A surgical energy system includes a first and second surgical instruments and a generator including a universal interface. The first surgical instrument includes a first instrument connector having one or more instrument couplers disposed in a first instrument coupler configuration. The second surgical instrument includes a second instrument connector having one or more instrument couplers disposed in a second instrument coupler configuration. The first and second instrument coupler configurations are different. The generator includes a universal interface including generator couplers arranged to provide generator coupler configurations at the universal interface. Each generator coupler configuration accommodates one of the first and second instrument coupler configurations in order to electronically couple the generator to a respective one of the first and second surgical instruments.

Patent
   10772673
Priority
May 02 2016
Filed
May 02 2016
Issued
Sep 15 2020
Expiry
Apr 22 2038
Extension
720 days
Assg.orig
Entity
Large
158
110
currently ok
10. A generator comprising:
a housing;
a universal connector port supported by the housing, the universal connector port being a singular port;
a plurality of generator couplers coupled to the universal connector port and configurable into a first generator coupler configuration that interfaces with at least one first instrument coupler disposed in a first instrument coupler configuration and a second generator coupler configuration that interfaces with at least one second instrument coupler disposed in a second instrument coupler configuration;
a generator communication component configured to identify the at least one first instrument coupler and the at least one second instrument coupler and cause at least one of the plurality of generator couplers to move into the first generator coupler configuration or the second generator coupler configuration in response to the generator communication component identifying a respective one of the at least one first instrument coupler or the at least one second instrument coupler; and
at least one output module in electrical communication with the universal connector port, the at least one output module configured to transmit an energy to at least one of the first or second instrument couplers, the at least one output module configured to be removably secured in the housing.
17. A generator comprising:
a housing;
a universal connector port supported by the housing, the universal connector port being a singular port and including a plurality of generator couplers, the plurality of generator couplers configurable into a first generator coupler configuration that interfaces with at least one first instrument coupler disposed in a first instrument coupler configuration and a second generator coupler configuration that interfaces with at least one second instrument coupler disposed in a second instrument coupler configuration;
a generator communication component configured to identify the at least one first instrument coupler and the at least one second instrument coupler and cause at least one of the plurality of generator couplers to move into the first generator coupler configuration or the second generator coupler configuration in response to the generator communication component identifying a respective one of the at least one first instrument coupler or the at least one second instrument coupler;
a plurality of output modules, each of the plurality of output modules in electrical communication with the universal connector port, each of the plurality of output modules configured to transmit an energy to at least one of a plurality of surgical instruments when coupled to the universal connector port, each of the plurality of output modules configured to be removably secured in the housing; and
a plurality of receptacles supported within the housing, each receptacle configured to removably receive at least one of the plurality of output modules.
1. A surgical energy system, comprising:
a first surgical instrument including a first instrument connector having at least one first instrument coupler disposed in a first instrument coupler configuration;
a second surgical instrument including a second instrument connector having at least one second instrument coupler disposed in a second instrument coupler configuration, the first and second instrument coupler configurations being different;
a generator including a housing and a universal connector port, the universal connector port being a singular port and configured to receive one of the first instrument connector or the second instrument connector, the universal connector port including a plurality of generator couplers configurable into a first generator coupler configuration that interfaces with the at least one first instrument coupler disposed in the first instrument coupler configuration and a second generator coupler configuration that interfaces with the at least one second instrument coupler disposed in the second instrument coupler configuration in order to electrically couple the generator to a respective one of the first surgical instrument or the second surgical instrument;
a generator communication component coupled to the generator and configured to identify the first and second surgical instruments and cause at least one of the plurality of generator couplers to move into the first generator coupler configuration or the second generator coupler configuration in response to the generator communication component identifying a respective one of the first or second surgical instruments; and
at least one output module in electrical communication with the universal connector port, the at least one output module configured to transmit an energy to at least one of the first or second surgical instruments, the at least one output module configured to be removably secured in the housing of the generator.
2. The surgical energy system of claim 1, wherein the generator includes at least one receptacle configured to receive the at least one output module, the at least one output module configured to cooperate with at least one of the first or second surgical instruments when coupled to the generator.
3. The surgical energy system of claim 2, further comprising an output energy module coupled to the at least one output module and configured to transmit the energy to the at least one of the first or second instruments.
4. The surgical energy system of claim 3, wherein the output energy module includes an inverter configured to output the energy at an ultrasonic frequency, a microwave frequency, a radio frequency, or combinations thereof.
5. The surgical energy system of claim 3, wherein the output module includes at least one mechanical component configured to transfer mechanical forces to the respective one of the first or second surgical instruments to enable the respective one of the first and second surgical instruments to perform at least one function.
6. The surgical energy system of claim 1, wherein the at least one output module includes a plurality of output modules, and wherein the generator includes a plurality of receptacles, each of the plurality of receptacles configured to receive a respective output module of the plurality of output modules, each respective output module configured to cooperate with at least one of the first or second surgical instruments when coupled to the generator.
7. The surgical energy system of claim 6, wherein the plurality of output modules includes a first output module and a second output module, and wherein at least one of the plurality of receptacles removably receives a first one of the first or second output modules, the first one of the first or second output modules being removable from the at least one of the plurality receptacles and replaceable with a second one of the first or second output modules.
8. The surgical energy system of claim 6, wherein the plurality of receptacles includes a first receptacle and a second receptacle, wherein the plurality of output modules includes a first output energy module and a second output energy module, the first output energy module configured to provide a first energy modality and the second output energy module configured to provide a second energy modality that is different from the first energy modality, the first receptacle configured to receive the first output energy module, the second receptacle configured to receive the second output energy module.
9. The generator of claim 1, further comprising a drive assembly operatively coupled to the plurality of generator couplers for reconfiguring the plurality of generator couplers of the universal connector port.
11. The generator of claim 10, wherein the housing includes at least one receptacle configured to receive the at least one output module, the at least one output module configured to cooperate with at least one of first or second surgical instruments when the at least one output module is coupled to at least one of the plurality of generator couplers.
12. The generator of claim 11, wherein the at least one output module includes at least one output energy module configured to output the energy at an ultrasonic frequency, a microwave frequency, a radio frequency, or combinations thereof.
13. The generator of claim 11, wherein the at least one output module includes at least one mechanical component configured to transfer mechanical forces to the at least one of the first or second surgical instruments to enable the at least one of the first or second surgical instruments to perform at least one function.
14. The generator of claim 10, wherein the at least one output module includes a plurality of output modules, and wherein the housing includes a plurality of receptacles configured to receive a respective output module of the plurality of output modules, each output module configured to cooperate with at least one of first or second surgical instruments when coupled to the generator to enable the at least one of the first or second surgical instruments to perform at least one function.
15. The generator of claim 10, wherein at least one of the plurality of generator couplers is movable relative to the housing.
16. The generator of claim 10, further comprising a drive assembly operatively coupled to the plurality of generator couplers for reconfiguring the plurality of generator couplers of the universal connector port.
18. The generator of claim 17, wherein at least one output module of the plurality of output modules includes an output energy module configured to output the energy at an ultrasonic frequency, a microwave frequency, a radio frequency, or combinations thereof.
19. The generator of claim 17, wherein at least one of the generator couplers is movable relative to the housing to facilitate coupling with at least one of the plurality of surgical instruments.
20. The generator of claim 17, wherein at least one output module of the plurality of output modules includes at least one mechanical component configured to transfer mechanical forces to at least one of the plurality of surgical instruments to enable the at least one of the plurality of surgical instruments to perform at least one function.

The present disclosure relates to surgical energy, and more particularly, the present disclosure is directed to apparatuses, systems and methods for coupling surgical instruments to surgical generators for effectuating energy-based tissue treatment.

Energy-based tissue treatment is well known in the art. Various types of energy (e.g., electrical, ultrasonic, microwave, cryogenic, heat, laser, etc.) are applied to tissue to achieve a desired result. For example, electrosurgery involves application of high radio frequency electrical current, microwave energy or resistive heating to a surgical site to cut, ablate, coagulate or seal tissue.

In bipolar electrosurgery, one of the electrodes of the hand-held instrument functions as the active electrode and the other as the return electrode. The return electrode is placed in close proximity to the active electrode such that an electrical circuit is formed between the two electrodes (e.g., electrosurgical forceps). In this manner, the applied electrical current is limited to the body tissue positioned between the electrodes.

Bipolar electrosurgical techniques and instruments can be used to coagulate blood vessels or tissue, e.g., soft tissue structures, such as lung, brain and intestine. A surgeon can either cauterize, coagulate/desiccate and/or simply reduce or slow bleeding, by controlling the intensity, frequency and duration of the electrosurgical energy applied between the electrodes and through the tissue. In order to achieve one of these desired surgical effects without causing unwanted charring of tissue at the surgical site or causing collateral damage to adjacent tissue, e.g., thermal spread, it is necessary to control the output from the electrosurgical generator, e.g., power, waveform, voltage, current, pulse rate, etc.

In monopolar electrosurgery, the active electrode is typically a part of the surgical instrument held by the surgeon that is applied to the tissue to be treated. A patient return electrode is placed remotely from the active electrode to carry the current back to the generator and safely disperse current applied by the active electrode. The return electrodes usually have a large patient contact surface area to minimize heating at that site. Heating is caused by high current densities which directly depend on the surface area. A larger surface contact area results in lower localized heat intensity. Return electrodes are typically sized based on assumptions of the maximum current utilized during a particular surgical procedure and the duty cycle (i.e., the percentage of time the generator is on).

Still, given that energy-based treatment may involve many different apparatuses and/or systems, irrespective of the type of energy modality utilized; such treatment often requires multiple connectors, plugs, and/or the like for coupling and/or interchanging these apparatuses, systems, and/or components thereof in order to effectuate desired energy-based treatments.

Accordingly, one aspect of the present disclosure is directed to a surgical energy system that includes first and second surgical instruments and a generator. The first surgical instrument includes a first instrument connector having one or more instrument couplers disposed in a first instrument coupler configuration. The second surgical instrument includes a second instrument connector having one or more instrument couplers disposed in a second instrument coupler configuration. The first and second instrument coupler configurations are different.

The generator includes a universal interface having generator couplers arranged to provide generator coupler configurations at the universal interface. Each generator coupler configuration is configured to accommodate one of the first and second instrument coupler configurations in order to electronically couple the generator to a respective one of the first and second surgical instruments.

In some embodiments, the generator includes one or more receptacles configured to receive one or more output modules. The one or more output modules may be configured to cooperate with one or more of the first and second surgical instruments when coupled to the generator. The one or more output modules may include an output energy module. The output energy module may include an inverter configured to output energy at an ultrasonic frequency, a microwave frequency, a radio frequency, or combinations thereof. In certain embodiments, the output module includes one or more mechanical components configured to transfer mechanical forces to the respective one of the first and second surgical instruments to enable the respective one of the first and second surgical instruments to perform one or more functions.

In certain embodiments, the one or more output modules may be configured to cooperate with one or more of the first and second surgical instruments when coupled to the generator. The one or more output modules may include a first output module and a second output module. One of the receptacles may removably receive a first one of the first and second output modules. The first one of the first and second output modules may be removable from one or more of the receptacles and replaceable with a second one of the first and second output modules.

In some embodiments, the receptacles may include a first receptacle and a second receptacle. One or more output modules may include a first output energy module and a second output energy module. The first output energy module may be configured to provide a first energy modality and the second output energy module may be configured to provide a second energy modality that is different from the first energy modality. The first receptacle may be configured to receive the first output energy module. The second receptacle may be configured to receive the second output energy module.

According to another aspect of the present disclosure, a generator includes a housing, a universal interface supported by the housing, and generator couplers coupled to the universal interface. The generator couplers are arranged to provide generator coupler configurations at the universal interface. A first one of the generator coupler configurations is configured to accommodate a first instrument connector and a second one of the generator coupler configurations is configured to accommodate a second instrument connector.

In some embodiments, the housing includes one or more receptacles configured to receive one or more output modules.

In certain embodiments, the housing includes receptacles configured to receive output modules. Each output module may be configured to cooperate with one or more of the first and second surgical instruments when coupled to the generator to enable the respective one of the first and second surgical instruments to perform one or more functions.

In some embodiments, one or more of the generator couplers are movable relative to the housing to facilitate coupling with one of the first and second instrument connectors of respective first and second instruments.

According to still another aspect of the present disclosure, a generator includes a housing, a universal interface supported by the housing, output modules, and receptacles supported within the housing. Each of the output modules is configured to cooperate with one or more surgical instruments when coupled to the universal interface. Each receptacle is configured to removably receive one or more of the output modules.

Other aspects, features, and advantages will be apparent from the description, the drawings, and the claims that follow.

The accompanying drawings, which are incorporated in and constitute a part of this specification, illustrate embodiments of the disclosure and, together with a general description of the disclosure given above, and the detailed description of the embodiment(s) given below, serve to explain the principles of the disclosure, wherein:

FIG. 1 is a schematic view of a surgical energy system according to the principles of the present disclosure;

FIG. 2 is a front, perspective view of one embodiment of a generator of the surgical energy system of FIG. 1;

FIG. 3 is a rear, perspective view of the generator of FIG. 2;

FIG. 4A-4D are schematic views illustrating various surgical instruments being coupled to the generator of FIG. 2;

FIGS. 5A and 5B are progressive views illustrating a connector of a surgical instrument of the surgical energy system of FIG. 1 being coupled to the generator of FIG. 2;

FIGS. 6A and 6B are progressive views illustrating a connector of another surgical instrument of the surgical energy system of FIG. 1 being coupled to another embodiment of the generator;

FIG. 7 illustrates one embodiment of an adapter in accordance with the principles of the present disclosure; and

FIG. 8 is a schematic illustration of a medical work station and operating console in accordance with the present disclosure.

Particular embodiments of the present disclosure are described hereinbelow with reference to the accompanying drawings in which like reference numerals designate identical or corresponding elements in each of the several views. As used herein, the term “distal” refers to that portion of the system, apparatus and/or device, or component thereof, that are farther from the user, while the term “proximal” refers to that portion of the system, apparatus and/or device, or component thereof, that are closer to the user. In the following description, well-known functions or constructions are not described in detail to avoid obscuring the present disclosure in unnecessary detail.

Turning now to FIGS. 1-6B, a surgical energy system, in accordance with the present disclosure, generally referred to as 1, includes one or more surgical instruments 10, a generator 100, and one or more output modules 200. The one or more surgical instruments 10 and/or the one or more output modules 200 are selectively couplable to the generator 100. For a detailed description of the construction and operation of an example generator of which one or more components thereof can be included with generator 100, reference may be made to U.S. Patent Application Publication No. 20140171935, the entire contents of which are incorporated by reference herein.

The one or more surgical instruments 10 may include any suitable surgical instrument such as an ultrasonic forceps 12, an open forceps 14, a suction coagulator 16, a surgical pencil 18, an ablation needle 20, a bipolar forceps 22, etc. The one or more surgical instruments 10 may be configured for any suitable energy-based tissue treatment such as electrical, ultrasonic, microwave, cryogenic, heat, laser, etc. For a detailed description of the construction and operation of example surgical instruments, reference may be made to U.S. Pat. No. 8,968,311 (bipolar forceps), U.S. Pat. No. 9,017,372 (open forceps), U.S. Pat. No. 7,156,844 (surgical pencil), U.S. Pat. No. 5,766,167 (monopolar forceps), U.S. Pat. No. 8,182,480 (suction coagulator), U.S. Patent Application Publication No. 2013/032491 (ablation needle), U.S. Patent Application Publication No. 2004/0054364 (ultrasonic), each of which is incorporated herein by reference.

As seen in FIGS. 4A-6B, each surgical instrument 10 includes an instrument connector such as instrument connectors 12a, 14a, 16a, 18a, 20a, and 22a of respective surgical instruments 12, 14, 16, 18, 20, and 22. Each instrument connector includes one or more instrument couplers such as instrument couplers 12b-22b such that each instrument connector includes one or more instrument couplers arranged in one of a plurality of different instrument coupler configurations. The one or more instrument couplers 12a-22a of the respective instruments 12-22 are arranged such that each of the respective instrument connectors 12a-22a includes a predetermined instrument coupler configuration corresponding to its respective instrument 12-22. For example, the instrument connector 12a of instrument 12 may include two instrument couplers 12b while the instrument connector 14a of instrument 14 may include three instrument couplers 14b. The instrument couplers 12b-22b can be provided in any suitable configuration such as any number, dimension, shape, and/or orientation. Depending on the type, style, modality, etc. of the respective surgical instrument 10, each instrument coupler configuration may be the same or different from the other instrument coupler configurations. In some embodiments, the predetermined instrument coupler configurations may be unique to a specific instrument of the one or more instruments 10.

In some embodiments, one or more of the instrument connectors 12a-22a may include one or more communication components (e.g. processors, sensors, etc.) such as communication components 12c-22c to provide communication and/or power between the respective surgical instrument 10 and the generator 100. One or more of the communication components 12c-22c may be configured to indicate the type of instrument to which the respective instrument connector 12a-22a is coupled (e.g., via stored information). In some embodiments, the communication components 12a-22a may include a bar code, Aztec code, and/or other readable indicia.

As seen in FIGS. 2, 3, and 4A-4D, the generator 100 includes a housing 102 that defines one or more receptacles 104 configured to receive the one or more output modules 200 (e.g., output modules 200a-200d). The one or more receptacles 104 may be in the form of a port having one or more electrical and/or mechanical couplings (not shown), and may include optical communication couplings, pneumatic couplings, and/or hydraulic couplings. The housing 102 includes one or more displays 106 and a universal interface 108 that are operatively coupled to a controller 110 (see FIGS. 4A-4D). The universal interface 108 is universal in that it is configured to couple to a plurality of instruments, one at a time. Advantageously, instead of having multiple interfaces and multiple connectors (e.g., plugs), each of which only mate with specific corresponding structure, a single interface provides a simplified generator with universal connection to accommodate various instruments. The universal interface 108 simplifies the instrument-to-generator connection by limiting the need for extraneous interfaces and the need to identify which connector and interface combination is appropriate for each instrument. In certain embodiments, the generator 100 includes multiple universal interfaces 108.

In some embodiments, the universal interface 108 may include mechanical and/or electrical components configured to provide a plug-and-play interface. The universal interface 108 may be electrically and/or mechanically coupled to one or more generator couplers 112 that couple to the one or more receptacles 104. In some embodiments, the universal interface 108 may be directly coupled to one or more of the receptacles 104 and/or one or more of the output modules 200.

In certain embodiments, the generator 100 may include one or more doors 105 that are moveable between open and closed positions to selectively provide access to the one or more receptacles 104. The doors 105 may include a handle 105a or like to enable a clinician to move the doors 105 between the open and closed positions.

With reference to FIGS. 4A-4D, the generator 100 may further include one or more instrument sensors 114 (e.g., scanner, diode, etc.) configured to sense the communication components 12c-22d of the surgical instruments 10 and communicate with the controller 110 and/or generator couplers 112. The controller 110 and/or generator couplers 112 may be configured to coordinate (e.g., via electronic circuitry, mechanical couplings, or the like) with the surgical instruments 10 and/or the output modules 100 to operate the surgical instruments 10 while the surgical instruments 10 are coupled to the generator 100. For example, the instrument sensor 114 may communicate an electrical signal to the controller 110 to indicate the type of instrument 10 coupled to the interface 108 based upon the communication component (e.g., communication component 12c). One or more of the generator couplers 112 can then communicate with one or more of the output modules 200 supported within the housing 102, whereby the one or more output modules 200 can cooperate with the instrument 10 (e.g., surgical instrument 12) operatively coupled thereto so that the instrument 10 can perform one or more functions (e.g., grasping, sealing, cutting, ablating, cooling, etc.).

The output modules 200 can include any suitable output module. In some embodiments, one or more of the output modules 200 may be an output energy module, a fluid/material supply and/or return module, a sensor module, etc. (e.g., output modules 200a-200d). For example, one or more of the output modules 200 can be configured to provide one or more various energy sources such as radiofrequency (e.g., bipolar, monopolar), laser/optic, pneumatics, hydraulics, microwave, chemical, plasma, light, etc.). The one or more output modules 200 may include any number of sensors (e.g., proximity, impedance, etc.). In some embodiments, one or more of the output modules 200 may be configured to supply and/or return fluids and/or materials, for instance, to tissue during a tissue sealing procedure. In some embodiments, the one or more output modules 200 include a gas supply module, a coolant supply module, or combinations thereof. One or more of the output modules 200 may be dependent and/or independent of one or more of the other output modules 200.

The output modules 200 may include one or more subcomponents 202, 204, etc. The one or more subcomponents 202, 204, 206, 208, 210, etc. may include any suitable mechanical, electrical, and/or chemical features such as inverters, microcontrollers, electrical wiring, gears, motors, cables, semi-conductors, pneumatics, hydraulics, cameras, scanners, etc. For instance, the one more output modules 200 may include an inverter configured to output energy at one or more of an ultrasonic frequency, a microwave frequency, a radio frequency, etc. In certain embodiments, different output modules may be configured to provide different energy modalities. In some embodiments, one of the output modules 200 may provide ultrasonic energy while another of the output modules 200 may provide radiofrequency energy such as monopolar or bipolar. In some embodiments, different output modules may be configured to provide the same energy modalities. In certain embodiments, one or more of the output modules 200 may provide multiple energy modalities.

In some embodiments, the one or more subcomponents 202, 204, 206, 208, 210 may include material or fluid sources such as collagen, plastic, biomaterials, argon, saline, etc. In certain embodiments, the one or more subcomponents 202, 204, 206, 208, 210 may provide a vacuum source.

In certain embodiments, the one more output modules 200 may include one or more subcomponents 202 that may include one or more mechanical components (couplers, bearings, shafts, cables, gears, motors, nuts, screws, pneumatics, hyradulics, etc.) configured to transfer mechanical forces to one or more surgical instruments 10 that couple to the generator 100 to enable the respective surgical instruments to perform a certain function.

In some embodiments, the generator 100 may include one or more output modules and/or other mechanical, electrical, and/or chemical components, etc. that may be integral with the generator 100.

In certain embodiments, the generator 100 and/or one or more of the output modules 200 may be configured to supply direct and/or alternating current, for example; to articulate, rotate, and/or fire a surgical instrument 10; power one or more motors; etc.

As seen in FIGS. 5A and 5B, the universal interface 108 includes generator couplers 122a-122f configured to receive instrument couplers such as instrument couplers 22b, 22e, and 22d of instrument connector 22a. The generator couplers 122a-122f are arranged to establish one or more predetermined generator coupler configurations in order to accommodate various surgical instruments 10, with each generator coupler configuration corresponding to one or more of the instrument coupler configurations of the surgical instruments 10 to individually accommodate or otherwise complement the instrument coupler configurations of one or more surgical instruments 10.

As seen in FIGS. 6A and 6B, one embodiment of the universal interface 108 includes a plurality of generator couplers 116 such as generator couplers 116a-116f that are configured to couple to the instrument couplers, such as instrument couplers 20b, 20d, of the respective instrument connectors, such as instrument connector 20a. The generator couplers 116a-116f may be movable relative to one or more of the other generator couplers 116a-116f to establish predetermined generator coupler configurations. For example, as seen in FIG. 6B, two of the generator couplers 116e, 116b may be moved toward corresponding instrument couplers 20b, 20d of instrument connector 20a to position the generator couplers 116e, 116d in a predetermined generator coupler configuration suitable to couple the instrument connector 20a to the universal interface 108. Of course, any number of the generator couplers can be arranged as desired to individually accommodate or otherwise complement any instrument connector. In some embodiments, the generator couplers 116a-116f and/or the instrument couplers, such as instrument couplers 20b, 20d, may be magnetically attracted to one another (e.g., via one or more magnetic and/or ferromagnetic materials).

In certain embodiments, movement of the generator couplers 116a-116f may be effectuated via a drive assembly 120 operatively coupled to the generator couplers 116a-116f in response to an identification of the type of instrument connector via a generator communication component 118 of the interface 108. The generator communication component 118 can be configured to sense or otherwise read the communication components 12c-22c of the instrument connectors 12a-22a to identify (to the controller 110) the type of instrument 10 to which the instrument connector 12a-22a is coupled so that the controller 110 can coordinate the operation of the components of the generator 100 and/or the surgical instrument 10 attached thereto. In response to a coupling (or an attempted coupling) of an instrument connector to the interface 108, the controller 110 may issue output such as connection or error notifications on the display 106 of the generator 100. The generator communication component 118 can be configured to detect any suitable information such size, style, types etc. of the surgical instrument 10 and/or components thereof (e.g., the respective instrument connector) so that the controller 110 can coordinate the appropriate energy, signals, etc.

As seen in FIG. 7, an adapter 24 can be coupled to an instrument connector 24, for example, to retrofit an older or outdated instrument connector or a different manufacturer's instrument connector to the universal interfaces of the present disclosure.

In some embodiments, the generator 100 may be configured to receive, store and/or send information such as patient medical records and/or one or more medical databases. The generator 100 may be configured to provide video and/or audio capture. In some embodiments, the generator 100 may be configured to create log files. In certain embodiments, the generator 100 may be configured to provide real-time and/or periodic data transfers. In some embodiments, the generator 100 may be configured to provide snapshot data (e.g., Ligasure™ seal data). In certain embodiments, the generator 100 may be configured to utilize information to predetermine modalities, connections, etc. as need for particular patients, procedures, etc. In some embodiments, the generator 100 may be configured to suggest configurations and/or default to a predetermined pre-op configuration.

The various embodiments disclosed herein may also be configured to work with robotic surgical systems and what is commonly referred to as “Telesurgery.” Such systems employ various robotic elements to assist the surgeon and allow remote operation (or partial remote operation) of surgical instrumentation. Various robotic arms, gears, cams, pulleys, electric and mechanical motors (including pneumatics and/or hydraulics), etc. may be employed for this purpose and may be designed with a robotic surgical system to assist the surgeon during the course of an operation or treatment. Such robotic systems may include remotely steerable systems, automatically flexible surgical systems, remotely flexible surgical systems, remotely articulating surgical systems, wireless surgical systems, modular or selectively configurable remotely operated surgical systems, etc.

The robotic surgical systems may be employed with one or more consoles that are next to the operating theater or located in a remote location. In this instance, one team of surgeons or nurses may prep the patient for surgery and configure the robotic surgical system with one or more of the instruments disclosed herein while another surgeon (or group of surgeons) remotely control the instruments via the robotic surgical system. As can be appreciated, a highly skilled surgeon may perform multiple operations in multiple locations without leaving his/her remote console which can be both economically advantageous and a benefit to the patient or a series of patients.

The robotic arms of the surgical system are typically coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the working ends of any type of surgical instrument (e.g., end effectors, graspers, knifes, scissors, etc.) which may complement the use of one or more of the embodiments described herein. The movement of the master handles may be scaled so that the working ends have a corresponding movement that is different, smaller or larger, than the movement performed by the operating hands of the surgeon. The scale factor or gearing ratio may be adjustable so that the operator can control the resolution of the working ends of the surgical instrument(s).

The master handles may include various sensors to provide feedback to the surgeon relating to various tissue parameters or conditions, e.g., tissue resistance due to manipulation, cutting or otherwise treating, pressure by the instrument onto the tissue, tissue temperature, tissue impedance, etc. As can be appreciated, such sensors provide the surgeon with enhanced tactile feedback simulating actual operating conditions. The master handles may also include a variety of different actuators for delicate tissue manipulation or treatment further enhancing the surgeon's ability to mimic actual operating conditions.

Referring also to FIG. 8, a medical work station is shown generally as work station 1000 and generally may include a plurality of robot arms 1002, 1003; a control device 1004; and an operating console 1005 coupled with the control device 1004. The operating console 1005 may include a display device 1006, which may be set up in particular to display three-dimensional images; and manual input devices 1007, 1008, by means of which a person (not shown), for example a clinician, may be able to telemanipulate the robot arms 1002, 1003 in a first operating mode.

Each of the robot arms 1002, 1003 may include a plurality of members, which are connected through joints, and an attaching device 1009, 1011, to which may be attached, for example, a surgical tool “ST” supporting an end effector 1100 (e.g., a pair of jaw members), in accordance with any one of several embodiments disclosed herein, as will be described in greater detail below.

The robot arms 1002, 1003 may be driven by electric drives (not shown) that are connected to the control device 1004. The control device 1004 (e.g., a computer) may be set up to activate the drives, in particular by means of a computer program, in such a way that the robot arms 1002, 1003, their attaching devices 1009, 1011 and thus the surgical tool (including the end effector 1100) execute a desired movement according to a movement defined by means of the manual input devices 1007, 1008. The control device 1004 may also be set up in such a way that it regulates the movement of the robot arms 1002, 1003 and/or of the drives.

The medical work station 1000 may be configured for use on a patient “P” lying on a patient table 1012 to be treated in a minimally invasive manner by means of the end effector 1100. The medical work station 1000 may also include more than two robot arms 1002, 1003, the additional robot arms likewise connected to the control device 1004 and telemanipulatable by means of the operating console 1005. A medical instrument or surgical tool (including an end effector 1100) may also be attached to the additional robot arm. The medical work station 1000 may include a database 1014 coupled with the control device 1004. In some embodiments, pre-operative data from patient/living being “P” and/or anatomical atlases may be stored in the database 1014.

Persons skilled in the art will understand that the structures and methods specifically described herein and shown in the accompanying figures are non-limiting exemplary embodiments, and that the description, disclosure, and figures should be construed merely as exemplary of particular embodiments. It is to be understood, therefore, that the present disclosure is not limited to the precise embodiments described, and that various other changes and modifications may be effected by one skilled in the art without departing from the scope or spirit of the disclosure. Additionally, the elements and features shown or described in connection with certain embodiments may be combined with the elements and features of certain other embodiments without departing from the scope of the present disclosure, and that such modifications and variations are also included within the scope of the present disclosure. Accordingly, the subject matter of the present disclosure is not limited by what has been particularly shown and described.

Allen, IV, James D., Kerr, Duane E.

Patent Priority Assignee Title
11218822, Mar 29 2019 Cilag GmbH International Audio tone construction for an energy module of a modular energy system
11234756, Dec 28 2017 Cilag GmbH International Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter
11253315, Dec 28 2017 Cilag GmbH International Increasing radio frequency to create pad-less monopolar loop
11259807, Feb 19 2019 Cilag GmbH International Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device
11259830, Mar 08 2018 Cilag GmbH International Methods for controlling temperature in ultrasonic device
11266468, Dec 28 2017 Cilag GmbH International Cooperative utilization of data derived from secondary sources by intelligent surgical hubs
11272931, Feb 19 2019 Cilag GmbH International Dual cam cartridge based feature for unlocking a surgical stapler lockout
11278280, Mar 28 2018 Cilag GmbH International Surgical instrument comprising a jaw closure lockout
11278281, Dec 28 2017 Cilag GmbH International Interactive surgical system
11284936, Dec 28 2017 Cilag GmbH International Surgical instrument having a flexible electrode
11291444, Feb 19 2019 Cilag GmbH International Surgical stapling assembly with cartridge based retainer configured to unlock a closure lockout
11291445, Feb 19 2019 Cilag GmbH International Surgical staple cartridges with integral authentication keys
11291495, Dec 28 2017 Cilag GmbH International Interruption of energy due to inadvertent capacitive coupling
11291510, Oct 30 2017 Cilag GmbH International Method of hub communication with surgical instrument systems
11298129, Feb 19 2019 Cilag GmbH International Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge
11298130, Feb 19 2019 Cilag GmbH International Staple cartridge retainer with frangible authentication key
11298148, Mar 08 2018 Cilag GmbH International Live time tissue classification using electrical parameters
11304699, Dec 28 2017 Cilag GmbH International Method for adaptive control schemes for surgical network control and interaction
11304720, Dec 28 2017 Cilag GmbH International Activation of energy devices
11304745, Dec 28 2017 Cilag GmbH International Surgical evacuation sensing and display
11304763, Dec 28 2017 Cilag GmbH International Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use
11308075, Dec 28 2017 Cilag GmbH International Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity
11311306, Dec 28 2017 Cilag GmbH International Surgical systems for detecting end effector tissue distribution irregularities
11311342, Oct 30 2017 Cilag GmbH International Method for communicating with surgical instrument systems
11317915, Feb 19 2019 Cilag GmbH International Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers
11317919, Oct 30 2017 Cilag GmbH International Clip applier comprising a clip crimping system
11317937, Mar 08 2018 Cilag GmbH International Determining the state of an ultrasonic end effector
11324557, Dec 28 2017 Cilag GmbH International Surgical instrument with a sensing array
11331100, Feb 19 2019 Cilag GmbH International Staple cartridge retainer system with authentication keys
11331101, Feb 19 2019 Cilag GmbH International Deactivator element for defeating surgical stapling device lockouts
11337746, Mar 08 2018 Cilag GmbH International Smart blade and power pulsing
11344326, Mar 08 2018 Cilag GmbH International Smart blade technology to control blade instability
11350978, Sep 07 2018 Cilag GmbH International Flexible neutral electrode
11357503, Feb 19 2019 Cilag GmbH International Staple cartridge retainers with frangible retention features and methods of using same
11364075, Dec 28 2017 Cilag GmbH International Radio frequency energy device for delivering combined electrical signals
11369377, Jun 25 2019 Cilag GmbH International Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout
11382697, Dec 28 2017 Cilag GmbH International Surgical instruments comprising button circuits
11389164, Dec 28 2017 Cilag GmbH International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
11389188, Mar 08 2018 Cilag GmbH International Start temperature of blade
11399858, Mar 08 2018 Cilag GmbH International Application of smart blade technology
11406382, Mar 28 2018 Cilag GmbH International Staple cartridge comprising a lockout key configured to lift a firing member
11406390, Oct 30 2017 Cilag GmbH International Clip applier comprising interchangeable clip reloads
11410259, Dec 28 2017 Cilag GmbH International Adaptive control program updates for surgical devices
11413042, Oct 30 2017 Cilag GmbH International Clip applier comprising a reciprocating clip advancing member
11419630, Dec 28 2017 Cilag GmbH International Surgical system distributed processing
11419667, Dec 28 2017 Cilag GmbH International Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location
11423007, Dec 28 2017 Cilag GmbH International Adjustment of device control programs based on stratified contextual data in addition to the data
11424027, Dec 28 2017 Cilag GmbH International Method for operating surgical instrument systems
11432885, Dec 28 2017 Cilag GmbH International Sensing arrangements for robot-assisted surgical platforms
11446052, Dec 28 2017 Cilag GmbH International Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue
11457944, Mar 08 2018 Cilag GmbH International Adaptive advanced tissue treatment pad saver mode
11464511, Feb 19 2019 Cilag GmbH International Surgical staple cartridges with movable authentication key arrangements
11464532, Mar 08 2018 Cilag GmbH International Methods for estimating and controlling state of ultrasonic end effector
11464535, Dec 28 2017 Cilag GmbH International Detection of end effector emersion in liquid
11464559, Dec 28 2017 Cilag GmbH International Estimating state of ultrasonic end effector and control system therefor
11471156, Mar 28 2018 Cilag GmbH International Surgical stapling devices with improved rotary driven closure systems
11471206, Sep 07 2018 Cilag GmbH International Method for controlling a modular energy system user interface
11504192, Oct 30 2014 Cilag GmbH International Method of hub communication with surgical instrument systems
11510720, Sep 07 2018 Cilag GmbH International Managing simultaneous monopolar outputs using duty cycle and synchronization
11510741, Oct 30 2017 Cilag GmbH International Method for producing a surgical instrument comprising a smart electrical system
11517309, Feb 19 2019 Cilag GmbH International Staple cartridge retainer with retractable authentication key
11529187, Dec 28 2017 Cilag GmbH International Surgical evacuation sensor arrangements
11534196, Mar 08 2018 Cilag GmbH International Using spectroscopy to determine device use state in combo instrument
11540855, Dec 28 2017 Cilag GmbH International Controlling activation of an ultrasonic surgical instrument according to the presence of tissue
11559307, Dec 28 2017 Cilag GmbH International Method of robotic hub communication, detection, and control
11559308, Dec 28 2017 Cilag GmbH International Method for smart energy device infrastructure
11564703, Oct 30 2017 Cilag GmbH International Surgical suturing instrument comprising a capture width which is larger than trocar diameter
11564756, Oct 30 2017 Cilag GmbH International Method of hub communication with surgical instrument systems
11571234, Dec 28 2017 Cilag GmbH International Temperature control of ultrasonic end effector and control system therefor
11576677, Dec 28 2017 Cilag GmbH International Method of hub communication, processing, display, and cloud analytics
11589865, Mar 28 2018 Cilag GmbH International Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems
11589888, Dec 28 2017 Cilag GmbH International Method for controlling smart energy devices
11589915, Mar 08 2018 Cilag GmbH International In-the-jaw classifier based on a model
11589932, Dec 28 2017 Cilag GmbH International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
11596291, Dec 28 2017 Cilag GmbH International Method of compressing tissue within a stapling device and simultaneously displaying of the location of the tissue within the jaws
11601371, Dec 28 2017 Cilag GmbH International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
11602366, Oct 30 2017 Cilag GmbH International Surgical suturing instrument configured to manipulate tissue using mechanical and electrical power
11602393, Dec 28 2017 Cilag GmbH International Surgical evacuation sensing and generator control
11612408, Dec 28 2017 Cilag GmbH International Determining tissue composition via an ultrasonic system
11612444, Dec 28 2017 Cilag GmbH International Adjustment of a surgical device function based on situational awareness
11617597, Mar 08 2018 Cilag GmbH International Application of smart ultrasonic blade technology
11628006, Sep 07 2018 Cilag GmbH International Method for energy distribution in a surgical modular energy system
11633237, Dec 28 2017 Cilag GmbH International Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
11638602, Sep 07 2018 Cilag GmbH International Coordinated stackable multi-module surgical system
11648022, Oct 30 2017 Cilag GmbH International Surgical instrument systems comprising battery arrangements
11659023, Dec 28 2017 Cilag GmbH International Method of hub communication
11666331, Dec 28 2017 Cilag GmbH International Systems for detecting proximity of surgical end effector to cancerous tissue
11666368, Sep 07 2018 Cilag GmbH International Method for constructing and using a modular surgical energy system with multiple devices
11672605, Dec 28 2017 Cilag GmbH International Sterile field interactive control displays
11678881, Dec 28 2017 Cilag GmbH International Spatial awareness of surgical hubs in operating rooms
11678901, Mar 08 2018 Cilag GmbH International Vessel sensing for adaptive advanced hemostasis
11678925, Sep 07 2018 Cilag GmbH International Method for controlling an energy module output
11678927, Mar 08 2018 Cilag GmbH International Detection of large vessels during parenchymal dissection using a smart blade
11684400, Sep 07 2018 Cilag GmbH International Grounding arrangement of energy modules
11684401, Sep 07 2018 Cilag GmbH International Backplane connector design to connect stacked energy modules
11696760, Dec 28 2017 Cilag GmbH International Safety systems for smart powered surgical stapling
11696778, Oct 30 2017 Cilag GmbH International Surgical dissectors configured to apply mechanical and electrical energy
11696790, Sep 07 2018 Cilag GmbH International Adaptably connectable and reassignable system accessories for modular energy system
11696791, Sep 07 2018 Cilag GmbH International Surgical instrument utilizing drive signal to power secondary function
11701139, Mar 08 2018 Cilag GmbH International Methods for controlling temperature in ultrasonic device
11701162, Mar 08 2018 Cilag GmbH International Smart blade application for reusable and disposable devices
11701185, Dec 28 2017 Cilag GmbH International Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
11707293, Mar 08 2018 Cilag GmbH International Ultrasonic sealing algorithm with temperature control
11712280, Sep 07 2018 Cilag GmbH International Passive header module for a modular energy system
11712303, Dec 28 2017 Cilag GmbH International Surgical instrument comprising a control circuit
11737668, Dec 28 2017 Cilag GmbH International Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
11743665, Mar 29 2019 Cilag GmbH International Modular surgical energy system with module positional awareness sensing with time counter
11744604, Dec 28 2017 Cilag GmbH International Surgical instrument with a hardware-only control circuit
11751872, Feb 19 2019 Cilag GmbH International Insertable deactivator element for surgical stapler lockouts
11751958, Dec 28 2017 Cilag GmbH International Surgical hub coordination of control and communication of operating room devices
11759224, Oct 30 2017 Cilag GmbH International Surgical instrument systems comprising handle arrangements
11771487, Dec 28 2017 Cilag GmbH International Mechanisms for controlling different electromechanical systems of an electrosurgical instrument
11775682, Dec 28 2017 Cilag GmbH International Data stripping method to interrogate patient records and create anonymized record
11779337, Dec 28 2017 Cilag GmbH International Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
11786245, Dec 28 2017 Cilag GmbH International Surgical systems with prioritized data transmission capabilities
11786251, Dec 28 2017 Cilag GmbH International Method for adaptive control schemes for surgical network control and interaction
11793537, Oct 30 2017 Cilag GmbH International Surgical instrument comprising an adaptive electrical system
11801098, Oct 30 2017 Cilag GmbH International Method of hub communication with surgical instrument systems
11804679, Sep 07 2018 Cilag GmbH International Flexible hand-switch circuit
11806062, Sep 07 2018 Cilag GmbH International Surgical modular energy system with a segmented backplane
11818052, Dec 28 2017 Cilag GmbH International Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs
11819231, Oct 30 2017 Cilag GmbH International Adaptive control programs for a surgical system comprising more than one type of cartridge
11832840, Dec 28 2017 Cilag GmbH International Surgical instrument having a flexible circuit
11832899, Dec 28 2017 Cilag GmbH International Surgical systems with autonomously adjustable control programs
11839396, Mar 08 2018 Cilag GmbH International Fine dissection mode for tissue classification
11844545, Mar 08 2018 Cilag GmbH International Calcified vessel identification
11844579, Dec 28 2017 Cilag GmbH International Adjustments based on airborne particle properties
11857152, Dec 28 2017 Cilag GmbH International Surgical hub spatial awareness to determine devices in operating theater
11857252, Mar 30 2021 Cilag GmbH International Bezel with light blocking features for modular energy system
11864728, Dec 28 2017 Cilag GmbH International Characterization of tissue irregularities through the use of mono-chromatic light refractivity
11864845, Dec 28 2017 Cilag GmbH International Sterile field interactive control displays
11871901, May 20 2012 Cilag GmbH International Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
11890065, Dec 28 2017 Cilag GmbH International Surgical system to limit displacement
11896279, Sep 07 2018 Cilag GmbH International Surgical modular energy system with footer module
11896322, Dec 28 2017 Cilag GmbH International Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
11896443, Dec 28 2017 Cilag GmbH International Control of a surgical system through a surgical barrier
11903587, Dec 28 2017 Cilag GmbH International Adjustment to the surgical stapling control based on situational awareness
11903601, Dec 28 2017 Cilag GmbH International Surgical instrument comprising a plurality of drive systems
11911045, Oct 30 2017 Cilag GmbH International Method for operating a powered articulating multi-clip applier
11918269, Sep 07 2018 Cilag GmbH International Smart return pad sensing through modulation of near field communication and contact quality monitoring signals
11918302, Dec 28 2017 Cilag GmbH International Sterile field interactive control displays
11923084, Sep 07 2018 Cilag GmbH International First and second communication protocol arrangement for driving primary and secondary devices through a single port
11925350, Feb 19 2019 Cilag GmbH International Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge
11925373, Oct 30 2017 Cilag GmbH International Surgical suturing instrument comprising a non-circular needle
11931027, Mar 28 2018 CILAG GMBH INTERNTIONAL Surgical instrument comprising an adaptive control system
11931089, Sep 07 2018 Cilag GmbH International Modular surgical energy system with module positional awareness sensing with voltage detection
11931110, Dec 28 2017 Cilag GmbH International Surgical instrument comprising a control system that uses input from a strain gage circuit
11937769, Dec 28 2017 Cilag GmbH International Method of hub communication, processing, storage and display
11937817, Mar 28 2018 Cilag GmbH International Surgical instruments with asymmetric jaw arrangements and separate closure and firing systems
11950823, Sep 07 2018 Cilag GmbH International Regional location tracking of components of a modular energy system
11950860, Mar 30 2021 Cilag GmbH International User interface mitigation techniques for modular energy systems
D924139, Sep 05 2019 Cilag GmbH International Energy module with a backplane connector
D928725, Sep 05 2019 Cilag GmbH International Energy module
D928726, Sep 05 2019 Cilag GmbH International Energy module monopolar port
D939545, Sep 05 2019 Cilag GmbH International Display panel or portion thereof with graphical user interface for energy module
D950728, Jun 25 2019 Cilag GmbH International Surgical staple cartridge
D952144, Jun 25 2019 Cilag GmbH International Surgical staple cartridge retainer with firing system authentication key
D964564, Jun 25 2019 Cilag GmbH International Surgical staple cartridge retainer with a closure system authentication key
Patent Priority Assignee Title
5766167, Dec 17 1993 United States Surgical Corporation Monopolar electrosurgical Instruments
5931835, Dec 08 1995 Boston Scientific Scimed, Inc Radio frequency energy delivery system for multipolar electrode catheters
5997528, Aug 29 1996 Bausch & Lomb Incorporated Surgical system providing automatic reconfiguration
6988423, Apr 05 1994 Huntleigh Technology Limited Universal connecting device that designates an operational mode
7156844, Nov 20 2003 TYCO HEALTHCARE GROUP AG; Covidien AG Electrosurgical pencil with improved controls
7252646, Apr 05 1994 Huntleigh Technology Limited Universal connecting device that designates an operational mode
8182480, Aug 19 2008 Covidien LP Insulated tube for suction coagulator
8613627, Feb 09 2011 ERBE ELEKTROMEDIZIN GMBH Universal connector socket
8968311, May 01 2012 Covidien LP Surgical instrument with stamped double-flag jaws and actuation mechanism
9017372, Oct 01 2010 Covidien LP Blade deployment mechanisms for surgical forceps
9099863, Sep 09 2011 Covidien LP Surgical generator and related method for mitigating overcurrent conditions
9186202, Aug 28 2009 Covidien LP Electrosurgical generator
9270202, Mar 11 2013 Covidien LP Constant power inverter with crest factor control
9283028, Mar 15 2013 Covidien LP Crest-factor control of phase-shifted inverter
20040054364,
20040097117,
20040097912,
20040167508,
20050107831,
20060079871,
20070032789,
20090043293,
20110224663,
20120202388,
20130032491,
20140171935,
20140232463,
20140243815,
20140253140,
20140257270,
20140258800,
20140276750,
20140276753,
20140276754,
20140358138,
20140376269,
20150025521,
20150025523,
20150032096,
20150032098,
20150032099,
20150032100,
20150088116,
20150088117,
20150088118,
20150088124,
20150088125,
20150119871,
D574323, Feb 12 2007 Covidien LP Generator
DE102008058737,
DE1099658,
DE1139927,
DE1149832,
DE1439302,
DE179607,
DE19506363,
DE19717411,
DE19848540,
DE2407559,
DE2439587,
DE2455174,
DE2504280,
DE2540968,
DE2602517,
DE2803275,
DE2820908,
DE2823291,
DE2946728,
DE3045996,
DE3120102,
DE3143421,
DE3510586,
DE3604823,
DE3904558,
DE390937,
DE3942998,
DE4206433,
DE4339049,
EP246350,
EP556705,
EP836868,
EP882955,
EP1051948,
EP1776929,
EP267403,
EP296777,
EP310431,
EP325456,
EP336742,
EP390937,
EP4366724,
EP608609,
EP880220,
FR1275415,
FR1347865,
FR2313708,
FR2364461,
FR2502935,
FR2517953,
FR2573301,
JP2002065690,
JP2005185657,
JP63005876,
SU166452,
SU727201,
WO211634,
WO245589,
WO3090635,
WO6050888,
WO8053532,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Mar 11 2016ALLEN, JAMES D , IVCovidien LPASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0384320817 pdf
Mar 11 2016KERR, DUANE E Covidien LPASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0384320817 pdf
May 02 2016Covidien LP(assignment on the face of the patent)
Date Maintenance Fee Events
Feb 21 2024M1551: Payment of Maintenance Fee, 4th Year, Large Entity.


Date Maintenance Schedule
Sep 15 20234 years fee payment window open
Mar 15 20246 months grace period start (w surcharge)
Sep 15 2024patent expiry (for year 4)
Sep 15 20262 years to revive unintentionally abandoned end. (for year 4)
Sep 15 20278 years fee payment window open
Mar 15 20286 months grace period start (w surcharge)
Sep 15 2028patent expiry (for year 8)
Sep 15 20302 years to revive unintentionally abandoned end. (for year 8)
Sep 15 203112 years fee payment window open
Mar 15 20326 months grace period start (w surcharge)
Sep 15 2032patent expiry (for year 12)
Sep 15 20342 years to revive unintentionally abandoned end. (for year 12)