A three-dimensional memory device and a manufacturing method thereof are provided. The three-dimensional memory device includes a plurality of bottom source lines extending in a first horizontal direction, a stacked structure disposed on the bottom source lines, a plurality of bit lines extending in a second horizontal direction, and a plurality of pillar structures passing through the stacked structure. The stacked structure includes a plurality of composite structures spaced apart from one another and respectively located at different levels. The composite structures each include a gate conductive layer and a ferroelectric layer surrounding the gate conductive layer. Each of the pillar structures connected between the corresponding bit line and the corresponding bottom source line includes a barrier layer, a gate insulating layer, and a channel layer. The ferroelectric layer of each composite structure is insulated from the gate insulating layer of the pillar structure by the barrier layer.
|
1. A three-dimensional memory device comprising:
a plurality of bottom source lines extending in a first horizontal direction;
a stacked structure disposed on the bottom source lines, wherein the stacked structure includes a plurality of composite structures which are spaced apart from one another and respectively located at different levels, each of the composite structures includes a gate conductive layer and a ferroelectric layer surrounding the gate conductive layer;
a plurality of bit lines disposed on the stacked structure and extending in a second horizontal direction, wherein the bit lines traverse the bottom source lines; and
a plurality of pillar structures passing through the stacked structure, wherein each of the pillar structures is connected between the corresponding bit line and the corresponding bottom source line, and each of the composite structures and the corresponding one of the pillar structures define a memory cell;
wherein each of the pillar structures includes a barrier layer, a gate insulating layer, and a channel layer, and each of the ferroelectric layers and the corresponding one of the gate insulating layers are insulated from each other by the corresponding one of the barrier layers.
2. The three-dimensional memory device according to
3. The three-dimensional memory device according to
4. The three-dimensional memory device according to
5. The three-dimensional memory device according to
6. The three-dimensional memory device according to
7. The three-dimensional memory device according to
8. The three-dimensional memory device according to
9. The three-dimensional memory device according to
wherein the three-dimensional memory device includes two isolation portions respectively located at two opposite sides of the cell region, and each of the isolation portions extends from a top surface of the stacked structure to a bottom surface of the stacked structure.
|
This application also claim the priority benefit of a prior application serial no. CN 201711114898.5 filed Nov. 13, 2017. The entirety of the aforementioned patent applications is hereby incorporated by reference herein and made a part of this specification.
The disclosure relates to a three-dimensional memory device and manufacturing method thereof in particular, to a vertical three-dimensional memory device and manufacturing method thereof.
With recent evolvement of electronic devices, it has become a trend to develop memory devices having larger data storage capacity. In order to save data after the power is turned off, non-volatile memories, such as flash memory or ferroelectric random access memory (Fe-RAM), have received more attention. However, in order to process high-speed and large-capacity data, it is necessary to further develop a memory device which operates faster and has larger data storage capacity.
Furthermore, the ferroelectric material used in a conventional memory device is usually a material having a perovskite structure. A thickness of the ferroelectric material layer having the perovskite structure has to be greater than 200 nm to allow the ferroelectric material layer to exhibit a ferroelectric characteristic, so that the size of a ferroelectric field effect transistor (FeFET) is difficult to be reduced.
However, to replace the material having the perovskite structure with other ferroelectric materials, it is necessary to ensure that the ferroelectric characteristic of the ferroelectric material is unaffected during the fabrication processes or remains unchanged with increase of usage time, otherwise writing, reading and storing of data may be affected. Accordingly, the conventional memory device leaves room for improvement.
The present disclosure is to provide a three-dimensional memory device and a manufacturing method thereof, in which the three-dimensional memory device includes vertically stacked memory cells so as to have higher data storage capacity.
In order to achieve the aforementioned objects, according to an embodiment of the disclosure, a three-dimensional memory device is provided. The three-dimensional memory device includes a plurality of bottom source lines, a stacked structure, a plurality of bit lines, and a plurality of pillar structures. The bottom source lines extend in a first horizontal direction. The stacked structure is disposed on the bottom source lines and includes a plurality of composite structures which are spaced apart from one another and respectively located at different levels. Each of the composite structures includes a gate conductive layer and a ferroelectric layer surrounding the gate conductive layer. The bit lines are disposed on the stacked structure and extend in a second horizontal direction, and the bit lines traverse the bottom source lines. Each of the pillar structures passes through the stacked structure and is connected between the corresponding bit line and the corresponding bottom source line. Each of the composite structures and the corresponding one of the pillar structures define a memory cell. Each of the pillar structures includes a barrier layer, a gate insulating layer, and a channel layer, and each of the ferroelectric layers and the corresponding one of the gate insulating layers are insulated from each other by the corresponding one of the barrier layers.
According to another embodiment of the disclosure, a manufacturing method of a three-dimensional memory device is provided. In the manufacturing method, a plurality of bottom source lines extending in a first horizontal direction are formed. Subsequently, an initial stacked structure on the bottom source lines is formed, in which the initial stacked structure includes a plurality of insulating layers and a plurality of interlayers which are alternately stacked. Thereafter, a plurality of pillar structures passing through the initial stacked structure are formed, in which each of the pillar structures corresponds to at least one of the bottom source lines and includes a barrier layer, a gate insulating layer, and a channel layer. Thereafter, the interlayers of the initial stacked structure are removed, in which the insulating layers and the pillar structures jointly define a plurality of spaces, and each of the spaces being defined by two adjacent insulating layers and the corresponding pillar structure. A plurality of composite structures are formed respectively in the spaces, in which each of the composite structures includes a gate conductive layer and a ferroelectric layer surrounding the gate conductive layer, and the ferroelectric layer is isolated from the gate insulating layer by the barrier layer. A plurality of bit lines extending in a second horizontal direction are formed on the stacked structure, in which each of the pillar structures is connected between the corresponding bit line and the corresponding bottom source line.
In the three-dimensional memory device and manufacturing method thereof provided in the embodiments of the present disclosure, each of the pillar structure includes the barrier layer, the gate insulating layer, and the channel layer, and the ferroelectric layer is isolated from the gate insulating layer by the barrier layer. As such, in the manufacturing processes of the three-dimensional device, the barrier layer can prevent atoms in the gate insulating layer from diffusing into the ferroelectric layer, and thus influence on the ferroelectric characteristic of the ferroelectric layer, which is induced by the atoms diffusing from the gate insulating layer, is avoided. In addition, the three-dimensional memory device includes a plurality of memory cells which are vertically stacked and serially connected. As a result, the data storage capacity per unit area is increased.
These and other aspects of the present disclosure will become apparent from the following description of the embodiment taken in conjunction with the following drawings and their captions, although variations and modifications therein may be affected without departing from the spirit and scope of the novel concepts of the disclosure.
The present disclosure will become more fully understood from the detailed description and the accompanying drawings, in which:
Referring to
A three-dimensional memory device 1 in the embodiment of the present disclosure includes a plurality of bottom source lines SL1-SL2, a stacked structure 10, a plurality of bit lines BL1-BL3, and a plurality of pillar structures T11-T23.
The bottom source lines SL1-SL2 extend in a first horizontal direction D1 and are arranged in parallel. As shown in
Furthermore, the stacked structure 10 is disposed on the bottom source lines SL1-SL2. Reference is made to
Reference is made to
Specifically, the composite structures 12 and the insulating layers 11 are alternately stacked in a vertical direction. That is to say, any two adjacent composite structures 12 are spaced apart from each other by one of the insulating layers 11. To be more specific, each of the composite structures 12 is arranged in a space defined by two adjacent insulating layers 11. Furthermore, each of the composite structures 12 includes a gate conductive layer 120 and a ferroelectric layer 121 surrounding the gate conductive layer 120.
It should be noted that the gate conductive layers 120 which are respectively located at different levels can serve as word lines of the three-dimensional memory device 1. That is to say, by applying read voltages, write voltages or erase voltages to the gate conductive layers 120 which are located at different levels, the three-dimensional memory device 1 can be read or written. In one embodiment, the gate conductive layers 120 can be made of titanium nitride, tantalum nitride, tungsten nitride, iridium, platinum, palladium or any combination thereof.
Each of the ferroelectric layers 121 surrounds the corresponding one of the gate conductive layers 120. The material of the ferroelectric layer 121 includes a ferroelectric material and dopants. The ferroelectric material can be hafnium oxide, hafnium zirconium oxide, hafnium silicon oxide, or zirconium titanium oxide, and the dopants can be silicon, aluminum, lanthanum, yttrium, strontium, gadolinium, niobium, nickel, tantalum, or any combination thereof. The direction of the resultant electric dipole moment of the ferroelectric layer 121, i.e., the polarization direction, may be changed according to a voltage applied to the corresponding one of the gate conductive layer 120.
Reference is made to
Furthermore, a plurality of pillar structures T11-T23 pass through the stacked structure 10, and each of the pillar structures T11-T23 is connected between the corresponding one of the bit lines BL1-BL3 and the corresponding one of the bottom source lines SL1-SL2. As shown in
However, the number of the pillar structures T11-T23 in each cell region R1 can be adjusted according to practical demands, and the scope of the disclosure is not limited to that of the example provided herein. The number of the pillar structures in each cell region R1 can be increased by increasing the number of the bottom source lines SL1-SL2 passing across the cell region R1 or the number of the bit lines BL1-BL3 passing across the cell region R1 so as to increase the number of the intersections defined by the bottom source lines SL1-SL2 and the bit lines BL1-BL3.
Referring to
Referring to
Furthermore, as shown in
In the embodiment of the present disclosure, the outermost layer of each of the pillar structures T11-T33 is the barrier layer 20. Accordingly, the ferroelectric layer 121 and the gate insulating layer 21 are isolated from each other by the barrier layer 20. Furthermore, the material of the barrier layer 20 is a conductive material, such as titanium nitride, tantalum nitride, tungsten nitride, iridium, platinum, palladium or any combination thereof. In another embodiment, the material of the barrier layer 20 is heavily-doped semiconductor. Accordingly, in the three-dimensional memory device 1 of the embodiment of the present disclosure, the barrier layer 20 can serve as a floating gate of any one of the memory cells C11-C17.
Accordingly, in one embodiment, when the barrier layer 20 is made of a conductive material, the barrier layer 20 is insulated from both the corresponding one of the bottom source lines SL1-SL2 and the corresponding one of the bit lines BL1-BL3. To be more specific, in the embodiment, each of the pillar structures T11-T23 further includes a loop-shaped insulating portion 24 to isolate the barrier layer 20 from the corresponding one of the bit lines BL1-BL3.
As shown in
As shown in
Accordingly, in the three-dimensional memory device 1 of the present disclosure, each of the memory cells C11-C17 has a metal-ferroelectric layer-metal-insulator-semiconductor, i.e., MFMIS, structure.
Furthermore, it should be noted that if atoms in the gate insulating layer 21 or channel layer 22 diffuse into the ferroelectric layer 121, the ferroelectric characteristic of the ferroelectric layer 121 are likely to be affected. For example, when the material of the ferroelectric layer 121 is hafnium oxide doped with silicon, the silicon concentration of the ferroelectric layer 121 has to fall within a predetermined range in order for the ferroelectric layer 121 to have a better ferroelectric characteristic. If silicon atoms in the gate insulating layer 21 or in the channel layer 22 diffuse into the ferroelectric layer 121 during the fabrication processes or the operation procedures, the silicon concentration of the ferroelectric layer 121 would be changed so that the ferroelectric characteristic of the ferroelectric layer 121 may not be as anticipated
As such, data retention of the three-dimensional memory device 1 may be negatively affected as well. Accordingly, the ferroelectric layer 121 of the embodiment is isolated from the gate insulating layer 21 and the channel layer 22 by the barrier layer 22 to prevent atoms of the gate insulating layer 21 or the channel layer 22 from diffusing into the ferroelectric layer 121, and thus influence on the ferroelectric characteristic of the ferroelectric layer 121 is avoided.
Reference is made to
However, in other embodiments, the dielectric layer 13 can be omitted. In this situation, the bit lines BL1-BL3 can be directly disposed on the top insulating layer 11a of the insulating layers 11 to be electrically connected to the channel layers 22 of the corresponding pillar structures T11-T23.
Accordingly, during operation of the three-dimensional memory device 1, by applying the voltages to gate conductive layers 120, the corresponding one of the bottom source lines SL1-SL2, and the corresponding one of the bit lines BL1-BL3, the write states of the memory cells C11-C17 can be controlled.
Specifically, the direction of the resultant electric dipole moment of the ferroelectric layer 121 in one of the composite structures 12, i.e., the polarization direction of the ferroelectric layer 121, may be changed according to a write voltage applied to the corresponding gate conductive layer 120. Since the polarization direction of the ferroelectric layer 121 determines the resistance or the conductance of the channel layer 22, a voltage that is equal to or greater than a threshold voltage is applied to the corresponding gate conductive layer 120 to change the resistance of the channel layer 22, and thereby to change the write state of one of the memory cells C11-C17. Subsequently, by measuring the current of the channel layer 22, the write state (such as “1” or “0”) of the selected memory cell can be determined.
One of the memory cells C11-C17 shown in
Furthermore, when a negative bias, which is sufficient to change the polarization direction of the ferroelectric layer 121, is applied to the corresponding gate conductive layer 120, the polarization direction of the ferroelectric layer 121 facilitates electron holes to be formed in the channel layer 22, such that the selected one of the memory cells C11-C17 is set in a second state with poor conductivity.
When reading the three-dimensional memory device 1, the write states of the memory cells C11-C17 can be determined by measuring the total current of the channel layer 22. Specifically, by controlling the voltages respectively applied to the gate conductive layers 120, the voltage applied to the corresponding one of the bottom source lines SL1-SL2 and the voltage applied to the corresponding one of the bit lines BL1-BL3, the total current of the channel layer 22 can be measured. When the selected one of the memory cells C11-C17 is in the first state of better conductivity, the measured total current would be greater than a predetermined value. On the contrary, when the selected one of the memory cells C11-C17 is in the second state of poor conductivity, the measured total current would be lower than the predetermined value. In one embodiment, the first state can be defined as “1”, and the second state can be defined as “0”.
It should be noted that when one of the memory cells C11-C17 is selected, and a read voltage is applied to the gate conductive layer 120 corresponding to the selected one of the memory cells C11-C17, the read voltage is usually less than the threshold voltage to prevent the polarization direction of the ferroelectric layer 121 from being disturbed. The aforementioned threshold voltage refers to the minimum voltage for changing the polarization direction of the ferroelectric layer 121.
Subsequently, referring to
In step S102, a plurality of pillar structures passing through the initial stacked structure are formed. Each of the pillar structures corresponds to at least one of the bottom source lines and includes a barrier layer, a gate insulating layer, and a channel layer.
In step S103, the interlayers of the initial stacked structure are removed so as to form a plurality of spaces among the insulating layers and the pillar structures, each of the spaces being defined by two adjacent ones of the insulating layers and the neighboring pillar structure.
In step S104, a plurality of composite structures is respectively formed in the spaces to form a stacked structure. Each of the composite structures includes a gate conductive layer and a ferroelectric layer surrounding the gate conductive layer, and the ferroelectric layer is isolated from the gate insulating layer by the barrier layer. In step S105, a plurality of bit lines extending in a second horizontal direction are formed on the stacked structure, in which each of the pillar structures is connected between the corresponding bit line and the corresponding bottom source line.
The details and the processes of the manufacturing method of the three-dimensional memory device according to an embodiment of the present disclosure will be further described in the following description. Reference is made to
Furthermore, in the step of forming the bottom source lines SL1-SL2, the manufacturing method of the three-dimensional memory device according to an embodiment of the present disclosure further includes a step of forming a plurality of insulating portions 14, each of which is disposed between two adjacent bottom source lines SL1-SL2 so that the two adjacent bottom source lines SL1-SL2 are insulated from each other. In one embodiment, the bottom source lines SL1-SL2 are disposed on another substrate (not shown in the drawings). In addition, the bottom source lines SL1-SL2 are made of a conductive material, such as heavily-doped polysilicon.
Subsequently, an initial stacked structure 10′ is formed on the bottom source lines SL1-SL2. As shown in
Furthermore, it should be noted that both of the top layer and the bottom layer of the initial stacked structure 10′ are insulating layers 11. That is to say, the insulating layers 11 includes a bottom insulating layer 11b located at the bottom side of the initial stacked structure 10′, and a top insulating layer 11a located at the top side of the initial stacked structure 10′. The interlayers 12′ are interposed between the top insulating layer 11a and the bottom insulating layer 11b.
Subsequently, the details of the step S102 in
To be more specific, a plurality of pillar-shaped openings H1 which are separate from one another are formed in the initial stacked structure 10′. It should be noted that in the present embodiment, the initial stacked structure 10′ has been divided into a plurality of cell regions R1, and each of the cell regions R1 has the pillar-shaped openings H1 formed therein and spaced apart from one another. In the embodiment of
As shown in
Reference is made to
Reference is made to
Subsequently, a pillar portion is formed in each of the pillar-shaped openings H1. Reference is made to
As shown in
As shown in
Reference is made to
By performing the steps shown in
Reference is made to
Reference is made to
As shown in
As shown in
As shown in
As shown in
Furthermore, the spaces 12h which are respectively located at different levels in the same cell region R1 are separated from one another by the insulating layers 11, respectively. However, the spaces 12h are in spatial communication with one another by the trenches H2.
Reference is made to
Reference is made to
Reference is made to
Reference is made to
Reference is made to
In the embodiment, before the step of forming the bit lines BL1-BL3, a plurality of openings 13h respectively corresponding to the pillar structures T11-T23 are formed in the dielectric layer 13. Subsequently, a plurality of conductive portions E1 are formed respectively in the openings 13h, so that each of the bit lines BL1-BL3 can be electrically connected to the channel layers 22 of the corresponding pillar structures T11-T23.
In another embodiment, if the dielectric layer 13 is not formed in the prior steps, the bit lines BL1-BL3 will be directly formed on the top insulating layer 11a so as to be electrically connected to the channel layers 22 of the corresponding pillar structures T11-T23.
According to the manufacturing methods provided in the embodiments of the present disclosure, the three-dimensional memory device can be fabricated. Furthermore, each column of the composite structures 12 in the three-dimensional memory device 1 and the corresponding one of the pillar structures T11-T23 can jointly define the memory cells C11-C17, each of which has the MFMIS structure. Accordingly, the three-dimensional memory device 1 according to the embodiments of the present disclosure can function as a NAND flash memory.
In summary, one of the advantages of the present disclosure is that in the three-dimensional memory device 1 and the manufacturing method thereof, each of the pillar structures T11-T23 includes the barrier layer 20, the gate insulating layer 21, and the channel layer 22, and the ferroelectric layer 121 is isolated from the gate insulating layer 21 by the barrier layer 20. Accordingly, during the fabrication processes of the three-dimensional memory device 1, the barrier layer 20 can prevent atoms in the gate insulating layer 21 from diffusing into the ferroelectric layer 121, and then influence on the ferroelectric characteristic of the ferroelectric layer 121 can be avoided. Furthermore, the three-dimensional memory device 1 of the embodiment in the present disclosure includes the memory cells C11-C17 which are vertically stacked and connected in series, such that the data storage capacity per unit area can be increased.
The foregoing description of the exemplary embodiments of the disclosure has been presented only for the purposes of illustration and description and is not intended to be exhaustive or to limit the disclosure to the precise forms disclosed. Many modifications and variations are possible in light of the above teaching.
The embodiments were chosen and described in order to explain the principles of the disclosure and their practical application so as to enable others skilled in the art to utilize the disclosure and various embodiments and with various modifications as are suited to the particular use contemplated. Alternative embodiments will become apparent to those skilled in the art to which the present disclosure pertains without departing from its spirit and scope.
Patent | Priority | Assignee | Title |
11587823, | Jun 29 2020 | Taiwan Semiconductor Manufacturing Co., Ltd. | Three-dimensional memory device and method |
11716855, | May 28 2020 | Taiwan Semiconductor Manufacturing Co., Ltd. | Three-dimensional memory device and method |
ER9507, |
Patent | Priority | Assignee | Title |
8178919, | Jul 21 2009 | Kabushiki Kaisha Toshiba | Nonvolatile semiconductor memory device and method for manufacturing same |
9515079, | Dec 16 2014 | SanDisk Technologies LLC | Three dimensional memory device with blocking dielectric having enhanced protection against fluorine attack |
20120104484, | |||
20180265967, | |||
20190123061, | |||
20200075629, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 12 2018 | LIU, FU-CHOU | NUSTORAGE TECHNOLOGY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 047184 | /0209 | |
Oct 16 2018 | NUSTORAGE TECHNOLOGY CO., LTD. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Oct 16 2018 | BIG: Entity status set to Undiscounted (note the period is included in the code). |
Aug 05 2020 | SMAL: Entity status set to Small. |
Mar 15 2024 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Date | Maintenance Schedule |
Sep 15 2023 | 4 years fee payment window open |
Mar 15 2024 | 6 months grace period start (w surcharge) |
Sep 15 2024 | patent expiry (for year 4) |
Sep 15 2026 | 2 years to revive unintentionally abandoned end. (for year 4) |
Sep 15 2027 | 8 years fee payment window open |
Mar 15 2028 | 6 months grace period start (w surcharge) |
Sep 15 2028 | patent expiry (for year 8) |
Sep 15 2030 | 2 years to revive unintentionally abandoned end. (for year 8) |
Sep 15 2031 | 12 years fee payment window open |
Mar 15 2032 | 6 months grace period start (w surcharge) |
Sep 15 2032 | patent expiry (for year 12) |
Sep 15 2034 | 2 years to revive unintentionally abandoned end. (for year 12) |