The invention is a method for obtaining the curved displacement of a flexible structure by using strain measurements obtained by strain sensors. By obtaining the displacement of structures in this manner, one may accurately construct the deformed shape of the structure under large geometric nonlinear deformations and display said deformed shape in real-time, enabling active control of the structure shape if desired.
|
1. A method for obtaining control of a structure having a depth with a neutral axis and length, the method comprising:
dividing the structure into a plurality of sections, the sections having equal lengths;
providing strain sensors adjacent to each section;
obtaining strain measurements from said strain; and
calculating a curved displacement of the structure out of a plane from the neutral axis using the strain measurements, the structure length, the strain sensor distances from the neutral axis, and the section length;
wherein the curved displacement provides information regarding one or more material properties of the structure that are used to adjust one or more movements of the structure;
wherein the curved displacement of the structure is calculated using the algorithm:
where is the curved displacement at strain sensor location xi, Δl is the distance between two adjacent strain sensors, l is the length of the structure, c is the distance from the strain sensor location to the neutral axis and ε is the measured strain at each strain sensor location.
8. A method for obtaining control of a structure having a depth with a neutral axis and length, the method comprising:
dividing the structure into a plurality of sections, the sections having equal lengths;
providing strain sensors adjacent to each section;
obtaining strain measurements from said strain; and
calculating a curved displacement of the structure out of a plane from the neutral axis using the strain measurements, the structure length, the strain sensor distances from the neutral axis, and the section length;
wherein the curved displacement provides information regarding one or more material properties of the structure that are used to adjust one or more movements of the structure;
wherein the curved displacement of the structure is calculated using the algorithm:
where is the curved displacement at strain sensor location xi, Δl is the distance between two adjacent strain sensors, l is the length of the structure, c is the distance from the strain sensor location to the neutral axis and ε is the measured strain at each strain sensor location.
2. The method of
3. The method of
4. The method of
where is the curved displacement at strain sensor location xi, Δl is the distance between two adjacent strain sensors, l is the length of the structure, c is the distance from the strain sensor location to the neutral axis and ε is the measured strain at each strain sensor location.
5. The method of
where is the curved displacement at strain sensor location xi, Δl is the distance between two adjacent strain sensors, l is the length of the structure, c is the distance from the strain sensor location to the neutral axis and ε is the measured strain at each strain sensor location.
6. The method of
9. The method of
10. The method of
11. The method of
where is the curved displacement at strain sensor location xi, Δl is the distance between two adjacent strain sensors, l is the length of the structure, c is the distance from the strain sensor location to the neutral axis and ε is the measured strain at each strain sensor location.
12. The method of
where is the curved displacement at strain sensor location xi, Δl is the distance between two adjacent strain sensors, l is the length of the structure, c is the distance from the strain sensor location to the neutral axis and ε is the measured strain at each strain sensor location.
13. The method of
|
The present application claims the benefit of provisional patent application Ser. No. 62/407,343, filed Oct. 12, 2016 by the present inventor(s), which is incorporated by reference in its entirety. U.S. Pat. No. 7,520,176, issued Apr. 21, 2009 by the present inventor(s), is hereby incorporated by reference.
The invention described herein may be manufactured and used by or for the Government of the United States of America for governmental purposes without payment of any royalties thereon or therefor.
The present invention relates to deformable structures, and more specifically to predicting shape deformations of deformable structures.
The Helios prototype (wing span 247 ft.) broke-up in mid-air at an altitude of 2,800 feet under very large wing dihedral deformation (wing tip deflection reaching 40 ft.). Flexible structures, such as the wings on the Helios prototype aircraft, can benefit from a technology for monitoring deformations. In the case of highly flexible aircraft, it can be advantageous to monitor deformations of structures for feedback control and flight safety.
Strain sensors can only measure surface strains and not the deformed shape. However, this changed after the development of a new prediction technology disclosed in Method for Real-Time Structure Shape-Sensing (U.S. Pat. No. 7,520,176) was created. This technology uses the Displacement Transfer Functions to transform rectilinearly distributed surface strains into out-of-plane deflections for mapping overall structure deformed shapes for visual displays.
By entering the surface strain data into the Displacement Transfer Functions, one can calculate slopes and deflections along each strain-sensing line on a given structure, such as a wing. By using multiple strain-sensing lines, overall deformed shapes of a structure subjected to ending and torsion loadings can be obtained. Seven sets of Displacement Functions have previously been formulated for different structural geometries.
By embodying the Displacement Transfer Functions, the rectilinearly distributed surface strains can also be input into the Stiffness and Load Transfer Functions to calculate structural stiffness (bending and torsion) and operational loads (bending moments, shear loads, and torques) for monitoring a flight-vehicle's operational loads in near real-time.
To be clear, previous Displacement Transfer Functions have been formulated based on the shifted straight deflections perpendicular to the undeformed neutral axis.
The present invention comprises a method for obtaining the out-of-plane deformations (i.e. structural deformations due to bending) of a flexible structure by using strain measurements obtained by strain sensors. By obtaining the displacement of structures in this manner, one may construct the deformed shape of the structure and display said deformed shape in real-time, enabling active control of the structure shape if desired. In particular, the method proposed herein utilizes new Curved Displacement Transfer Functions for accurate shape predictions of structures under large geometric nonlinear deformations.
In the drawings, which are not necessarily to scale, like or corresponding parts are denoted by like or corresponding reference numerals.
The invention, as embodied herein, comprises a method of obtaining curved displacement of a flexible structure by using strain measurements taken along the structure. For the present invention, the term displacement is defined as deformation of a structure out of the plane of the structure as applied to the structure's neutral axis 203. The term neutral axis is defined as the axis obtained by determining the axis or center point at each cross section of the structure.
To formulate the displacement theory, strain-sensing stations (strain measurement points) 202 are to be discretely distributed along a strain-sensing line on the surface of the structure (e.g., aircraft wing) as shown in
A set of three equations (recursive slope equation, recursive deflection equation, and dual-summation deflection equation) are called Displacement Transfer Functions, which are expressed in terms of the embedded beam geometrical parameters and surface strains, and contain no material properties.
By entering surface strain data into the Displacement Transfer Functions, one can calculate slopes and deflections along the embedded beam. By using multiple strain-sensing lines 204, deflections at multiple strain sensing stations 202 can then be calculated for plotting the overall deformed shapes of the structure subjected to bending and torsion loads. Using the Displacement Transfer Functions, one can accurately compute the associated deflections whether the input surface strains come from linear or nonlinear deformations.
Basic Equations for the Displacement Theory
The following sections discuss different curvature-strain differential equations for the formulation of different Displacement Transfer Functions.
Curvature-Strain Relationship
From equation (1), one obtains the curvature-strain equation (2):
Equation (2) geometrically relates the local curvature 1/R(s) to the associated surface strain ε(s) and the depth factor c(s) of the embedded beam. Equation (2) is the basis for formulating any Displacement Transfer Functions.
Traditional Curvature Equations for Vertical Deflections
Different forms of curvature-strain differential equations written in x-y system have the following familiar forms:
1. Eulerian Curvature Equation:
It is important to mention that equation (3) is referenced to the deformed (movable) x-coordinate, (i.e., x gives only the deformed location of a material point, but not the undeformed location).
2. Lagrangian Curvature Equation
Equation (4) is in reference to the undeformed (fixed) x-coordinate.
Because of the nonlinear term (dy/dx)2, direct integrations of equations (3) and (4) can end up in extremely complex deflection equations, which have poor prediction accuracies at large deformations.
3. Shifted Curvature Equation
If the deformed material points are shifted back to their respective undeformed x-positions [i.e., by setting axial displacement u to zero (u→0)] (
Formulation of the Shifted Displacement Transfer Functions
The Shifted Displacement Transfer Functions have been formulated previously by piecewise integrations of equation (5) for nonuniform embedded beams.
Formulation of Curved Displacement Transfer Functions
The following sections present mathematical processes needed for the formulation of the new Curved Displacement Transfer Functions based on curved deflections instead of traditional vertical deflections.
Curved Curvature Equations
For large bending deformations of beams, as in
The basic curvature equation referenced to the curvilinear s- system, instead of traditional Cartesian x-y system, can be expressed as equation (8):
Equating equations (2) and (8) gives the curvature-strain differential equation (9) in s- system for large deformations:
Equation (9) is a purely geometrical relationship, containing no material properties. Assuming the length of neutral axis of the embedded beam remains the same (i.e. s=x) after bending, equation (9) can be rewritten in reference to the undeformed x-system as equation (10):
The mathematical process for formulating the Curved Displacement Transfer Function is through the piecewise integration of equation (10) and is described as follows.
Piecewise Representations
To enable piecewise integrations of equation (10), the depth factor c(x) and the surface strain ε(x) can be expressed by either piecewise linear or piecewise nonlinear functions as described as follows.
1. Depth Factors
The variations of the embedded beam depth factor c(x) within each small domain xi−1≤x≤xi (i=1, 2, 3, . . . , n) can be expressed with linear function given by equation (11):
2. Surface Strains
The variation of the surface bending strain ε(x) within each small domain xi−1≤x≤xi, can be expressed by either a linear function given by equation (12) or by a nonlinear function given by equations (13-a, b):
a. Linear:
b. Nonlinear:
εn+1=εn−2−3εn−1+3εn; (at i=n) (13-b)
Equation (13-a) was generated by standard quadratic interpolation of strain values respectively at three equally spaced strain sensing stations {xi−1, xi, xi+1}, and equation (13-b) is the quadratic extrapolation equation to obtain extrapolated strain beyond the embedded beam tip.
Piecewise Integrations
In view of equations (11)-(13-a, b), the curvature-strain differential equation (10) can be piecewise integrated to yield the Curved Displacement Transfer Functions. The piecewise integration of equation (10) within the domain xi−1≤x≤xi between the two adjacent strain-sensing stations 202 {xi−1, xi}, yields the slope-angle equation (14):
which can be rewritten in the form of equation (15):
Integration of the slope angle equation (14) yields the curved deflection equation (16):
In view of equation (15), equation (16) can be rewritten in the form of equation (17):
Using piecewise representations of {c(x), ε(x)} given by equations (11)-(13-a, b), equations (15) and (17) can be integrated within the domain xi−1≤x≤xi to yield the slope and deflection equations in closed recursive and summation forms. A set of three equations (recursive slope equation, recursive deflection equation, and summation deflection equation) are called the Curved Displacement Transfer Functions. The mathematical processes are similar to those used in the piecewise integrations of the shifted curvature-strain differential equation (5) to formulate the Shifted Displacement Displacement Transfer Functions.
Curved Displacement Transfer Functions
After piecewise integrations of equations (15) and (17), one can obtain the Curved Displacement Transfer Functions (18-a, b, c) and (19-a, b, c) for nonuniform embedded beams, including the limit cases of uniform embedded beams (ci−1=ci=c).
Curved Displacement Transfer Functions
The Curved Displacement Transfer Functions (18-a, b, c) were formulated by carrying out piecewise integrations of equations (13) and (15) using piecewise-linear representation of the depth factor c(x) [eq. (11)] variation, and using piecewise-linear representation of the surface strain ε(x) [eq. (12)] variation.
Slope-Angle Equation:
Curved deflection equation:
a. In recursive form:
b. In summation form [equations (18-a) and (18-b) combined]:
Equations (18-a, b, c) are called the Curved Displacement Transfer Functions for nonuniform embedded beams (ci≠ci−1) under large deformation with geometrical nonlinearity including the limit cases of uniform embedded beams (ci−1=ci=c).
Improved Curved Displacement Transfer Functions
In another embodiment, a set of Improved Curved Displacement Transfer Functions may be used. These are represented by the equations (19-a, b, c).
Slope-Angle Equation:
Curved-Deflection Equations:
a. In Recursive Form:
b. In Summation Form [Equations (19-a) and (19-b) Combined]:
Equations (19-a, b, c) are called the Improved Curved Displacement Transfer Functions for nonuniform embedded beams (ci≠ci−1) under large deformations with geometrical nonlinearity including the limit cases of uniform embedded beams (ci−1=ci=c).
Characteristics of Displacement Transfer Functions
In the Shifted and Curved Displacement Transfer Functions, the straight and curved deflections {yi, } at the strain-sensing station xi are expressed in terms of the inboard depth factors (c0, c1, c2, . . . , ci) and the associated inboard surface strains (ε0, ε1, ε2, . . . , εi) including the values of {ci, εi} at the strain-sensing station xi where deflections {yi, } are calculated.
It is important to mention that equations (18-a, b, c) and (19-a, b, c) are purely geometrical relationships, containing no material properties. However, it must be understood that the surface strains εi implicitly contain the effect of material properties and internal structural configurations. Thus, in using equations (18-a, b, c) and (19-a, b, c) for shape predictions of complex structures such as aircraft wings, there is no need to know the material properties, nor the complex geometries of the internal structures.
Application to Structures
One example of a structure to which the present invention can be applied is a long tapered cantilever tubular beam.
For the tubular beam, the local depth factors ci (i=1, 2, 3, . . . , n) are the local outer radius of the tubular beam, and are known. The depth factors ci remain unchanged because, the magnitudes of the pairs of lower and upper surface strains are identical regardless of the load level. Therefore, only the lower surface strains are needed for inputs to the Displacement Transfer Functions for shape calculations.
However, for large geometric nonlinear deformations (e.g., Helios flying wing,
What is described are specific examples of variations on the same invention and are not intended in a limiting sense. The claimed invention can be practiced using other variations not specifically described above.
Ko, William L, Fleischer, Van T, Lung, Shun-Fat
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
7520176, | Dec 05 2006 | The United States of America as represented by the Administrator of the National Aeronautics and Space Administration | Method for real-time structure shape-sensing |
7715994, | Aug 14 2008 | The United States of America as represented by the National Aeronautics and Space Administration; NATIONAL AERONAUTICS AND SPACE ADMINISTRATION, U S GOVERNMENT AS REPRESENTED BY THE ADMINISTRATOR OF THE | Process for using surface strain measurements to obtain operational loads for complex structures |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 02 2017 | FLEISCHER, VAN T | UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043782 | /0594 | |
Oct 03 2017 | KO, WILLIAM L | UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043782 | /0594 | |
Oct 03 2017 | LUNG, SHUN-FAT | UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 043782 | /0594 | |
Oct 04 2017 | U.S.A. as Represented by the Administration of the National Aeronautics and Space Administration | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Oct 04 2017 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Feb 01 2024 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 04 2023 | 4 years fee payment window open |
Feb 04 2024 | 6 months grace period start (w surcharge) |
Aug 04 2024 | patent expiry (for year 4) |
Aug 04 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 04 2027 | 8 years fee payment window open |
Feb 04 2028 | 6 months grace period start (w surcharge) |
Aug 04 2028 | patent expiry (for year 8) |
Aug 04 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 04 2031 | 12 years fee payment window open |
Feb 04 2032 | 6 months grace period start (w surcharge) |
Aug 04 2032 | patent expiry (for year 12) |
Aug 04 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |