump cell and a pump current counter pulse additive to the pump current, wherein one of the pump current pulse and the pump current counter pulse is applied after another one of the pump current pulse and the pump current counter pulse; and
ascertaining a malfunction of the lambda sensor from voltages which are measured at at least one of the pump cell, and a nernst cell, of the lambda sensor, during the energizing.
9. A control unit, which is designed for diagnosing a lambda sensor during ongoing operation, the control unit configured to:
energize the lambda sensor using a pump current pulse additive to a pump current that is applied to a pump cell and a pump current counter pulse additive to the pump current, wherein one of the pump current pulse and the pump current counter pulse is applied after another one of the pump current pulse and the pump current counter pulse; and
ascertain a malfunction of the lambda sensor from voltages which are measured at at least one of the pump cell, and a nernst cell, of the lambda sensor, during the energizing.
8. A computer-readable storage medium storing a computer program for diagnosing a lambda sensor during ongoing operation, the computer program, when executed on a computer, causing the computer to perform:
energizing the lambda sensor using a pump current pulse additive to a pump current that is applied to a pump cell and a pump current counter pulse additive to the pump current, wherein one of the pump current pulse and the pump current counter pulse is applied after another one of the pump current pulse and the pump current counter pulse; and
ascertaining a malfunction of the lambda sensor from voltages which are measured at at least one of the pump cell, and a nernst cell, of the lambda sensor, during the energizing.
2. The method as recited in
3. The method as recited in
4. The method as recited in
5. The method as recited in
6. The method as recited in
7. The method as recited in
10. The method as recited in
11. The computer-readable storage medium as recited in
12. The control unit as recited in
|
The present invention relates to a method for diagnosing a lambda sensor during ongoing operation. Furthermore, the present invention relates to a computer program which executes all steps of the method according to the present invention when it runs on a computer or control unit, and a data carrier, which stores this computer program. Finally, the present invention relates to a control unit, which is designed to carry out the method according to the present invention.
Legal regulations stipulate the monitoring of the composition of the exhaust gas of internal combustion engines to maintain limiting values. For this purpose, undesirable substances, such as nitrogen oxides and carbon monoxide, in the exhaust gas are converted into substances considered to be noncritical, such as water vapor, carbon dioxide, and nitrogen, with the aid of controlled three-way catalytic converters. This conversion presumes that the fuel-air mixture supplied to the internal combustion engine is in a certain composition range close to a stoichiometric composition. It is designated by parameter λ=1. The composition of the fuel-air mixture is monitored using exhaust gas sensors provided in the exhaust gas duct of the internal combustion engine, for example, in the form of broadband lambda sensors, which determine the oxygen partial pressure.
The correct function of the exhaust gas sensors and in particular also their aging resistance is strongly dependent on their electronic circuit. The lambda regulation has particular significance in this case, the exhaust gas sensors available on the market being able to have different characteristics with respect to the dynamic response and the dead times. To be able to ensure a stable regulation, for example, lambda controllers installed in engine control units have to be supplemented using additional electronic circuits, if exhaust gas sensors, in particular from different suppliers, are installed. For this purpose, for example, a lambda controller known as a “CJ135 Lambda Probe Interface IC” is used, which contains a PID controller.
Calibration and diagnostic measurements usually result in short-term signal invalidity during the operation and the evaluation of lambda sensors, since the control system is typically brought out of equilibrium. Depending on the length of the signal invalidity, violations of the law may occur with respect to monitoring and emissions. To avoid this, some lambda sensor diagnostic measurements are placed in the coasting or start-stop phases of the internal combustion engine, which is often not desired by the automobile manufacturers. The CJ135 lambda controller intrinsically already offers the capability of having calibration measurements run in parallel to the pump current operation, without influencing it. However, such diagnostic measurements usually still result in temporary invalidity of the signal when they are carried out in parallel with the pump current operation.
A method according to an example embodiment of the present invention for diagnosing a lambda sensor during ongoing operation includes the energization of the lambda sensor using a pump current pulse additive to a pump current and a pump current counter pulse additive to the pump current and the ascertainment of a malfunction of the lambda sensor from voltages, which are measured on a pump cell and/or on a Nernst cell during the energization by pulses. “Additive” is understood according to the present invention to mean that the value of a current pulse is added to the pump current provided for the ongoing operation of the lambda sensor. This added value may be negative, so that a subtraction of its absolute value takes place. The pump current counter pulse is understood according to the present invention as a current pulse, the sign of which differs from that of the pump current pulse. It is, thus, possible that the pump current pulse is positive and the pump current counter pulse is negative, or that the pump current pulse is negative and the pump current counter pulse is positive. This method enables a diagnostic measurement to be carried out, during which the pump current operation is only interrupted for a very short time. The malfunction which may be ascertained with the aid of the method according to the present invention may be, for example, an excessively weak air reference due to mechanical damage, for example, on the reference volume of the lambda sensor. Furthermore, a malfunction as a result of an impairment of the capacitors on the pump cell and the Nernst cell of the lambda sensor may be ascertained, which results in a misinterpretation of the pump current within the meaning of the Nernst principle.
It is preferred that the pump current pulse and the pump current counter pulse be selected in such a way that changes of the Nernst voltage of the lambda sensor are neutralized by the pump current pulse, the pump current counter pulse, and diffusion effects and flow effects occurring between these pulses. The control system is thus immediately in an engaged state again after ending of the pump current counter pulse.
It is particularly preferred that the delta amplitude of the pump current counter pulse be adjusted over multiple diagnosis cycles in such a way that changes of the Nernst voltage of the lambda sensor are neutralized by the pump current pulse, the pump current counter pulse, and diffusion effects and flow effects occurring between these pulses. A delta amplitude is understood according to the present invention as the amplitude difference between the pump current pulse and the pump current counter pulse and the pump current. At the end of the diagnosis, no influence whatsoever of the following pump current should be present for typical lambda sensors. For lambda sensors having a behavior at the limits of the specific manufacturing variation, this adjustment within a few cycles of the diagnosis enables it to ensure that no influence of the following pump current also takes place for these lambda sensors. For the adjustment, in particular a target state is defined, which may include, for example, that the Nernst voltage of the lambda sensor corresponds to its control voltage, or the pump current of the lambda sensor after the diagnosis corresponds to the pump current of the lambda sensor prior to the diagnosis.
It is very particularly preferred that at least one diffusion characteristic and/or at least one flow characteristic of a diffusion barrier of the lambda sensor be ascertained from the ratio between the delta amplitude of the pump current pulse and the delta amplitude of the pump current counter pulse. In this way, the adjustment of the delta amplitude of the pump current counter pulse may be used to determine present parameters of the lambda sensor.
The duration of the pump current pulse and the duration of the pump current counter pulse may generally be arbitrary in the method according to the present invention. However, it is preferred that the duration of the pump current pulse essentially correspond to the duration of the pump current counter pulse. “Essentially correspond” is understood in particular to mean that the duration of the pump current pulse corresponds to 90% to 110% of the duration of the pump current counter pulse. Furthermore, it is preferred that the duration of the pump current pulse and the duration of the pump current counter pulse each be at least 20 msec. Furthermore, it is preferred that the duration of the pump current pulse and the duration of the pump current counter pulse each be at most 250 msec.
Generally, the delta amplitude of the pump current pulse and the delta amplitude of the pump current counter pulse may assume arbitrary values in the method according to the present invention. However, it is preferred that the delta amplitude of the pump current pulse be greater than the delta amplitude of the pump current counter pulse. This is advantageous compensating diffusion and flow effects occurring between the pump current pulse and the pump current counter pulse.
The delta amplitude of the pump current counter pulse is particularly preferably selected as a function of at least one diffusion characteristic and/or at least one flow characteristic of a diffusion barrier of the lambda sensor. These characteristics may be determined once for standard lambda sensors from measurements or calculations using flow and diffusion equations. For sensors which deviate therefrom as a result of manufacturing, the delta amplitude of the pump current counter pulse may be adjusted as described above over multiple diagnosis cycles.
It is possible in the method according to the present invention to provide further pump current intermediate pulses between the pump current pulse and the pump current counter pulse.
The computer program according to the present invention enables the method according to the present invention to be implemented in an existing control unit, without having to carry out structural modifications thereon. For this purpose, it executes all steps of the method according to the present invention when it runs on a computer or control unit. The data carrier according to the present invention stores the computer program according to the present invention. By uploading the computer program according to the present invention onto a control unit, the control unit according to the present invention is obtained, which is designed to diagnose a lambda sensor during ongoing operation with the aid of the method according to the present invention. The control unit preferably includes a CJ135 Lambda Probe Interface IC as the lambda controller.
One exemplary embodiment of the present invention is shown in the figures and explained in greater detail below.
A detail of a conventional broadband lambda sensor 1 is shown in
In one exemplary embodiment of the method according to the present invention, such a lambda sensor 1, the lambda regulation of which is carried out via a CJ135 Lambda Probe Interface IC, is diagnosed during ongoing operation. In
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4819602, | Mar 27 1986 | Honda Giken Kogyo Kabushiki Kaisha | System of abnormality detection for oxygen concentration sensor |
20050173263, | |||
20100000864, | |||
20100073017, | |||
20120293183, | |||
20130186169, | |||
20130199283, | |||
20150047411, | |||
CN102472185, | |||
DE102011089383, | |||
DE10206110014, | |||
EP1494025, | |||
GB2188436, | |||
JP2001355506, | |||
JP2006267126, | |||
WO2004053475, | |||
WO2014063903, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 12 2014 | Robert Bosch GmbH | (assignment on the face of the patent) | / | |||
May 13 2016 | LEDERMANN, BERNHARD | Robert Bosch GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 038927 | /0172 |
Date | Maintenance Fee Events |
Dec 21 2023 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 30 2023 | 4 years fee payment window open |
Dec 30 2023 | 6 months grace period start (w surcharge) |
Jun 30 2024 | patent expiry (for year 4) |
Jun 30 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 30 2027 | 8 years fee payment window open |
Dec 30 2027 | 6 months grace period start (w surcharge) |
Jun 30 2028 | patent expiry (for year 8) |
Jun 30 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 30 2031 | 12 years fee payment window open |
Dec 30 2031 | 6 months grace period start (w surcharge) |
Jun 30 2032 | patent expiry (for year 12) |
Jun 30 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |